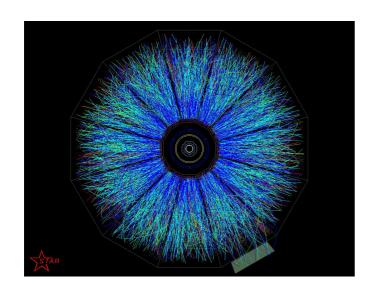
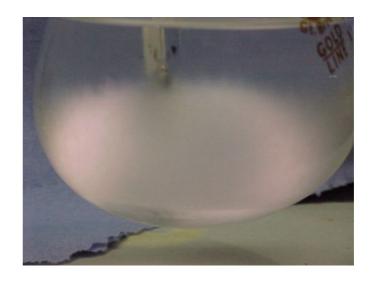
Simulating stochastic fluids

Thomas Schäfer

North Carolina State University





With C. Chattopadhyay, J. Ott, V. Skokov

References: 2403.10608 (PRL 2024), 2411.15994 (PRD 2025).

Critical Dynamics

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:

- Critical equation of state.
- Stochastic fluxes, fluctuation-dissipation relations.
- Possible Goldstone modes (chiral field in QCD)

Chiral phase transition: Model G (Rajagopal & Wilczek, 1993)

Possible critical endpoint: Model H (Son & Stephanov, 2004)

Digression: Diffusion

Consider a Brownian particle

$$\dot{p}(t) = -\gamma_D p(t) + \zeta(t)$$
 $\langle \zeta(t)\zeta(t') \rangle = \kappa \delta(t-t')$ drag (dissipation) white noise (fluctuations)

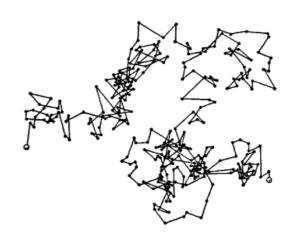
For the particle to eventually thermalize

$$\langle p^2 \rangle = 2mT$$

drag and noise must be related

$$\kappa = \frac{mT}{\gamma_D}$$

Einstein (Fluctuation-Dissipation)



Hydrodynamic equation for critical mode

Equation of motion for critical mode ϕ ("model H")

$$\frac{\partial \phi}{\partial t} = \kappa \nabla^2 \frac{\delta \mathcal{F}}{\delta \phi} - g \left(\vec{\nabla} \phi \right) \cdot \frac{\delta \mathcal{F}}{\delta \vec{\pi}^T} + \zeta \qquad (g = 1)$$

Diffusion Advection Noise

Equation of motion for momentum density π

$$\frac{\partial \vec{\pi}^T}{\partial t} = \mathbf{\eta} \, \nabla^2 \frac{\delta \mathcal{F}}{\delta \vec{\pi}^T} + g \left(\vec{\nabla} \phi \right) \cdot \frac{\delta \mathcal{F}}{\delta \phi} - g \left(\frac{\delta \mathcal{F}}{\delta \vec{\pi}^T} \cdot \vec{\nabla} \right) \vec{\pi}^T + \vec{\xi}$$

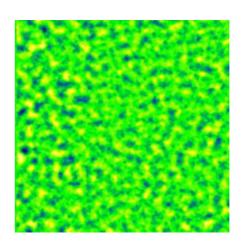
Free energy functional: Order parameter ϕ , momentum density $\vec{\pi} = w\vec{v}$

$$\mathcal{F} = \int d^3x \left[\frac{1}{2w} \vec{\pi}^2 + \frac{1}{2} (\vec{\nabla}\phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right] \qquad D = m^2 \kappa$$

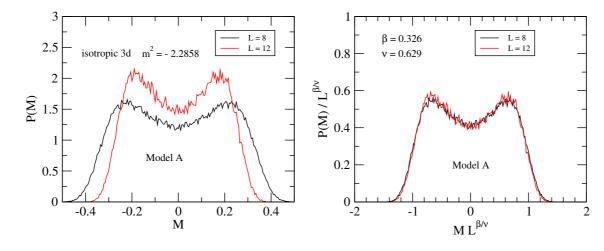
Fluctuation-Dissipation relation

$$\langle \zeta(x,t)\zeta(x',t')\rangle = -2\kappa T \nabla^2 \delta(x-x')\delta(t-t')$$

$$\langle \xi_i(x,t)\xi_j(x',t')\rangle = -2\eta T \nabla^2 P_{ij}^T \delta(x-x')\delta(t-t')$$
 ensures $P[\phi,\vec{\pi}] \sim \exp(-\mathcal{F}[\phi,\vec{\pi}]/T)$



