Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Thomas Schaefer, North Carolina State University

with Mithat Ünsal and Erich Poppitz

Confinement and the QCD string

Leinweber (2001)

Bali (2001)

Confinement well established numerically (and empirically)

Confinement and the QCD string

Challenge: Understand confinement analytically

Not just a problem in pure mathematics: Understand dynamics, suggest new observables, ...

Some successes (QCD-like gauge theories)

- Polyakov model (compact QED in 2+1)
- $\mathcal{N}=2$ SUSY YM softly broken to $\mathcal{N}=1$

Confinement: Goals

• Mass gap in the pure gauge theory: $m_{0^{++}}$

 $\left\langle \operatorname{Tr}[F^2(x)]\operatorname{Tr}[F^2(0)]\right\rangle \sim f^2 \exp(-m_{0^{++}}x)$

• String tension, effective theory of the QCD string.

$$\langle W(C) \rangle = \left\langle \operatorname{Tr} \exp \left[i \int_C A^{\mu} dx_{\mu} \right] \right\rangle \sim \exp(-\sigma A(C))$$

• Polykaov line: Effective potential, correlation functions.

$$\langle \Omega(\vec{x}) \rangle = \left\langle \operatorname{Tr} \exp\left[i \int_{0}^{\beta} A_{4} dx_{4}\right] \right\rangle \sim 0$$

• Critical temperature, center symmetry breaking

$$\Omega \to z\Omega \qquad z \in Z_N$$

• Theta dependence, $d^2 E/d\theta^2 \neq 0$.

In this work we will pursue a more modest goal.

We will study confinement and the deconfinement phase transition in a non-abelian gauge theory which is weakly coupled (by using a suitable compactification).

We will argue that this theory is continuously connected (by decoupling an extra matter field) to pure gauge theory.

SU(2) YM with $n_f^{adj} = 1$ Weyl fermions on $R^3 \times S_1$

Ingredients

- $R^3 \times S_1$ circle-compactified gauge theory.
- Small S₁: Effective 3d theory involving holonomy and (dual) photon.
- Double expansion: Perturbative and non-perturbative effects (monopoles, topological molecules).
- Topological molecules: supersymmetry versus BZJ.
- Competition: Center stabilizing molecules, center breaking perturbative (and monopole) effects.

Gauge theory on $R^3 \times S_1$

SU(2) gauge theory, $n_f = 1$ adjoint Weyl fermion

Vacua labeled by Polyakov line

$$\Omega = \exp\left[i\int A_4 dx_4
ight]$$
 Center symmetry $\Omega o z\Omega \qquad z \in Z_2$

Small S_1 : Effective Theory

Consider small S_1 and $\Omega \neq 1$: A_4 is a Higgs field, theory abelianizes. Bosonic sector of effective 3d theory

$$\mathcal{L} = \frac{g^2}{32\pi^2 L} \left[(\partial_i b)^2 + (\partial_i \sigma)^2 \right] + V(\sigma, b)$$

$$\Omega = \begin{pmatrix} e^{i\Delta\theta/2} & 0\\ 0 & e^{-i\Delta\theta/2} \end{pmatrix} \quad b = \frac{4\pi}{g^2}\Delta\theta \qquad \epsilon_{ijk}\partial_k\sigma = \frac{4\pi L}{g^2}F_{ij}$$

holonomy b

dual photon σ

Note: m = 0 effective theory can be super-symmetrized

$$\Phi = b + i\sigma + \sqrt{2}\theta^{\alpha}\lambda^{\alpha}$$

Perturbation Theory

Perturbative potential for holonomy (Gross, Pisarski, Yaffe, 1981)

$$V(\Omega) = -\frac{m^2}{2\pi^2 L^2} \sum_{n=1}^{\infty} \frac{1}{n^2} |\operatorname{tr} \Omega^n|^2 = -\frac{m^2}{L^2} B_2\left(\frac{\Delta\theta}{2\pi}\right)$$

m = 0: Bosonic and fermionic terms cancel.

 $m \neq 0$: Center symmetric vacuum $tr(\Omega) = 0$ unstable.

Non-perturbative effects

Topological classification on $R^3 \times S_1$ (GPY)

1. Topological charge

$$Q_{top} = \frac{1}{16\pi^2} \int d^4x \, F\tilde{F}$$

2. Holonomy (eigenvalues q^{α} of Polyakov line at spatial infinity)

$$\langle \Omega(\vec{x}) \rangle = \left\langle \operatorname{Tr} \exp \left[i \int_{0}^{\beta} A_{4} dx_{4} \right] \right\rangle$$

3. Magnetic charges

$$Q_M^{\alpha} = \frac{1}{4\pi} \int d^2 S \operatorname{Tr} \left[P^{\alpha} B \right]$$

Periodic instantons (calorons)

Instanton solution in R^4 can be extended to solution on $R^3 \times S^1$

 $4n_{adj}$ fermionic zero modes

$$\int d^2\zeta d^2\xi$$

Calorons at finite holonomy: monopole constituents

KvBLL (1998) construct calorons with non-trivial holonomy

BPS and KK monopole constituents. Fractional topological charge, 1/2 at center symmetric point.

