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Why consider fluctuations?

For consistency: Satisfy fluctuation-dissipation relations.

Fluid dynamics as an EFT: Fluctuations determine non-
analyticities in (w, k), and encode the resolution depen-
dence of low energy parameters (such as transport coef-
ficients).

Role of fluctuations enhanced in nearly perfect fluids
(n/s < 1).

Fluctuations are dominant near critical points.



Part |: Non-relativistic Fluids

Main application: Ultracold Fermi Gases

The unitary Fermi gas is a scale invariant, strongly interact-
ing, non-relativistic fluid ((17/$)min < h/kp). Can detune
from unitarity to study scale breaking, and tune temperature
to study classical to quantum transition, including transition
to superfluid.



Beyond gradients: Hydrodynamic fluctuations

Hydrodynamic variables fluctuate
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Hydro Loops: “Breakdown” of second order hydro

Correlation function in hydrodynamics
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Hydro Loops: RG and “breakdown” of 2nd order hydro

Cutoff dependence can be absorbed into bare parameters. Non-analytic
terms are cutoff independent.

Fluid dynamics is a “renormalizable” effective theory.
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: : : L [p 3/2
Relaxation time diverges: d(n7;) ~ — | —
Vw A\

2nd order hydro without fluctuations inconsistent.



Fluctuation induced bound on 7/
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Schaefer, Chafin (2012), see also Kovtun, Moore, Romatschke (2011)



Fluctuation induced bulk stresses

Kubo relation for bulk viscosity
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Scale invariance not manifest

May use conservation of energy 0;€ + \Y - 7 = 0 to rewrite Kubo formula
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and consider coupling to fluctuations of p and T’
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Fluctuation induced bulk stresses
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Fluctuation induced bound on (/s

(Detuned) Unitary Fermi Gas Quark Gluon Plasma
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Non-relativistic fluid, M. Martinez, T. S. (2017); relativistic fluid, Akamatsu et al. (2018)

See also Kovtun, Yaffe (2003)



Digression: Diffusion

Consider a Brownian particle

p(t) = —vpp(t) + ¢(t) (C)¢(t)) = rd(t —t')

drag (dissipation) white noise (fluctuations)

For the particle to eventually thermalize
(p?) = 2mT

drag and noise must be related
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YD

K =

Einstein (Fluctuation-Dissipation)



Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ (“model H")
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Linearized analysis (non-critical fluid)

Navier-Stokes equation: 0oV + vV20 = mode couplings + noise
1 —vk?pPL
Linearized propagator: ovl svt = - — - v =
propag < 7 J >wak 0 —’LUJ+VI€2
Fluctuation correction: > +

Renormalized viscosity:
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Hydro is a renormalizable stochastic field theory
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Linearized analysis (critical fluid)

Consider order parameter mode

Do = —DVQ% + mode couplings + (g
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Dispersion relation iw = Dq¢*(r + ¢°) + ...

Use r ~ £72. Relaxation time for modes g ~ £~

T~E (2=4) ""Critical slowing down”

A more sophisticated analysis gives z ~ 3 and

n ~ 50.05 K~ 60.9 C -~ 62.8



Part |l: Relativistic Fluids

Main application: QGP at RHIC

Expectation: If there is a critical endpoint in the QCD phase
diagram, then the dynamical universality class is that of model
H (liquid-gas).

Consider simplifications: Purely diffusive dynamics of order
parameter mode (model B), or coupled dynamics away from
critical points, and truncated at second order moments.



Numerical Simulation: Stochastic Diffusion

Stochastic diffusion equation
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Numerical results (diffusion in expanding critical fluid)
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Dynamical scaling: Consider correlation function
Co(t) = (Ang(k,0)Ang(—k,t)) for k=Fk* ~ &1
Determine decay rate Ca(t) ~ exp(—t/7").

Blue line: Expectation for z = 4.

M. Nahrgang et al. (2018)
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Analytic study: Hydro tails in Bjorken geometry

Consider linearized stochastic dynamics about some fluid backround (Bj)
Determine eigenmodes: two sound ¢ , three diffusive modes ¢4, ¢, .
Deterministic equation for 2-point functions C\; after noise average.
0oC + [A,Cl+{D,C}y =PC +CP'+ N
evolution+reactive + diffusive = sources + noise-correlator

Mixed representation: Cl(T, E) Local quantities after momentum
integration.

Contain divergences, can be renormalized by subtraction in homogeneous
system.

Akamatsu et al. (2016)



Homogeneous System

Coupled equation for two-pont function of hydro modes
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Off-diagonal couplings important for diffusive tails
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Expanding System

Coupled equations in Bj geometry
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renormalizes 0 — o + do. C'— C*® generates hydro tails in expanding fluid.



Summary

Obtain higher order cumulants from Gaussian noise and
mode couplings.

Find significant finite size effects in correlation length and
higher order cumulants.

Full 3d simulations in progress. Finalizing analytic work
on two-point correlators.



Outlook
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Parotto et al. (2018)



