Non-perturbative Methods in QCD

at finite μ and T

Thomas Schaefer
North Carolina State

More modest: Systematic approaches to dense matter

Low Density: Nuclear Effective Field Theory

Nucleons are point particles
Low Energy Nucleons: Interactions are local
Long range part: pions

Systematically improvable
Advantages:
Symmetries manifest (Chiral, gauge, ...)
Connection to lattice QCD

Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons
$\mathcal{L}_{\text {eff }}=\psi^{\dagger}\left(i \partial_{0}+\frac{\nabla^{2}}{2 M}\right) \psi-\frac{C_{0}}{2}\left(\psi^{\dagger} \psi\right)^{2}+\frac{C_{2}}{16}\left[(\psi \psi)^{\dagger}\left(\psi \stackrel{\nabla}{\nabla}^{2} \psi\right)+h . c.\right]+\ldots$

Simplifications: neutrons only, no pions (very low energy)
Effective range expansion

$$
p \cot \delta_{0}=-\frac{1}{a}+\frac{1}{2} \Lambda^{2} \sum_{n} r_{n}\left(\frac{p^{2}}{\Lambda^{2}}\right)^{n+1}
$$

Coupling constants

$$
C_{0}=\frac{4 \pi a}{M}, \quad C_{2}=\frac{4 \pi a^{2}}{M} \frac{r}{2}, \ldots \quad a=-18 \mathrm{fm}, r=2.8 \mathrm{fm}
$$

Toy Problem (Neutron Matter)

Consider limiting case ("Bertsch" problem)

$$
\left(k_{F} a\right) \rightarrow \infty \quad\left(k_{F} r\right) \rightarrow 0
$$

Universal equation of state

$$
\frac{E}{A}=\xi\left(\frac{E}{A}\right)_{0}=\xi \frac{3}{5}\left(\frac{k_{F}^{2}}{2 M}\right)
$$

No Expansion Parameters!

How to find ξ ?
Numerical Simulations
Experiments with trapped fermions
Analytic Approaches

Large d Limit

In medium scattering strongly restricted by phase space

Find limit in which ladders are leading order

$\left(C_{0} / d\right) \cdot 1 / d$

$$
\begin{aligned}
\lambda & \equiv\left[\frac{\Omega_{d} C_{0} k_{F}^{d-2} M}{d(2 \pi)^{d}}\right] \\
\lambda & =\operatorname{const}(d \rightarrow \infty) \\
& \xi=\frac{1}{2}+O(1 / d)
\end{aligned}
$$

Epsilon Expansion

Bound state wave function $\psi \sim 1 / r^{d-4}$. For $d \geq 4$

$$
\text { Non-interacting bosons } \quad \xi(d=4)=0
$$

Effective lagrangian for atoms $\Psi=\left(\psi_{\uparrow}, \psi_{\downarrow}^{\dagger}\right)$ and dimers ϕ

$$
\mathcal{L}=\Psi^{\dagger}\left(i \partial_{0}+\frac{\sigma_{3} \nabla^{2}}{2 m}\right) \Psi+\mu \Psi^{\dagger} \sigma_{3} \Psi-\frac{1}{c_{0}} \phi^{*} \phi+\Psi^{\dagger} \sigma_{+} \Psi \phi+h . c .
$$

Unitary limit $c_{0} \rightarrow \infty$. Effective potential

$$
\underbrace{}_{O(1)}=\frac{1}{2} \epsilon^{3 / 2}+\frac{1}{16} \epsilon^{5 / 2} \ln \epsilon 1+0.0246 \epsilon^{5 / 2}+\ldots
$$

Very Dense Matter: Effective Field Theories

High Density Effective Theory

QCD lagrangian

$$
\mathcal{L}=\bar{\psi}\left(i \not D+\mu \gamma_{0}-m\right) \psi-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}
$$

Quasi-particles (holes)

$$
E_{ \pm}=-\mu \pm \sqrt{\vec{p}^{2}+m^{2}} \simeq-\mu \pm|\vec{p}|
$$

Effective field theory on v-patches

$$
\psi_{v \pm}=e^{-i \mu v \cdot x}\left(\frac{1 \pm \vec{\alpha} \cdot \vec{v}}{2}\right) \psi
$$

High Density Effective Theory, cont

Effective lagrangian for ψ_{v+}

$$
\mathcal{L}=\sum_{v} \psi_{v}^{\dagger}\left(i v \cdot D-\frac{D_{\perp}^{2}}{2 \mu}\right) \psi_{v}-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+\ldots
$$