 $2 \times (3+1) = 8$ bosonic zero modes, 2×2 fermionic ZM.

$$\int d\phi_1 \int d^3x_1 \int d^2\zeta \, e^{-S_1} \int d\phi_2 \int d^3x_2 \int d^2\xi \, e^{-S_2}$$

Topological objects

 $(Q_M, Q_{top}) = (\int_{S_2} B \cdot d\Sigma, \int_{R^3 \times S_1} F\tilde{F})$

Note: BPS/KK topological charges in Z_2 symmetric vacuum. Also have (2,0) (magnetic) bions.

Topological objects: Coupling to low energy fields

Kraan, van Baal (1998); Lee, Lu (1998); Unsal (2008)

Non-perturbative effects at m = 0 from supersymmetry

Monopoles contribute to superpotential: $(\lambda\lambda)e^{-b+i\sigma}\sim\int d^2\theta e^{-\Phi}$

$$\mathcal{W} = \frac{M_{PV}^3 L}{g^2} \left(e^{-b} + e^{-2S_0} e^b \right)$$

Scalar potential

$$V(b,\sigma) \sim \left|\frac{\partial \mathcal{W}}{\partial \Phi}\right|^2 \sim \frac{M_{PV}^6 L^3 e^{-2S_0}}{g^6} \left[\cosh\left(\frac{8\pi}{g^2} \left(\Delta\theta - \pi\right)\right) - \cos(2\sigma)\right]$$

Center symmetric vacuum $tr(\Omega) = 0$ preferred

Mass gap for dual photon $m_{\sigma}^2 > 0$ (\rightarrow confinement)

Davies, Hollowood, Khoze, Mattis (1999)

Non-perturbative effects at m = 0 from BZJ

Consider magnetically neutral topological molecules. Integrate over near zero-mode: S_{12}

$$V_{BPS,\overline{BPS}} \sim e^{-2b} e^{-2S_0} \int d^3 r \, e^{-S_{12}(r)}$$
$$S_{12}(r) = \frac{4\pi L}{g^2 r} (q_m^1 q_m^2 - q_b^1 q_b^2) + 4\log(r)$$

Saddle point integral after analytic continuation $g^2 \rightarrow -g^2$ (BZJ)

$$V(b,\sigma) \sim \frac{M_{PV}^6 L^3 e^{-2S_0}}{g^6} \cosh\left(\frac{8\pi}{g^2} \left(\Delta\theta - \pi\right)\right)$$

Same for magnetically charged molecules: $V \sim \cos(2\sigma)$.

Effective potential for $m \neq 0$

Effective potential: molecules, monopoles, perturbation theory

$$\begin{split} \tilde{V} &= \cosh 2b' - \cos 2\sigma & V(b') \\ &+ \frac{\tilde{m}}{2\tilde{L}^2} \cos \sigma \left(\cosh b' - \frac{b' \sinh b'}{3 \log \tilde{L}^{-1}} \right) & \left| \begin{array}{c} V(b') \\ & & \\ & \\ - \frac{1}{1728} \left(\frac{\tilde{m}}{\tilde{L}^2} \right)^2 \frac{1}{\log^3 \tilde{L}^{-1}} (b')^2 . \end{split}$$

$$ilde{L} = L \Lambda, \, ilde{m} = m / \Lambda, \, b' = rac{4\pi}{g^2} (\Delta heta - \pi)$$

Critical
$$S_1$$
 size $\tilde{L}_c^2 = \frac{\tilde{m}}{8} \left[1 + \mathcal{O}\left(\frac{1}{\log \tilde{L}}, \frac{\tilde{m}}{\tilde{L}^2}\right) \right],$

Corresponds to
$$T_c = \sqrt{\frac{8}{\tilde{m}}} \Lambda_{QCD}$$

SU(2) YM with $n_f^{adj} = 1$ Weyl fermions on $R^3 \times S_1$

Outlook: higher rank gauge groups, θ dependence, pure gauge

 $SU(N \geq 3)$: First order transition $Z_N \to \emptyset$

Smooth $N_c \rightarrow \infty$ limit (because $Q_{top} \sim 1/N_c$)

$$\mu_{PV}^3 e^{-\frac{8\pi^2}{g^2 N_c}} \sim \Lambda^3$$

Large N_c : Eigenvalues of P for $N_c = 4, 5, 6$

$$\theta \neq 0$$
: Get $V_k \sim \cos\left(\frac{2\pi k + \theta}{N_c}\right)$, $k = 1, \dots, N - 1$.

 2π periodicity $+ 1/N_c$ scaling \rightarrow mulitiple branches

Pure gauge theory: Find center stabilizing molecules from BZJ. But: Semi-classical approximation not reliable.