Homework 2, due 11-3

In this homework we consider the Lorentz group. The defining representation is four dimensional. The Lorentz group is the set of real matrices Λ that leave the Minkowski space metric invariant

$$\Lambda^T \eta \Lambda = \eta, \qquad \eta = \operatorname{diag}(1, -1, -1, -1), \qquad \operatorname{det}(\Lambda) = 1.$$

With this definition the Lorentz group preserves the inner product of 4-vectors. This means that $v_{\mu}w^{\mu} = \eta_{\nu\mu}v^{\nu}v^{\mu} = v^{T}\eta w$ is invariant under $v \to \Lambda v$, $w \to \Lambda w$.

1. If we write $\Lambda = \exp(i\alpha_a X_a)$ show that the generators X_a must satisfy

$$X_a^T \eta + \eta X_a = 0.$$

Determine from this condition and the reality of Λ the number of generators.

2. Show that the six matrices

$$(J_i)_{\mu\nu} = -i\epsilon_{0i\mu\nu}, \qquad (K_i)_{\mu\nu} = -i(\delta_{\mu 0}\delta_{\nu i} - \delta_{\mu i}\delta_{\nu 0}),$$

with i=1,2,3 and $\mu,\nu=1,\ldots,4$ form a complete basis of the generators X_a . Here, $\epsilon_{\mu\nu\alpha\beta}$ is the completely anti-symmetric four index tensor with $\epsilon_{0123}=+1$. The J_i and K_i are called rotations and boosts, respectively. Are J_i,K_i hermitean?

- 3. Compute the commutators $[J_i, J_j]$, $[K_i, K_j]$, $[J_i, K_j]$.
- 4. Define $A_i = (J_i + iK_i)/2$ and $B_i = (J_i iK_i)/2$. Compute $[A_i, A_j]$, $[B_i, B_j]$, $[A_i, B_j]$. Your result shows that the algebra of the Lorentz group is isomorphic to that of $SU(2) \times SU(2)$. This implies that representations of the Lorentz group are labeled by pairs of half-integers (j_A, j_B) .
- 5. Using

$$\alpha_a X_a = \theta_i J_i + \omega_i K_i = (\theta_i - i\omega_i) A_i + (\theta_i - i\omega_i) B_i$$

you can find the explicit form of a Lorentz transformations in the (j_A, j_B) representation. As an example, consider a two-spinor $\psi = (\alpha, \beta)^T$ in the (1/2, 0) representation. How does ψ transform under rotations around the z-axis by an angle θ_3 or boosts along the z-axis by a boost parameter ω_3 ?