Quantum Mechanics

1. The state of the system is described by a vector $|\psi(t)\rangle$, called the wave function.
2. Observables correspond to hermitean operators R. The possible outcomes of a measurement of R are the eigenvalues $r, R|r\rangle=r|r\rangle$. The probability of observing r is

$$
P_{r}=|\langle r \mid \psi(t)\rangle|^{2}
$$

Important special cases are the probability to observe a given position, $P_{x}=|\langle x \mid \psi\rangle|^{2}$, or a given momentum $p, P_{p}=|\langle p \mid \psi\rangle|^{2}$. The quantity $\psi(x, t)=\langle x \mid \psi(t)\rangle$ is called the coordinate space wave function, and $\psi(p, t)=\langle p \mid \psi(t)\rangle$ is the momentum space wave function. Note that $\psi(p, t)$ is the (suitably normalized) Fourier transform of $\psi(x, t)$.
Immediately after a measurement in which the value of R was observed to be r the state of the system changes from $\left|\psi\left(t_{\text {bef }}\right)\right\rangle$ to $\left|\psi\left(t_{a f t}\right)\right\rangle=|r\rangle$. ("The collapse of the wave function.")
3. The state of the system evolves according to the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

where H is the Hamiltonian. The Hamiltonian of a single particle moving in a potential $V(x)$ is

$$
H=\frac{p^{2}}{2 m}+V(x)
$$

Note that $\langle x| p|\psi\rangle=-i \hbar \nabla_{x}\langle x \mid \psi\rangle$, so that we can write

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=\left\{-\frac{\hbar^{2} \nabla_{x}^{2}}{2 m}+V(x)\right\} \psi(x, t) .
$$

4. If the eigenvalues and eigenfunctions of H are known,

$$
H|n\rangle=E_{n}|n\rangle
$$

then the solution of the Schrödinger equation is given by

$$
|\psi(t)\rangle=\sum_{n}|n\rangle c_{n} e^{-i E_{n} t / \hbar}
$$

where $c_{n}=\langle n \mid \psi(0)\rangle$. The eigenvalue equation for H in the coordinate representation,

$$
\left\{-\frac{\hbar^{2} \nabla_{x}^{2}}{2 m}+V(x)\right\} \psi_{n}(x)=E_{n} \psi_{n}(x)
$$

where $\psi_{n}(x)=\langle x \mid n\rangle$, is sometimes called the time-independent Schrödinger equation.
5. If two hermitean operators commute, $[R, S]=0$, then we can construct a wave function that is an eigenstate of both R and S,

$$
R|r, s\rangle=r|r, s\rangle, \quad S|r, s\rangle=s|r, s\rangle
$$

In such a state, measurements of both R and S can be predicted with absolute certainty. If R and S do not commute this is not true. In particular, we cannot find a state for which both R and S are certain. The most important example is position x and momentum p. We have

$$
[p, x]=-i \hbar
$$

and

$$
(\Delta p)^{2}(\Delta x)^{2} \geq \frac{\hbar^{2}}{4}
$$

where $(\Delta p)^{2}=\langle\psi|(p-\bar{p})^{2}|\psi\rangle$ is the uncertainty in $p, \bar{p}=\langle\psi| p|\psi\rangle$ is the average p, and the uncertainty and average in x are defined analogously. This is known as the uncertainty relation.

