Midterm Exam 1 (PY 413, Spring 2007)

- 1. A glass containing 150g of water is heated in a 600 Watt microwave oven. Starting from room temperature, $T = 20^{\circ}$ C, how long does it take for the water to boil? Assume that no energy is wasted. The specific heat of water is $c(H_2O) = 4.186 \text{ J/(g·K)}.$
- 2. The figure shows an approximate PV diagram for a gasoline engine. In the following we shall assume that the working substance is an ideal diatomic (f = 5) gas and that the power and compression strokes are adiabatic.

- (a) The initial volume is $V_1 = 1$ liter $(1 \ l = (10 \ cm)^3)$, the initial temperature and pressure are $T_1 = 293$ K and $P_1 = 1$ atm. The compression ratio is $V_1/V_2 = 10$. Compute the temperature T_2 and the pressure P_2 .
- (b) Compute the amount of work W_{12} required to compress the gas.
- (c) During the ignition stage the temperature of the gas is further raised to $T_3 = 1200$ K. Compute the amount of heat Q_{in} transferred to the gas.
- (d) In the power stroke the volume changes adiabatically back to V_1 . What is the amount of work W_{34} being done during the expansion? The efficiency ϵ is defined as the ratio of the net (total) work done over the heat input Q_{in} . Compute ϵ .