Effective Field Theory

for Non-Relativistic Fermions in the Unitary Limit

Thomas Schaefer
North Carolina State University

Perfect Liquids

Neutron Matter ($\mathrm{T}=1 \mathrm{MeV}$)

$$
\text { sQGP }(\mathrm{T}=180 \mathrm{MeV})
$$

Trapped Atoms ($\mathrm{T}=5 \mathrm{peV}$)

Universality

What do these systems have in common?

$$
\text { dilute: } r \rho^{1 / 3} \ll 1
$$

strongly correlated: $a \rho^{1 / 3} \gg 1$

Feshbach Resonance in ${ }^{6} \mathrm{Li}$

Neutron Matter

Universal Equation of State

Consider limiting case ("Bertsch" problem)

$$
\left(k_{F} a\right) \rightarrow \infty \quad\left(k_{F} r\right) \rightarrow 0
$$

Universal equation of state

$$
\frac{E}{A}=\xi\left(\frac{E}{A}\right)_{0}=\xi \frac{3}{5}\left(\frac{k_{F}^{2}}{2 M}\right)
$$

How to find ξ ?
Numerical Simulations
Experiments with trapped fermions
Analytic Approaches

Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons
$\mathcal{L}_{\text {eff }}=\psi^{\dagger}\left(i \partial_{0}+\frac{\nabla^{2}}{2 M}\right) \psi-\frac{C_{0}}{2}\left(\psi^{\dagger} \psi\right)^{2}+\frac{C_{2}}{16}\left[(\psi \psi)^{\dagger}\left(\psi \stackrel{\leftrightarrow}{\nabla}^{2} \psi\right)+h . c.\right]+\ldots$
Scattering amplitude

$$
\mathcal{A}_{l}=\frac{1}{p \cot \delta_{l}-i p} \quad p \cot \delta_{0}=-\frac{1}{a}+\frac{1}{2} \Lambda^{2} \sum_{n} r_{n}\left(\frac{p^{2}}{\Lambda^{2}}\right)^{n+1}
$$

Low energy expansion (natural case)

Modified Expansion

Coupling constants determined by $n n$ interaction

$$
C_{0}=\frac{4 \pi a}{M} \quad a=-18 \mathrm{fm} \quad C_{2}=\frac{4 \pi a^{2}}{M} \frac{r}{2} \quad r=2.8 \mathrm{fm}
$$

Problem: Large scattering length

$$
(a p) \ll 1 \quad p \ll 10 \mathrm{MeV}
$$

Need to sum ($a p$) to all orders. Small parameter $Q \sim\left(a^{-1}, p, \ldots\right)$

$$
\begin{aligned}
& \mathcal{A}_{0}=-\frac{4 \pi}{M} \frac{r_{0} p^{2} / 2}{\left(\frac{1}{a}+i p\right)^{2}}
\end{aligned}
$$

Power Counting Made Manifest: PDS Scheme

Dimensional regularization in PDS scheme

$$
\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{M}{k^{2}-q^{2}+i \epsilon}=-\frac{M}{4 \pi}(\mu+i k)
$$

Low energy constants

$$
C_{0}=-\frac{4 \pi / M}{\mu-1 / a} \sim \frac{1}{Q} \quad C_{2} k^{2}=\frac{4 \pi / M}{(\mu-1 / a)^{2}} \frac{r}{2} k^{2} \sim Q^{0}
$$

Scattering matrix

$$
T(k)=\frac{C_{0}+C_{2} k^{2}}{1-\frac{M}{4 \pi}(\mu+i k)\left(C_{0}+C_{2} k^{2}\right)} .
$$

Low Density Expansion

Finite density: $\mathcal{L} \rightarrow \mathcal{L}-\mu \psi^{\dagger} \psi \Rightarrow$ Modified propagator

$$
G_{0}(k)_{\alpha \beta}=\delta_{\alpha \beta}\left(\frac{\theta\left(k-k_{F}\right)}{k_{0}-k^{2} / 2 M+i \epsilon}+\frac{\theta\left(k_{F}-k\right)}{k_{0}-k^{2} / 2 M-i \epsilon}\right) \quad \frac{k_{F}^{2}}{2 M}=\mu
$$