Power Counting

Naive power counting

$$
\mathcal{L}=\hat{\mathcal{L}}\left(\psi, \psi^{\dagger}, \frac{D_{\|}}{\mu}, \frac{D_{\perp}}{\mu}, \frac{\bar{D}_{\|}}{\mu}, \frac{m}{\mu}\right)
$$

Problem: hard loops (large $N_{\vec{v}}$ graphs)

$$
\frac{1}{2 \pi} \sum_{\vec{v}} \int \frac{d^{2} l_{\perp}}{(2 \pi)^{2}}=\frac{\mu^{2}}{2 \pi^{2}} \int \frac{d \Omega}{4 \pi} .
$$

Have to sum large $N_{\vec{v}}$ graphs

Effective Theory for $l<m$

$$
\begin{gathered}
\mathcal{L}=\psi_{v}^{\dagger}\left(i v \cdot D-\frac{D_{\perp}^{2}}{2 \mu}\right) \psi_{v}+\mathcal{L}_{4 f}-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+\mathcal{L}_{H D L} \\
\mathcal{L}_{H D L}=-\frac{m^{2}}{2} \sum_{v} G_{\mu \alpha}^{a} \frac{v^{\alpha} v^{\beta}}{(v \cdot D)^{2}} G_{\mu \beta}^{b}
\end{gathered}
$$

Transverse gauge boson propagator

$$
D_{i j}(k)=\frac{\delta_{i j}-\hat{k}_{i} \hat{k}_{j}}{k_{0}^{2}-\vec{k}^{2}+i \frac{\pi}{2} m^{2} \frac{k_{0}}{|\vec{k}|}},
$$

Scaling of gluon momenta

$$
|\vec{k}| \sim k_{0}^{1 / 3} m^{2 / 3} \gg k_{0} \quad \text { gluons are very spacelike }
$$

Non-Fermi Liquid Effective Theory

Gluons very spacelike $|\vec{k}| \gg\left|k_{0}\right|$. Quark kinematics?

$$
\left.k_{0} \simeq k_{\|}+\frac{k_{\perp}^{2}}{2 \mu} \quad \underset{k_{\|} \sim \frac{k_{\perp}^{2}}{2 \mu}}{\longrightarrow} \longrightarrow \right\rvert\, \cdot \cdot
$$

Scaling relations

$$
k_{\perp} \sim m^{2 / 3} k_{0}^{1 / 3}, \quad k_{\|} \sim m^{4 / 3} k_{0}^{2 / 3} / \mu
$$

Propagators

$$
S_{\alpha \beta}=\frac{-i \delta_{\alpha \beta}}{p_{\| \|}+\frac{p_{\perp}^{2}}{2 \mu}-i \epsilon \operatorname{sgn}\left(p_{0}\right)} \quad D_{i j}=\frac{-i \delta_{i j}}{k_{\perp}^{2}-i \frac{\pi}{2} m^{2} \frac{k_{0}}{k_{\perp}}},
$$

Non-Fermi Liquid Expansion

Scale momenta $\left(k_{0}, k_{\|}, k_{\perp}\right) \rightarrow\left(s k_{0}, s^{2 / 3} k_{\| \mid}, s^{1 / 3} k_{\perp}\right)$

$$
[\psi]=5 / 6 \quad\left[A_{i}\right]=5 / 6 \quad[S]=[D]=0
$$

Scaling behavior of vertices

$s^{1 / 6}$

$s^{1 / 2}$

$s^{5 / 6}$
s

Systematic expansion in $\epsilon^{1 / 3} \equiv(\omega / m)^{1 / 3}$

Loop Corrections: Quark Self Energy

Transverse momentum integral logarithmic

$$
\int \frac{d k_{\perp}^{3}}{k_{\perp}^{3}+i \eta k_{0}} \sim \log \left(\frac{\Lambda}{k_{0}}\right)
$$

Quark self energy

$$
\Sigma(p)=\frac{g^{2}}{9 \pi^{2}} p_{0} \log \left(\frac{\Lambda}{\left|p_{0}\right|}\right)
$$

Quark Self Energy, cont

Higher order corrections?

$$
\Sigma(p)=\frac{g^{2}}{9 \pi^{2}}\left(p_{0} \log \left(\frac{2^{5 / 2} m}{\pi\left|p_{0}\right|}\right)+i \frac{\pi}{2} p_{0}\right)+O\left(\epsilon^{5 / 3}\right)
$$

