Homework 7, due 11-6

The differential decay rate for the β decay reaction $(A, Z) \rightarrow (A, Z+1) + e^- + \bar{\nu}_e$ is given by

$$d\lambda = \frac{c^6}{8\pi^5\hbar} \left(\frac{2.4G_F}{(\hbar c)^3}\right)^2 |M|^2 \,\delta \left(\Delta B - E_\nu - E_e\right) \,d^3 p_e \,d^3 p_\nu,$$

where E_e, p_e are the energy and momentum of the electron, E_ν, p_ν are the energy and momentum of the neutrino, and ΔB is the difference in the binding energies. The weak coupling constant is $G_F/(\hbar c)^3 = 1.16 \cdot 10^{-5} \,\text{GeV}^{-2}$ and the factor 2.4 takes into account coupling factors for Fermi and Gamov-Teller transitions. The nuclear matrix element $|M|^2$ satisfies the condition $|M|^2 \leq 1$.

- 1. Integrate over the (unobserved) neutrino momentum to obtain the differential rate as a function of the electron energy. You can assume that neutrinos are massless.
- 2. Also integrate over the electron momentum in order to obtain the total decay rate. How does the rate scale with $Q \equiv \Delta B m_e c^2$ in the limit $Q \gg m_e c^2$?
- 3. Estimate the total decay rate for $|M|^2 = 1$ and Q = 1 MeV as well as Q = 10 MeV.

Note that the Dirac δ -function is defined by

$$\int dx f(x)\delta(x-a) = f(a).$$

You can easily show that

$$\int dx f(x)\delta(g(x)) = \frac{1}{|g'(a)|}f(a),$$

where g(a) = 0.