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Why study the unitary Fermi gas?

Very simple and clean model system for strong correlations.

Universality connects atomic and nuclear systems.

Impressive progress in experimental control: Tune interactions,

temperature, external fields, linear response, etc.



Non-relativistic fermions in unitarity limit

Two body interaction: Consider simple square well potential

a < 0 a =∞, εB = 0 a > 0, εB > 0



Non-relativistic fermions in unitarity limit

Now take the range to zero, keeping εB ' 0

Universal relations

T =
1

ik + 1/a
εB =

1

2ma2
ψB ∼

1√
ar

exp(−r/a)



Fermi gas at unitarity: Field Theory

Non-relativistic fermions at low momentum

Leff = ψ†
(
i∂0 +

∇2

2M

)
ψ − C0

2
(ψ†ψ)2

Unitary limit: a→∞ (DR: C0 →∞)

This limit is smooth (HS-trafo, Ψ = (ψ↑, ψ
†
↓)

L = Ψ†

[
i∂0 + σ3

~∇2

2m

]
Ψ +

(
Ψ†σ+Ψφ+ h.c.

)
− 1

C0

φ∗φ ,

φ ∼ ψ↑ψ↓ auxiliary “pair” or “dimer” field.



Experimental realization: Feshbach resonances

Atomic gas with two spin states: “↑” and “↓”
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Universality: From neutrons to atoms

Neutron Matter 6Li Feshbach resonance

What do these systems have in common?

dilute: rρ1/3 � 1

strongly correlated: aρ1/3 � 1

a

r

k
−1

F



Outline

1. Equation of state: From trapped atoms to neutron stars

2. The contact: From the tail of the momentum distribu-

tion to short range correlations in nuclei.

3. Un-nuclear physics: From trapped few-body systems to

the disintegration of halo nuclei

4. Everything flows: Elliptic flow from traps to heavy ions



1. Equation of state

Free fermi gas at zero temperature

E

N
=

3

5

k2
F

2m

N

V
=

k3
F

3π2

E = E/V ∼ (N/V )5/3

Unitarity limit (a→∞, r → 0). No expansion parameters.

E

N
= ξ

3

5

k2
F

2m
kF ≡ (3π2N/V )1/3

Prize problem (George Bertsch, 1998): Determine ξ.

Is ξ > 0 (is the system stable)?



How to measure ξ with trapped atoms

Trapped gas in hydrostatic equilibrium

1

n
~∇P = −~∇Vext P =

2

3
E

Pressure determines size of the cloud (Vext = 1
2
mω2x2).

r(a = 0) =

√
2EF
mω2

r(a =∞) = ξ1/4r(0)

Cloud size can be measured with a CCD camera and a ruler

modern value

ξ = 0.37(5)

(MIT, Sommer et al.)



Neutron matter equation of state
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Unitary Fermi gas  ξ=0.37

n ∼< 0.1 fm−3: Unitary gas

with a−1, r corrections.

n ∼> 0.1 fm−3: Repulsive

2-body, 3-body forces.

n ∼> 0.2 fm−3: New degrees of freedom.



Neutron Star Mass-Radius relation

M < 1.0M�: Well constrained

neutron matter EOS.

M ∼ (1.4− 2.0)M�: Radii

constrain high density EOS.

Adam et al. 2006.07983.



2. Short range correlations and the “Contact”

Consider short distance structure of unitary gas

〈n↑(R + r/2)n↓(R− r/2)〉 ' 1

16π2

C
r2

C : Tan’s contact density

Related object: Momentum distribution

nσ(k) =

∫
d3R

∫
d3r e−ikr〈ψ†σ(R− r/2)ψσ(R + r/2)〉

The large momentum (short distance) tail of the distribution is

nσ(k) =
C

k4
C =

∫
d3r C(r) Contact

Shina Tan, cond-mat/0505200.