Scale determined by electric gluon exchange

$$
\text { No } p_{0}\left[\alpha_{s} \log \left(p_{0}\right)\right]^{n} \text { terms }
$$

quasi-particle velocity vanishes as

$$
v \sim \log (\Lambda / \omega)^{-1}
$$

anomalous term in the specific heat

$$
c_{v} \sim \gamma T \log (T)
$$

Vertex Corrections, Migdal's Theorem

Corrections to quark gluon vertex

$\sim g v\left(1+O\left(\epsilon^{1 / 3}\right)\right)$

Analogous to electron-phonon coupling
Can this fail? Yes, if external momenta fail to satisfy $p_{\perp} \gg p_{0}$

$$
=\frac{e g^{2}}{9 \pi^{2}} v_{\mu} \log (\epsilon)
$$

Superconductivity

Same phenomenon occurs in anomalous self energy

$\Lambda_{B C S}=256 \pi^{4} g^{-5} \mu$ determined by electric exchanges
Have to sum all planar diagrams, non-planar suppressed by $\epsilon^{1 / 3}$

Solution at next-to-leading order (includes normal self energy)

$$
\Delta_{0}=2 \Lambda_{B C S} \exp \left(-\frac{\pi^{2}+4}{8}\right) \exp \left(-\frac{3 \pi^{2}}{\sqrt{2} g}\right) \quad \Delta_{0} \sim 50 \mathrm{MeV}
$$

Summary

Systematic low energy expansion in $(\omega / m)^{1 / 3}$ and $\log (\omega / m)$

Standard FL channels (BCS, ZS, ZS'): Ladder diagrams have to be summed, kernel has perturbative expansion

CFL Phase

Consider $N_{f}=3\left(m_{i}=0\right)$

$$
\begin{aligned}
& \left\langle q_{i}^{a} q_{j}^{b}\right\rangle=\phi \epsilon^{a b I} \epsilon_{i j I} \\
& \langle u d\rangle=\langle u s\rangle=\langle d s\rangle \\
& \langle r b\rangle=\langle r g\rangle=\langle b g\rangle
\end{aligned}
$$

Symmetry breaking pattern:

$$
\begin{aligned}
S U(3)_{L} & \times S U(3)_{R} \times[S U(3)]_{C} \\
& \times U(1) \rightarrow S U(3)_{C+F}
\end{aligned}
$$

All quarks and gluons acquire a gap

$$
\left\langle\psi_{L} \psi_{L}\right\rangle=-\left\langle\psi_{R} \psi_{R}\right\rangle
$$

EFT in the CFL Phase

Consider HDET with a CFL gap term

$$
\begin{aligned}
& \mathcal{L}=\operatorname{Tr}\left(\psi_{L}^{\dagger}(i v \cdot D) \psi_{L}\right)+\frac{\Delta}{2}\left\{\operatorname{Tr}\left(X^{\dagger} \psi_{L} X^{\dagger} \psi_{L}\right)-\kappa\left[\operatorname{Tr}\left(X^{\dagger} \psi_{L}\right)\right]^{2}\right\} \\
& +(L \leftrightarrow R, X \leftrightarrow Y) \\
& \psi_{L} \rightarrow L \psi_{L} C^{T}, X \rightarrow L X C^{T}, \quad\langle X\rangle=\langle Y\rangle=\mathbb{1}
\end{aligned}
$$

Quark loops generate a kinetic term for X, Y
Integrate out gluons, identify low energy fields $\left(\xi=\Sigma^{1 / 2}\right)$
$\Sigma=X Y^{\dagger}$
[8]+[1] GBs

$$
\begin{gathered}
N_{L}=\xi\left(\psi_{L} X^{\dagger}\right) \xi^{\dagger} \\
{[8]+[1] \text { Baryons }}
\end{gathered}
$$

Effective theory: (CFL) baryon chiral perturbation theory

$$
\begin{aligned}
\mathcal{L}= & \frac{f_{\pi}^{2}}{4}\left\{\operatorname{Tr}\left(\nabla_{0} \Sigma \nabla_{0} \Sigma^{\dagger}\right)-v_{\pi}^{2} \operatorname{Tr}\left(\nabla_{i} \Sigma \nabla_{i} \Sigma^{\dagger}\right)\right\} \\
& +\operatorname{Tr}\left(N^{\dagger} i v^{\mu} D_{\mu} N\right)-D \operatorname{Tr}\left(N^{\dagger} v^{\mu} \gamma_{5}\left\{\mathcal{A}_{\mu}, N\right\}\right) \\
& -F \operatorname{Tr}\left(N^{\dagger} v^{\mu} \gamma_{5}\left[\mathcal{A}_{\mu}, N\right]\right)+\frac{\Delta}{2}\left\{\operatorname{Tr}(N N)-[\operatorname{Tr}(N)]^{2}\right\}
\end{aligned}
$$

