

Bell's theorem simplified (GHZ state)

Consider the following entangled state of three spins

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow \uparrow\rangle-|\downarrow \downarrow \downarrow\rangle) . \tag{1}
\end{equation*}
$$

We will consider the observables $A_{i}=\sigma_{x}^{(i)}$ and $B_{i}=\sigma_{y}^{(i)}$, where $i=1,2,3$ refers to the i^{\prime} 'th spin. Note that $\sigma_{x}=\sigma^{+}+\sigma^{-}$and $\sigma_{y}=-i\left(\sigma^{+}-\sigma^{-}\right)$. This implies

$$
\begin{equation*}
A_{1} B_{2} B_{3}|\psi\rangle=-\left(\sigma^{+}+\sigma^{-}\right)^{(1)}\left(\sigma^{+}-\sigma^{-}\right)^{(2)}\left(\sigma^{+}-\sigma^{-}\right)^{(3)}|\psi\rangle=-|\psi\rangle \tag{2}
\end{equation*}
$$

Analogously, $|\psi\rangle$ is an eigenstate of any product of one A and two B 's (with different indices, but in any order) with eigenvalue -1 . We also find that $|\psi\rangle$ is an eigenstate of $A_{1} A_{2} A_{3}$ with eigenvalue +1 .
To a "realist" $A_{i}= \pm 1$ and $B_{i}= \pm 1$ are real properties of the system. A realist will explain the fact that measurements of A_{i} and B_{i} have probabilistic outcomes by appealing to the possibility that the initial state of the system is not uniquely determined, but contains "hidden variables" that are randomly distributed.
When informed that a measurement of a randomly chosen $A_{i} B_{j} B_{k}$ (with i, j, k all different) always yields +1 a realist will conclude that

$$
\begin{equation*}
A_{1} A_{2} A_{3}=\left(A_{1} B_{2} B_{3}\right)\left(A_{2} B_{1} B_{3}\right)\left(A_{3} B_{1} B_{2}\right)=+1 \tag{3}
\end{equation*}
$$

because $B_{i}^{2}=+1$. The realist will then conclude that $A_{1} A_{2} A_{3}=+1$ always. But this prediction is always wrong, a measurement of $A_{1} A_{2} A_{3}$ yields -1 .

