Homework 3, due 9-25

In class we introduced product wave functions

$$
\uparrow \uparrow=\chi_{\uparrow}(1) \chi_{\uparrow}(2)=\binom{1}{0}\binom{1}{0} .
$$

Spin operators act on product spin wave functions as follows

$$
\sigma_{x, 1} \sigma_{y, 2} \chi_{\uparrow}(1) \chi_{\uparrow}(2)=\left[\sigma_{x} \chi_{\uparrow}(1)\right]\left[\sigma_{y} \chi_{\uparrow}(2)\right] .
$$

Expectation values are defined as

$$
\left(\chi_{\uparrow}(1) \chi_{\uparrow}(2)\right)^{\dagger} \sigma_{x, 1} \sigma_{y, 2}\left(\chi_{\uparrow}(1) \chi_{\uparrow}(2)\right)=\left[\chi_{\uparrow}^{\dagger}(1) \sigma_{x} \chi_{\uparrow}(1)\right]\left[\chi_{\uparrow}^{\dagger}(2) \sigma_{y} \chi_{\uparrow}(2)\right] .
$$

In class we argued that $\chi_{A, S}$

$$
\chi_{A, S}=\frac{1}{\sqrt{2}}(\uparrow \downarrow \mp \downarrow \uparrow)
$$

have spin zero and one, respectively.

1. Check this statement explicitely by computing

$$
\vec{S}^{2} \chi_{A, S}
$$

where

$$
\vec{S}=\vec{S}_{1}+\vec{S}_{2}=\frac{\hbar}{2}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) .
$$

2. Use your result to compute the expectation value of $\vec{S}_{1} \cdot \vec{S}_{2}$ in the spin zero and one states,

$$
\begin{aligned}
& \chi_{A}^{\dagger}\left(\vec{S}_{1} \cdot \vec{S}_{2}\right) \chi_{A}=? \\
& \chi_{S}^{\dagger}\left(\vec{S}_{1} \cdot \vec{S}_{2}\right) \chi_{S}=?
\end{aligned}
$$

3. Suppose the potential between two nucleon is of the form

$$
V(r)=V_{0}(r)+\left(\vec{S}_{1} \cdot \vec{S}_{2}\right) V_{1}(r)
$$

What can you say about the sign and relative size V_{0} and V_{1} ?