with $D_{\mu} N=\partial_{\mu} N+i\left[\mathcal{V}_{\mu}, N\right]$

$$
\begin{gathered}
\mathcal{V}_{\mu}=-\frac{i}{2}\left(\xi \partial_{\mu} \xi^{\dagger}+\xi^{\dagger} \partial_{\mu} \xi\right) \\
\mathcal{A}_{\mu}=-\frac{i}{2} \xi\left(\partial_{\mu} \Sigma^{\dagger}\right) \xi \\
f_{\pi}^{2}=\frac{21-8 \log 2}{18} \frac{\mu^{2}}{2 \pi^{2}} \quad v_{\pi}^{2}=\frac{1}{3} \quad D=F=\frac{1}{2}
\end{gathered}
$$

Phase Structure and Spectrum

Phase structure determined by effective potential

$$
V(\Sigma)=\frac{f_{\pi}^{2}}{2} \operatorname{Tr}\left(X_{L} \Sigma X_{R} \Sigma^{\dagger}\right)-A \operatorname{Tr}\left(M \Sigma^{\dagger}\right)-B_{1}\left[\operatorname{Tr}\left(M \Sigma^{\dagger}\right)\right]^{2}+\ldots
$$

$$
V\left(\Sigma_{0}\right) \equiv \min
$$

Fermion spectrum determined by

$$
\begin{gathered}
\mathcal{L}=\operatorname{Tr}\left(N^{\dagger} i v^{\mu} D_{\mu} N\right)+\operatorname{Tr}\left(N^{\dagger} \gamma_{5} \rho_{A} N\right)+\frac{\Delta}{2}\left\{\operatorname{Tr}(N N)-[\operatorname{Tr}(N)]^{2}\right\} \\
\rho_{V, A}=\frac{1}{2}\left\{\xi \frac{M^{\dagger} M}{2 p_{F}} \xi^{\dagger} \pm \xi^{\dagger} \frac{M M^{\dagger}}{2 p_{F}} \xi\right\} \quad \xi=\sqrt{\Sigma_{0}}
\end{gathered}
$$

Phase Structure and Spectrum

meson condensation: CFLK
s-wave condensate

gapless modes? (gCFLK)
p-wave condensation

Instabilities

Consider meson current

$$
\begin{gathered}
\Sigma(x)=U_{Y}(x) \Sigma_{K} U_{Y}(x)^{\dagger} \quad U_{Y}(x)=\exp \left(i \phi_{K}(x) \lambda_{8}\right) \\
\overrightarrow{\mathcal{V}}(x)=\frac{\vec{\nabla} \phi_{K}}{4}\left(-2 \hat{I}_{3}+3 \hat{Y}\right) \quad \overrightarrow{\mathcal{A}}(x)=\vec{\nabla} \phi_{K}\left(e^{i \phi_{K}} \hat{u}^{+}+e^{-i \phi_{K}} \hat{u}^{-}\right)
\end{gathered}
$$

Gradient energy

$$
\mathcal{E}=\frac{f_{\pi}^{2}}{2} v_{\pi}^{2} \jmath_{K}^{2} \quad \vec{\jmath} k=\vec{\nabla} \phi_{K}
$$

Fermion spectrum

$$
\begin{aligned}
& \omega_{l}=\Delta+\frac{l^{2}}{2 \Delta}-\frac{4 \mu_{s}}{3}-\frac{1}{4} \vec{v} \cdot \vec{\jmath}_{K} \\
& \mathcal{E}=\frac{\mu^{2}}{2 \pi^{2}} \int d l \int d \hat{\Omega} \omega_{l} \Theta\left(-\omega_{l}\right)
\end{aligned}
$$

Energy Functional

$$
\left.\frac{3 \mu_{s}-4 \Delta}{\Delta}\right|_{\text {crit }}=a h_{\text {crit }} \quad h_{\text {crit }}=-0.067 \quad a=\frac{2}{15^{2} c_{\pi}^{2} v_{\pi}^{4}}
$$

[Figures include baryon current $j_{B}=\alpha_{B} / \alpha_{K} j_{K}$]

Notes

No net current, meson current canceled by backflow of gapless modes

$$
(\delta \mathcal{E}) /(\delta \nabla \phi)=0
$$

Instability related to "chromomagnetic instability"

CFL phase: gluons carry $S U(3)_{F}$ quantum numbers

Similar instability exists in polarized cold atomic gases
mixture of atoms and molecules, Goldstone current condensation