Tune m^2 to critical point $m^2=m_c^2$ (Ising critical point)



Numerical realization

Stochastic relaxation equation ("model A")

$$\partial_t \psi = -\Gamma \frac{\delta \mathcal{F}}{\delta \psi} + \zeta$$
 $\langle \zeta(x,t)\zeta(x',t')\rangle = \Gamma T \delta(x-x')\delta(t-t')$

Naive discretization

$$\psi(t + \Delta t) = \psi(t) + (\Delta t) \left[-\Gamma \frac{\delta \mathcal{F}}{\delta \psi} + \sqrt{\frac{\Gamma T}{(\Delta t)a^3}} \theta \right] \qquad \langle \theta^2 \rangle = 1$$

Noise dominates as $\Delta t \to 0$, leads to discretization ambiguities in the equilibrium distribution.

Idea: Use Metropolis update

$$\psi(t + \Delta t) = \psi(t) + \sqrt{2\Gamma(\Delta t)}\theta$$
 $p = min(1, e^{-\beta \Delta F})$

Numerical realization

Central observation

$$\langle \psi(t + \Delta t, \vec{x}) - \psi(t, \vec{x}) \rangle = -(\Delta t) \Gamma \frac{\delta \mathcal{F}}{\delta \psi} + O((\Delta t)^2)$$
$$\langle [\psi(t + \Delta t, \vec{x}) - \psi(t, \vec{x})]^2 \rangle = 2(\Delta t) \Gamma T + O((\Delta t)^2).$$

Metropolis realizes both diffusive and stochastic step. Also

$$P[\psi] \sim \exp(-\beta \mathcal{F}[\psi])$$

Note: Still have short distance noise; need to adjust bare parameters such as Γ, m^2, λ to reproduce physical quantities.

Numerical realization: Model H

Model H: Conserving update

$$\pi_{\nu}^{trial}(\vec{x}, t + \Delta t) = \pi_{\nu}(\vec{x}, t) + r_{\nu\mu}, \pi_{\nu}^{trial}(\vec{x} + \hat{\mu}, t + \Delta t) = \pi_{\nu}(\vec{x} + \hat{\mu}, t) - r_{\nu\mu}, r_{\nu\mu} = \sqrt{2\eta T(\Delta t)} \zeta_{\nu}.$$

Advection (PB terms) conserves \mathcal{H} . On the lattice use "skew" discretized derivatives

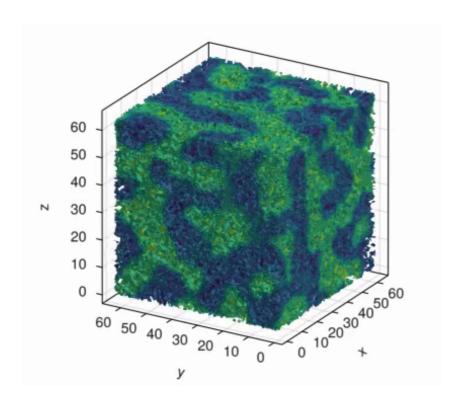
$$\begin{split} \dot{\phi} &= -\frac{1}{\rho} \, \pi_{\mu}^T \, \nabla_{\mu}^c \phi \,, \\ \dot{\pi}_{\mu}^T &= -\left[\frac{1}{2} \nabla_{\nu}^c \left(\frac{1}{\rho} \pi_{\nu}^T \pi_{\mu}^T \right) + \frac{1}{2\rho} \pi_{\nu}^T \, \nabla_{\nu}^c \pi_{\mu}^T + \left(\nabla_{\mu}^c \phi \right) \left(\nabla_{\nu}^c \nabla_{\nu}^c \phi \right) \right] \,, \end{split}$$

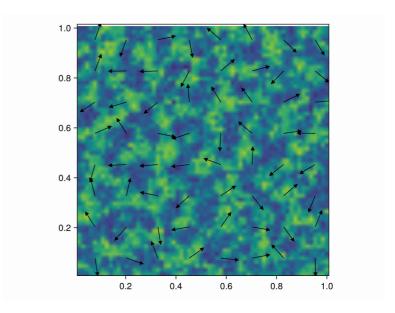
and project on π_{μ}^{T} using Fourier transforms.

