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RHIC beam energy scan

Can we experimentally locate the QCD phase transition, either by detecting
a critical point, or by identifying a first order transition?
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Basic discovery idea: Study fluctuation observables. Expect non-monotonic
variation of 4th order gallant near Ising critical point.
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Real world may well be more complicated:

e Finite size and finite expansion rate effects.

e Non-equilibrium effects (memory, critical slowing).

e Freezeout, resonances, global charge conservation, etc.
Motivates dynamical studies.

Figure from Bzdak et al. [1906.00936]



RHIC beam energy scan, BESI
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BESII data have been taken, and are being analyzed.



Dynamical Theory

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:
e Critical equation of state.

e Stochastic fluxes, fluctuation-dissipation relations.

e Possible Goldstone modes (chiral field in QCD?)



Outline:

1. Static universality: Realistic EOS with Ising universality

(a) Bulk viscosity near the critical point

2. Dynamic universality: Model H in a static background
(a) Critical relaxation rate

(b) Multiplicative noise
3. Hydrokinetics in an expanding background

4. Numerical approaches to stochastic diffusion



1. Equilibrium fluctuations

Consider an Ising-like system with order parameter 9. Fluctuations
governed by an entropy functional

Prob[v, €] ~ exp(S|[y, €]) S = /d?’a: s(1, €)

energy density €, order parameter v

Conjugate variables

_0s
OxA

reduced temperature r, magnetic field h

QCD: Canonical pair

% = (e,n) Xo = (—08,8u)

energy density e, baryon density n

24 = (e, ) Xa = = (r,h)

inverse temperature (3, chemical potential u



Intensive
variables

densities

Mapping the Ising EOS to QCD

Ising
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BEST equation of state

Parotto et al. write

P(T, ug) _ 74 chzg 2n 4 perit (T, i)

where c,Y is adjusted to reproduce lattice xZ(T) and the critical part is

n

determined by a linear map to the Ising EOS (parameterized by Zinn-Justin)

T T Tc — — . .
= w(rpsinay + hsinas) parameters

(:u& T67 ’U_}, ﬁ? aq, @2)

= w(—rpcosa; — hcosas)

Connect to hadron gas at low 7', and impose thermodynamic constraints.



A critical equation of state for QCD

Baryon density, compressibility, speed of sound.

Parotto et al. [1805.05249]



Application: Critical bulk viscosity

Bulk viscosity from order parameter relaxation
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Critical bulk viscosity

Ly (4w>(§)2'8 34-1002  r>0
= =sin“(ay) | — | | =
s s/m) \&o 2.2-1071 <0

2z ~ 3 dynamical critical exponent.

sin(aq): angle between Ising » and QCD temperature.
[Note: For sin(aq) ~ 0 get (/s ~ (n/s)?]
Amplitude ratio (v_ /vy )? ~ 6.

Martinez, T.S., Skokov [1906.11306]; see also Stephanov & Yin [1712.10305], An et al. [1912.13456], and Onuki, PRE 55 403 (1997).



2. Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ coupled to momentum density 7

(“model H")

R Vo oF
En KV 50 ng 7TT+ Cy

Diffusion Advection Noise

Free energy functional: Order parameter 1), momentum density @ = wv
2
Fo [l |4 J00R 4 Tt ot D=

Noise average (noise kernel L = DTV?)

1 1
= E/DQD O(Y(x,t)) exp (_Z/d?)x CwL_1C¢)



Model H: Effective Action

MSRJD: Write noise average as an effective action

ZMSR — /D??DD’QZDTFD% exp (—/d4$£>

L= @Z (at - DVQ) ¥+ T (0,5 - VVQ) T Diffusion
—yDTV?) — 70TV 7 Noise
—I—E@Ew Vb + uh DV + . .. Advection & Interaction
w

Consider background fluid at rest, 1y = const, 7o = O:

e Gaussian action \I!aG;bl\I!b with ¥, = (zﬁ,w). G,p has the
analytic structure of Keldysh Green fct.

e 7-invariance: Detailed balance and Fluctuation-Dissipation re-
lations.

Martin, Siggia, Rose, Phys. Rev. A 8, 423 (1973).



