Instantons and the Spin of the Nucleon

Thomas Schaefer

North Carolina State

w. V. Zetocha (Stony Brook)

Nucleon Spin

• polarized DIS implies large OZI violation

• related to axial anomaly and instantons?

 $\partial^{\mu}A^{0}_{\mu} = \frac{N_{f}g^{2}}{16\pi^{2}}G^{a}_{\mu\nu}\tilde{G}^{a}_{\mu\nu}$

OZI violation

Suppression of g_A^0 property of the nucleon or of the QCD vacuum?

Study singlet correlators in $\bar{q}q$ and $\bar{Q}q$ (or QQq) channel

Vacuum Properties

Axial charge screening related to topological charge screening?

 $\chi_{top} = \frac{1}{V} \langle Q_{top}^2 \rangle = 0 \qquad \qquad L \to R(\bar{L}R)$

e.g. Veneziano and Shore $g_A^0 = g_A^8 \sqrt{\frac{6\chi'_{top}(0)}{f_\pi^2}}$ (target independent)

also: Shuryak and Forte, Dorokhov and Kochelev

Numerical Study

 $g_A^3 \simeq 1.25$ agrees with experiment $g_A^0 \simeq 0.75$ too large Very little OZI violation

$(\bar{Q}q)$ and $(\bar{q}q)$ states

 $(f^2m^2)^0 > (f^2m^2)^3$

 $(g^Q_A)^0 > (g^Q_A)^3$

Summary

• instanton liquid reproduces axial vector coupling g_A

But: $g_A^8 \simeq g_A^0 \simeq 0.75$

something missing with regard to the structure of the nucleon?

- no evidence that suppression of g^0_A is a vacuum effect $[(g^Q_A)^0 \sim 1] > [(g^Q_A)^3 \sim 0.9]$
- lattice calculations:
 - 1) check nucleon vs vacuum by studying more than one system
 - 2) check instanton dominance of disconnected graphs