Instantons and the Spin-Flavor Structure of Hadrons

**Thomas Schaefer** 

North Carolina State

# 

Dynamics: Dirac + generalized Maxwell theory (Yang-Mills theory)

# "Seeing" Quarks and Gluons



Made on 28-Aug-1996 13:39:06 by DREVERMANN with DALI\_D7. Filename: DC015768\_005906\_960828\_1338.PS\_21\_3J

# Asymptotic Freedom

Classical field  $A_0^{cl} \sim g/r$ . Modification due to quantum fluctuations:



## Running Coupling Constant





## What is a proton?



Why does this picture "work"? Large  $N_c$  limit (?)

Where does it fail? Why?

OZI violation, flavor mixing

# The Structure of the Proton

The mass of the Proton (from DIS, trace anomaly)

$$E_q = \langle p | \int d^3 x \left( -i\vec{\alpha} \cdot \vec{D} \right) | p \rangle \simeq 310 \,\mathrm{MeV}$$
$$E_g = \langle p | \int d^3 x \,\frac{1}{2} \left( E^2 + B^2 \right) | p \rangle + \dots \simeq 545 \,\mathrm{MeV}$$
$$E_m = \langle p | \int d^3 x \left( m_u \bar{u} u + m_d \bar{d} d \right) | p \rangle \simeq 45 \,\mathrm{MeV}$$

Gluon field strength is large

 $\langle p|E^2|p\rangle \simeq 1700 \,\mathrm{MeV} \qquad \langle p|B^2|p\rangle \simeq -1050 \,\mathrm{MeV}$ 

and approximately self-dual

number of quark-anti-quark pairs is large

$$\langle p|\bar{u}u + \bar{d}d|p \rangle = \frac{\Sigma_{\pi N}}{\overline{m}} \simeq 6$$

 $\frac{d(x)}{\bar{u}(x)} \simeq 2$ 

 $(NuSea, \ldots)$ 

... and not flavor symmetric



quark contribution to proton spin is small

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s = (0.25 \pm 0.1) \qquad (SMC, SLAC, Hermes)$  $\langle p | \bar{q} \gamma_{\mu} \gamma_{5} q | p \rangle = \Delta q s_{\mu}$ 

... and strange quarks are polarized  $\Delta s = -0.12$ 

## Hadronic Correlation Functions

hadronic current  $j_M(x) = \bar{q}(x)\Gamma q(x)$ 



 $\Pi(x) = \langle j(x)j(0) \rangle$ 

short distance behavior: OPE

$$\Pi(Q) = c_0 \log(Q^2) + c_4 \frac{\langle \mathcal{O}_4 \rangle}{Q^4} + c_6 \frac{\langle \mathcal{O}_6 \rangle}{Q^6} + \dots$$

experimental information

$$\Pi(Q) = \int ds \frac{\rho(s)}{s+Q^2}$$

#### Vector Channels: $\rho$ and $a_1$



# Scalar Channels: $\pi$ and $\delta$





## Summary

Only small effects in  $(\bar{L}L \pm \bar{R}R)^2$ .

Sign changes for  $\overline{L}R \leftrightarrow \overline{R}L$ .

Sign changes for  $(\bar{u}d)(\bar{u}d) \leftrightarrow (\bar{u}u)(\bar{d}d)$ .

$$\mathcal{L} = G \det_f(\bar{\psi}_L \psi_R) + (L \leftrightarrow R)$$

# Topology in QCD

classical potential is periodic in variable X



$$X = \int d^3x \, K_0(x,t)$$
$$\partial^{\mu} K_{\mu} = \frac{1}{32\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$$

classical minima correspond to pure gauge configurations



 $A_i(x) = iU^{\dagger}(x)\partial_i U(x)$  $E^2 = B^2 = 0$ 

semi-classical tunneling paths: Instantons



$$A^{a}_{\mu}(x) = 2\frac{\eta_{a\mu\nu}x_{\nu}}{x^{2} + \rho^{2}},$$
$$G^{a}_{\mu\nu}\tilde{G}^{a}_{\mu\nu} = \frac{192\rho^{4}}{(x^{2} + \rho^{2})^{4}}.$$

(Anti)Instantons: Dirac operator has a L/R zero mode.



$$\gamma \cdot (\partial + A_{I,A}) \,\psi^0_{L,R} = 0$$

spectrum of Hamiltonian



instanton induced quark interaction  $(N_f = 2)$ 



## Instanton Ensemble

instanton liquid described by partition function



$$Z = \frac{1}{N_I! N_A!} \prod_{I}^{N_I + N_A} \int [d\Omega_I \, n(\rho_I)] \\ \times \det(\not D) \exp(-S_{int})$$

quark propagator

$$S(x,y) = \sum_{IJ} \psi_I(x) \left(\frac{1}{T+im}\right)_{IJ} \psi_J^{\dagger}(y) + S_{NZM}(x,y)$$

#### Meson Correlation Functions



# V–A Correlation Functions



#### Large N<sub>c</sub>: From extraordinary to ordinary hadrons



 $\eta'$  becomes light, light  $\sigma$  disappears (quenching artifacts in  $a_0$  disappear)

### Quark Contribution to Nucleon Spin

polarized DIS implies large OZI violation



$$g_A^0 = \Delta u + \Delta d + \Delta s$$
$$\simeq 0.25$$
$$g_A^8 = \Delta u + \Delta d - 2\Delta s$$
$$\simeq 0.65$$

related to axial anomaly and instantons?





## **OZI** violation

Suppression of  $g_A^0$  property of the nucleon or of the QCD vacuum?



Study singlet correlators in  $\bar{q}q$  and  $\bar{Q}q$  (or QQq) channel

# Vacuum Properties

Axial charge screening related to topological charge screening?



e.g. Veneziano and Shore  $g_A^0 = g_A^8 \sqrt{\frac{6\chi'_{top}(0)}{f_\pi^2}}$  (target independent)

also: Shuryak and Forte, Dorokhov and Kochelev

## Numerical Study



 $g_A^3 \simeq 1.25$  agrees with experiment  $g_A^0 \simeq 0.75$  too large (little OZI violation)

 $(\bar{q}q)$  and  $(\bar{Q}q)$  states



Note: 1.  $f_1/a_1$  and  $g_A^0/g_A^3$  anti-correlated ( $\rightarrow$  NJL studies) 2. sign fixed by QCD inequalities

Summary and Outlook

instantons account for OZI violation in meson sector

Not all hadrons are alike

instanton liquid reproduces axial vector coupling  $g_A$ 

But:  $g_A^8 \simeq g_A^0 \simeq 0.75$ 

no evidence that suppression of  $g^0_A$  is a vacuum effect  $[(g^Q_A)^0\sim 1]>[(g^Q_A)^3\sim 0.9]$ 

OZI violation? Go back and look at  $g_A^8$ 

Large  $SU(3)_F$  violation?