Model H: Critical Dynamics

Non-critical fluids: Gradient expansion k& < 1.
Critical fluids: RG analysis, study possible fixed points.
“Mode Coupling” approximation: Use bare shear viscosity, and static

susceptibility Y

‘/sh_ear mode

G Y w, k) =iw — Dk* — T,
order parameter

\_mode

Order parameter relaxation rate ( “Kawasaki function™).

TES

'y =
’ 6710

K(kf) K(x)= Z 1+2°+ (2% + 27 ") arctan(z)] .

Dynamic critical exponent: I'c—1 ~ 7% with z =3



New and non-classical interactions

Other interactions: Field dependent diffusion/viscosity, K = ko(1 + Ap1)).

o= DX (920) 2 22 (0"

noise non-linear noise

< )

Coupling constant related by fluctuation-dissipation relation (7 -invariance)

Contribute to (non-critical) order parameter relaxation

)\/
327

29w

M(w, k) = (iNwk® + Ap [iw — DE?]| k%) \/ k2 — -

(non-critical) Kawasaki function not modified.

Chao, T.S. [2008.01269], see also Chen-Lin et al. [1811.12540] and Jain & Kovtun [2009.01356]



3. Fluctuations in an expanding fluid

Consider linearized stochastic dynamics about a fluid background.
Determine eigenmodes: two sound ¢4 , three diffusive modes ¢, ¢z,

Noise average: Consider equal time 2-point fct W, = (¢ (7, 2)pp (T, 2")).

Wigner function representation: W, (7, x, k). Diagonal component
N, (7, ) is a phase space density of hydro fluctuations.

Akamatsu et al. (2016), Martinez, T.S. (2017).



Critical mode in expanding system

Study transit of critical point: Consider § = s/n and follow “mode
coupling” philosophy. Use static susceptibility and critical relaxation rate
I[';s.
O;Ns(t, k) = —2T5(t, k) [Ns(t, k) — NJ(t, k)] + ...,
AT Cp(t)
Cp&? (1+ (k&)>m)’

Correlation length £(t) = £(n(t),e(t)) = &o fe(r(t), h(t))

on  Oe 1
hydro : AP AN
n e Texp

Ts(t, k) =

(k&)™ (1 + (k€)*™M), N3 (t, k) =

Isingmap : (e,n) — (r, h)

Emergent time scale txz: Expansion rate matches relaxation time for modes
with &* ~ £~ (modes fall out of equilibrium).

Emergent length scale lxz: k7 = f(th). licz ~ 1.6 fm

Akamatsu, Teaney, Yan, Yi [1811.05081], Martinez, Schaefer, Skokov [1906.11306], see also Berdnikov, Rajagopal [hep-ph/9912274]



Expanding System: Numerical Results
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Akamatsu, Teaney, Yan, Yi [1811.05081]



4. Stochastic diffusion

Stochastic relaxation equation (“model A")

Opp = —I’% ¢ (((z,t)¢ (2", ")) = DTé(x — x2")o(t — ')

Naive discretization

N )
O (At)a3

Noise dominates as At — 0, leads to discretization ambiguities in the

Yt + At) = (t) + (At) 0 6%) =1

equilibrium distribution.

ldea: Add Metropolis step

Y(t + At) )+ /2 (At)6 p = min(1,e P27)



Dynamic scaling (model A)

Correlation functions at T, V = L3, L = 8, 16, 24, 32
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Dynamic critical exponent z = 2.026(56).



Correlation functions of higher moments

Correlation functions at 7.
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Inset: Dynamic scaling of G3(t) with z = 2.026(56).



Relaxation after a quench

Thermalize at T' > T,.. Study evolution at T,
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Summary

Dynamical evolution of fluctuations is important.

Model H dynamics in local rest frame: New parameters related to
embedding of Ising model, and background correlation length. New
results on bulk viscosity and multiplicative noise. New ideas about
effective actions on the Keldysh contour.

Dynamics in evolving background: Two basic approaches, “stochas-
tic’ or “deterministic’, each with their own advantages and disad-
vantages. Backreaction of fluctuations likely not important. Studies

of Cy(p1,n) important.

Not discussed: From conserved charges to particles.