Numerical results (critical Navier-Stokes)

Order parameter (3d)

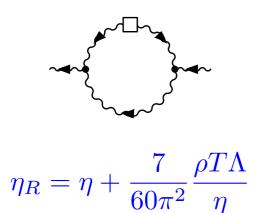
Order parameter/velocity field (2d)



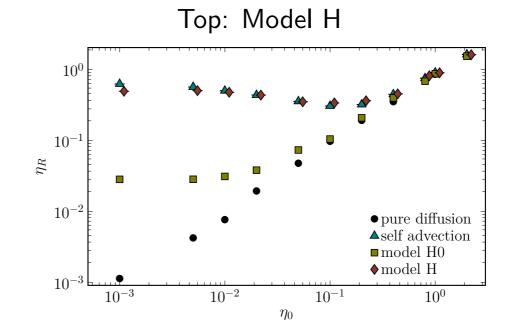


Renormalized viscosity

Renormalization of η "Stickiness of shear waves"



Leads to minimum viscosity

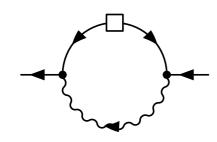


Middle: No self-advection

Bottom: No advection

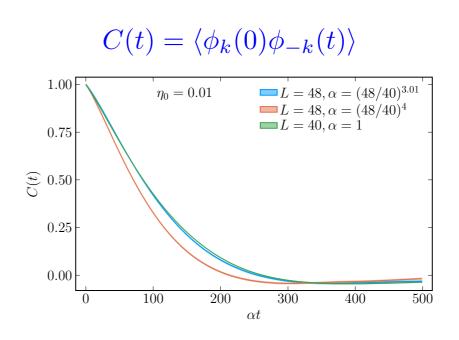
Relaxation Rate

Order parameter relaxation rate



$$\Gamma_k = \frac{\Gamma}{\xi^4} (k\xi)^2 \left(1 + (k\xi)^2 \right) + \frac{T}{6\pi \eta_R \xi^3} K(k\xi)$$

Crossover from $au_R \sim \xi^4$ at large η_R to $au_R \sim \xi^3$ for small η_R

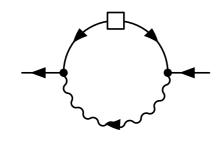


Dynamic Scaling:

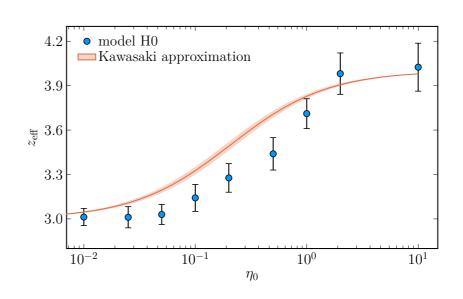
$$z(\eta = 0.01) = 3.07$$

Relaxation Rate

Order parameter relaxation rate



$$\Gamma_k = \frac{\Gamma}{\xi^4} (k\xi)^2 (1 + (k\xi)^2) + \frac{T}{6\pi \eta_B \xi^3} K(k\xi)$$



Crossover from $au_R \sim \xi^4$ at large η_R to $au_R \sim \xi^3$ for small η_R

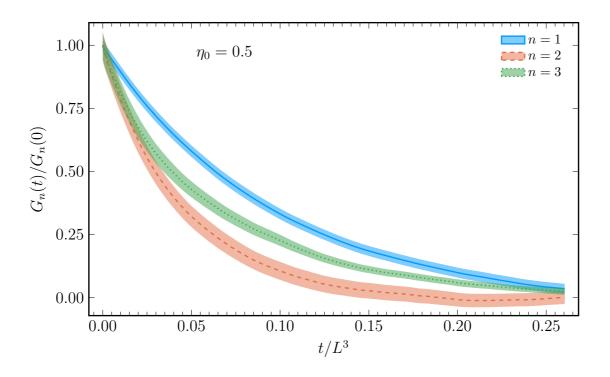
Summary and Outlook

Numerical simulation of stochastic fluid dynamics, observed renormalization of shear viscosity and dynamical scaling.

Outlook: Extend the present framework to full (relativistic) fluid dynamics, or couple the simulations to fixed relativistic background flow (no backreaction).

Also see: Soloviev (Poster 654, Session 1), Teaney (Session 24)

Evolution of higher moments



$$G_n(t) = \langle M^n(t)M^n(0)\rangle, \qquad M(t) = \int_V d^3x \,\phi(\vec{x}, t)$$