Homework 9, due 11-12

- 1. (The method of conformal mappings) Consider a complex function $w(z) = \Phi(x + iy) + i\chi(x + iy).$
 - (a) Show that if w(z) is an analytic function (w(x, y) satisfies the Cauchy-Riemann differential equations) then both Φ and χ satisfy the two-dimensional Laplace equation.
 - (b) Show: If Φ is interpreted as the electrostatic potential then lines of constant χ represents the lines of force. Also show that the lines $\Phi = const$ and $\chi = const$ are orthogonal.
 - (c) Consider $w(z) = -2\log(z)$. What is the physical situation represented by $\Phi(x, y) = \operatorname{Re} w(z)$?
 - (d) Find a complex function w(z) that represents two parallel line charges $\pm \lambda$ in three dimensions. Calculate the surface charge density induced by a line charge located at x = a, y = z = 0 on a conducting plane at x = 0.
- 2. In an anisotropic medium we have $D_i = \epsilon_{ij}E_j$ where $\epsilon_{ij} = \epsilon_{ji}$ is the dielectric tensor. Determine the field of a point charge at the origin in an anisotropic medium. (Note: ϵ_{ij} can be diagonalized. This implies that it is sufficient to consider the case $\epsilon_{ij} = \text{diag}(\epsilon_x, \epsilon_y, \epsilon_z)$.)