
Ideal Gas

Ideal gas law
PV = kNT

Equipartition law

U =
f

2
kNT

with f = 3 for a mono-atomic gas and f = 5 for a di-atomic gas. Adiabatic
expansion

PV γ = const, γ = (f + 2)/f

Entropy of an ideal mono-atomic gas
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Chemical potential

µ = −kT log
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Entropy and Heat

First law
∆U = Q + W

Thermodynamic Identity

dU = TdS − PdV + µdN

If W = −PdV have Q = TdS. Also
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Specific heat C = Q/∆T . Have
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Efficiency of the Carnot Process operating between two reservoirs at temper-
atures Th and Tc

ǫ =
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Qh

= 1 − Tc

Th

Thermodynamic Functions

Enthalpy

H = U + PV ∆H = Q + Wother (P = const)

Free Energy

F = U − TS ∆F = W (T = const, Q = T∆S)

Gibbs Free Energy

G = U − TS + PV ∆G = Wother (P = T = const, Q = T∆S)

Partial derivatives of free energy
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Statistical Definition of Entropy

Entropy
S = k log(Ω)

Binomial coefficient
(

N
k

)

=
N !

k!(N − k)!

Stirling formula (N ≫ 1)

log(N !) ≃ N log(N) − N + . . .

Statistical Mechanics

Partition Function

Z =
∑

s

exp(−βEs), β =
1

kT



A useful sum is the geometric series

∞
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Average (internal) energy

Ē = − 1
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Connection to free energy

F = −kT log(Z)

For N not-to-dense, indistinguishable particles

Ztot =
1

N !
(Z1)

N ,

where Z1 is the one-body partition function. Grand partition Function

Z =
∑

s

exp(−β(Es − µNs))

Bose and Fermi distribution

nB =
1

exp(β(ǫ − µ)) − 1
, nF =

1

exp(β(ǫ − µ)) + 1

Boltzmann limit n = exp(−β(E − µ))

Numerical Constants

k = 1.381 × 10−23 J/K = 8.617 × 10−5 eV/K

NA = 6.022 × 1023

R = 8.315 J/mol/K

h = 6.626 × 10−34 J · s
e = 1.602 × 10−19 C (1)

1 atm = 1.013 × 105 N/m2

1 cal = 4.186 J

1 eV = 1.602 × 10−19 J

1 u = 1.661 × 10−27 kg


