
The Twin Paradox

We would like to clarify the twin paradox using space time diagrams. This is also a
nice exercise in drawing space time diagrams. We consider two observers: S and S’,
where S’ is moving with velocity 0.625c relative to S.
We will use Lorentz transformations to help us draw the diagrams correctly. We start
with the S coordinate system (x, t). The transformation from S to S’ is

x′ = γ(x − βct), (1)

ct′ = γ(ct − βx), (2)

where β = v/c and γ = 1/(1 − β2)1/2. The t′ axis corresponds to x′ = 0, so ct = x/β.
The x′ axis satisfies t′ = 0 and ct = βx. The two slopes are inversely proportional. We
have
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In order to find the units of S’ in the S-system we use the inverse Lorentz transformation

x = γ(x′ + βct′), (3)

ct = γ(ct′ + βx′). (4)

The unit on the t′ axis is (x′, ct′) = (0, 1). This corresponds to (x, ct) = (γβ, γ).
Analogously, (x′, ct′) = (1, 0) is (x, ct) = (γ, γβ). For arbitrary β = v/c these curves
are hyperbolas. The intersection of the hyperbolas with the S and S’ axes fixes the
units.
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Now we can draw an equal time line in S through the point (x, ct) = (0, 1). This is a
line parallel to the x-axis. We can also draw an equal time line in S’ through the point
(x′, ct′) = (0, 1). This line is parallel to the x′-axis.

t = const

t’= const

We can see that in S, the point (x, ct) = (0, 1) is at equal time to (x′, ct′) = (0, 1/γ).
Analogously, the point (x′, ct′) = (0, 1) in S’ is at equal time (in S’) to (x, ct) = (0, 1/γ).
For β = 0.625 we have γ = 1.28 and 1/γ = 0.78.
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t’= 1.00

t’= 0.78t = 0.78

t = 1.00

The situation is completely symmetric. Both observers conclude that it is the other
clock that is running slow (the other clock is showing ct = 0.78 when their own clock
shows ct = 1). There is no paradox, because there are (effectively) more than two clocks
involved. Both S and S’ have sets of synchronized clocks, and comparisons between S
and S’ involve clocks that are at the same space time point. The worldlines of clocks
are shown as lines with arrows.
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Finally, we focus on the two clock comparisons that cause both S and S’ to conclude
that the other clock is running slow.
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The Twin Paradox, revisited

The original twin paradox is resolved by the observation that there are more than two
clocks that are being compared. As a result there is no sense in which the clocks in S
or S’ are “really” slower. S and S’ are completely symmetric
Now imagine that we try to reduce the twin paradox to the comparison of just two
clocks. For this purpose imagine that both S and S’ have only one clock, located as
x = 0 and x′ = 0, respectively. Both observers send out a light signal (dark red and
dark green dashed lines) for every tick of their clock. The figure shows that the situation
is still symmetric: both observers conclude that the other clock is slow (the light signal
corresponding to tick number n of the other clock arrives after the local clock has sent
out the n’th signal). Note that this effect is more than just time dilation – it also
involves the extra delay due to the travel time of the light signal. The combination of
these two effects is called the Doppler effect.
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Now imagine that S’ starts to decelerate at some point, and then reverses direction
until he reaches the velocity −0.625c. Then both S and S’ will start to pick the light
signals of the other clock at an increased rate. When the word lines of the two clocks
intersect there is no time delay anymore. In the figure we can see that S’ has collected
three “ticks” sent by S, whereas S barely receives two ticks. The situation is no longer
symmetric, the S’ clock is “really” slower. This is possible because S and S’ are no
longer equivalent. S is an inertial observer, whereas S’ undergoes acceleration and is
not an inertial observer.
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