North Carolina State University PY785 Final Exam Wednesday, 15 December 2010 Instructor: T. Schaefer

Name:

1	
2	
3	
4	
5	
Total	

Instructions

- 1. This is a closed book exam. You may use the index card handed out in class.
- 2. There are five problems. Each problem is worth 10 points.
- 3. Write your answers in the spaces provided for each problem. Show calculations there or on the facing page.

- 1. Consider a capacitor made of two concentric cylindrical conducting shells with radii a, b (b > a). Determine the capacitance in the following two cases
 - (a) The region $a < \rho < d$ (d < b) is filled with a dielectric (dielectric constant ϵ).
 - (b) The region $0 < \phi < \pi$ is filled with a dielectric.

Here, ρ, ϕ refer to cylindrical coordinates with respect to the axis of the cylinder.

- 2. Consider a conducting plate in the yz plane.
 - (a) Consider a long thin wire carrying a line charge $\lambda = Q/L$. The wire stretches in the z direction at a distance d from the conducting plate, see Figure a). Compute the electrostatic potential in front of the plate (x > 0).
 - (b) Compute the surface charge density on the plate.
 - (c) The wire is removed and the region -a/2 < y < a/2 of the plate is maintained at the potential V_0 . The rest of the plate is grounded, see Figure b). Compute the potential as a function of x for x > 0 and y = 0.

3. Consider a conducting sphere of radius a immersed in an asymptotically $(r \to \infty)$ uniform electric field $\vec{E} = e_0 \hat{z}$. Compute the electrostatic potential and the electric field everywhere in space.

4. Two infinitely long grounded metal plates, at y = 0 and y = a, are connected at $x = \pm b$ by metal strips held at a constant potential V_0 . (A thin insulator at the corners prevent the plates from shorting out.) Find the potential inside the rectangular pipe.

5. Two coaxial circular conductors of radius R (R is much bigger than the diameter of the conductor) carry a current I. Determine the optimal distance d between the two conductors such that the magnetic field along the symmetry axis is as homogeneous as possible. (Adjust d so as to make as many derivatives of $B_z(z=0)$ vanish as you can. This arrangement is known as Helmholtz coils.)