Short range correlations, continued

The contact is related to the the pair density

C = 〈m2Φ†Φ〉 Φ ∼ C0ψ↑ψ↓

Many universal relations. Example: Thermodynamics

dE

da−1

∣∣∣∣
s

= − h
2C

4πm

Example: Transport properties

η(ω) ∼ C
15π
√
mω



Short range correlations and the contact in nuclei

Momentum distribution in

nuclei (theory)

Weiss et al. 1612.00923

Pair density in nuclei

CLAS collaboration

Nature (2018)



3. Conformal symmetry and Un-nuclear physics

Unitary Fermi gas is invariant under scale

x→ sx, t→ s2t [D,H] = 2iH

and conformal transformations

x→ x/(1 + ct), 1/t→ 1/t+ c [C,H] = iD

Constrains correlation functions, e.g. pair propagator

GΦ(ω, p) =
1√

p2/(4m)− ω



Conformal symmetry: State operator correspondence

Generalized to operators U(t, x) with higher mass M = Nm

i〈TU †U〉ω,p =

(
p2

2M
− ω

)∆−5/2

conformal dimension ∆

∆ related to ground state in harmonic potential

E = ∆~ω state − operator correspondence

E.g single free particle: ∆ = 3/2

Hammer, Son, 2103.12610. Baym, Schaefer, 2109.06924.



Un-nuclear physics: Nuclear reactions

1 2 3 4 5

1 2 3 4 5

E2 = 2h̄ω

E3 = 4.27h̄ω

dσ/dE2n ∼ E−0.5
2n

dσ/dE3n ∼ E1.77
3n

dσ
dE

dσ
dE

E2n [MeV]

E3n [MeV]

A

γ

B

nn

A

γ

B

3n

x+ A→ B +Nn
dσ

dE
∼ E∆−5/2

[(ma2)−1 ∼ 0.5 MeV ] < E < [(mr2)−1 ∼ 5 MeV ]



4. Elliptic flow in the unitary Fermi gas
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Fluid dynamics

Simple fluid: Conservation laws for mass, energy, momentum

∂ρ

∂t
+ ~∇~ ρ = 0

∂E
∂t

+ ~∇~ ε = 0

∂πi
∂t

+∇jΠij = 0 ~ ρ ≡ ρ~v = ~π

Scale invariance: Ideal fluid dynamics

Π0
ij = Pgij + ρvivj, P =

2

3
E

First order viscous hydrodynamics

δ(1)Πij = −ησij − ζgij〈σ〉 ζ = 0

σij = (∇ivj +∇jvi − 2/3δij∇ · v) 〈σ〉 = σii



Shear viscosity: Theory

Kinetic theory: Momentum transport by diffusion of atoms

η =
15

32
√
π

(mT )3/2 (T ∼> TF )

QFT: Diagrammatic content of Boltzmann equation. Kubo

formula with Maki-Thompson + Azlamov-Larkin + Self-energy

η = − lim
ω→0

1

ω
Im

∫
dtd3x e−i(ωt−kx) Θ(t)〈[Πxy(0),Πxy(t, x)]〉

�

=

�



Can be used to extrapolate kinetic theory to T ∼ TF
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η(T ∼ Tc) ∼ ~n Drude peak, universal tail.

Enss, Zwerger (2011), see also Levin (2014)



Fluid dynamics analysis
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AR = σx/σy as function of total energy. Data: Joseph et al (2016). E/(NEF ) ∼ 0.6 is the superfluid transition.

Grey, Blue, Green: LO, NLO, NNLO fit.

η = η0(mT )3/2
{

1 + η2nλ
3 + η3(nλ3)2 + . . .

}



Reconstruct η/s (normal fluid)
η
/s
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Phenomenology: Two component model works well, η ∼ η0(mT )3/2 +η1~n

η/s|Tc = 0.56± 0.20



Sound attenuation (MIT)



Sound attenuation (MIT)

Spectral response ρk(ω). Sound diffusivity Ds(T )

A

B

Damping rate Γ(k) Ds = 4η
3ρ + 4κT

15P .

(T/TF = 0.36, 0.21, 0.13). Patel et al., Science (2021)



Linear Response (NC State)

Baird et al., PRL 2019

(κ/η)(T � Tc) = 0.93(14)(15/4)(kB/m)



Final thoughts

The unitary Fermi gas has become a paradigm for strongly

correlated quantum liquids.

Universality relates the cold atomic gas to dilute neutron

matter. Important for understanding analytic aspects,

and as a benchmark for quantum Monte Carlo calcula-

tions.

Range of ideas continues to expand: From thermodynam-

ics to transport, short range correlations and un-nuclear

reactions.

Continued role for ultracold gases as quantum simulators,

not just universal gate based quantum computers.


