Homework 9, due 11-12

1. (The method of conformal mappings) Consider a complex function $w(z)=\Phi(x+i y)+i \chi(x+i y)$.
(a) Show that if $w(z)$ is an analytic function $(w(x, y)$ satisfies the Cauchy-Riemann differential equations) then both Φ and χ satisfy the two-dimensional Laplace equation.
(b) Show: If Φ is interpreted as the electrostatic potential then lines of constant χ represents the lines of force. Also show that the lines $\Phi=$ const and $\chi=$ const are orthogonal.
(c) Consider $w(z)=-2 \log (z)$. What is the physical situation represented by $\Phi(x, y)=\operatorname{Re} w(z)$?
(d) Find a complex function $w(z)$ that represents two parallel line charges $\pm \lambda$ in three dimensions. Calculate the surface charge density induced by a line charge located at $x=a, y=z=0$ on a conducting plane at $x=0$.
2. In an anisotropic medium we have $D_{i}=\epsilon_{i j} E_{j}$ where $\epsilon_{i j}=\epsilon_{j i}$ is the dielectric tensor. Determine the field of a point charge at the origin in an anisotropic medium. (Note: $\epsilon_{i j}$ can be diagonalized. This implies that it is sufficient to consider the case $\epsilon_{i j}=\operatorname{diag}\left(\epsilon_{x}, \epsilon_{y}, \epsilon_{z}\right)$.)
