Homework 4, due 10-6

1. A particle of mass m moves in the potential

$$V(x) = \begin{cases} V_1 & x < 0 \\ 0 & 0 < x < a \\ V_2 & a < x \end{cases},$$

where $V_1, V_2 > 0$.

- (a) Find the equation that determines the energy levels.
- (b) Consider the case $V_1 = V_2$. Draw a graph that shows the eigenvalue equation.
- (c) Is there always at least one bound state? How does the number of bound states scale with V?
- (d) Derive an approximate analytical expression for the energy level in a shallow potential, that means in the case that the potential $V = V_1 = V_2$ allows just one bound state with energy $E \simeq V$. Compute the first correction to to $E \simeq V$.
- 2. A particle of mass m moves in the potential $V = -V_0 \delta(x)$ $(V_0 > 0)$.
 - (a) Find the energy and wave function of the groundstate.
 - (b) Are there any excited bound states?

Hint for part a: First consider the Schrödinger equation in the regime x > 0 and x < 0. Then determine the boundary condition at x = 0.