Perturbative expansion

$$
\begin{aligned}
& \epsilon_{F} \rho \\
& \frac{E}{A}=\frac{k_{F}^{2}}{2 M}\left[\frac{3}{5}+\left(\frac{2}{3 \pi}\left(k_{F} a\right)+\frac{4}{35 \pi^{2}}(11-2 \log (2))\left(k_{F} a\right)^{2}\right)+\ldots\right]
\end{aligned}
$$

Low Density Expansion: Higher orders

Effective range corrections

$$
\frac{E}{A}=\frac{k_{F}^{2}}{2 M} \frac{1}{10 \pi}\left(k_{F} a\right)^{2}\left(k_{F} r\right)
$$

Logarithmic terms

$$
\frac{E}{A}=\frac{k_{F}^{2}}{2 M}(g-1)(g-2) \frac{16}{27 \pi^{3}}(4 \pi-3 \sqrt{3})\left(k_{F} a\right)^{4} \log \left(k_{F} a\right)
$$

related to log divergence in $3 \rightarrow 3$ scattering amplitude

local counterterm $D\left(\psi^{\dagger} \psi\right)^{3}$ exists if $g \geq 3$

Lattice Calculation

Free fermion action

$$
\begin{array}{r}
S^{\text {free }}=\sum_{\vec{n}, i}\left[e^{\left(m_{N}-\mu\right) \alpha_{t}} c_{i}^{*}(\vec{n}) c_{i}(\vec{n}+\hat{0})-(1-6 h) c_{i}^{*}(\vec{n}) c_{i}(\vec{n})\right] \\
-h \sum_{\vec{n}, l_{s}, i}\left[c_{i}^{*}(\vec{n}) c_{i}\left(\vec{n}+\hat{l}_{s}\right)+c_{i}^{*}(\vec{n}) c_{i}\left(\vec{n}-\hat{l}_{s}\right)\right]
\end{array}
$$

Contact interaction: Hubbard-Stratonovich

$$
\begin{aligned}
\exp \left[-C \alpha_{t} a_{\uparrow}^{\dagger} a_{\uparrow} a_{\downarrow}^{\dagger} a_{\downarrow}\right]= & \int \frac{d s}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} s^{2}\right) \\
& \exp \left[\left(s \sqrt{-C \alpha}+\frac{C \alpha_{t}}{2}\right)\left(a_{\uparrow}^{\dagger} a_{\uparrow}+a_{\downarrow}^{\dagger} a_{\downarrow}\right)\right]
\end{aligned}
$$

Path Integral

$$
\operatorname{Tr} \exp [-\beta(H-\mu N)]=\int D s D c D c^{*} \exp [-S]
$$

Lattice Fermions

Introduce pseudo fermions: $S=\psi_{i}^{*} Q_{i j} \psi_{j}+V(s)$

$$
\begin{gathered}
Z=\int D s D \phi D \phi^{*} \exp \left[-S^{\prime}\right], \quad S^{\prime}=\phi_{i}^{*} Q_{i j}^{-1} \phi_{j}+V(s) \\
C<0 \text { (attractive): } \operatorname{det}(Q) \geq 0
\end{gathered}
$$

Hybrid Monte Carlo method
(4+1)-d Hamiltonian $\quad H(\phi, s, p)=\frac{1}{2} p_{\alpha}^{2}+S^{\prime}(\phi, s)$
Molecular Dynamics $\quad \dot{s}_{\alpha}=p_{\alpha} \quad \dot{p}_{\alpha}=-\frac{\partial H}{\partial s_{\alpha}}$
Metropolis acc/rej

$$
P\left(\left[s_{\alpha}, p_{\alpha}\right] \rightarrow\left[s_{\alpha}^{\prime}, p_{\alpha}^{\prime}\right]\right)=\exp (-\Delta H)
$$

Continuum Limit

Fix coupling constant at finite lattice spacing

$$
\frac{M}{4 \pi a}=\frac{1}{C_{0}}+\frac{1}{2} \sum_{\vec{p}} \frac{1}{E_{\vec{p}}}
$$

Take lattice spacing b, b_{τ} to zero

$$
\mu b_{\tau} \rightarrow 0 \quad n^{1 / 3} b \rightarrow 0 \quad n^{1 / 3} a=\text { const }
$$

Physical density fixed, lattice filling $\rightarrow 0$
Consider universal (unitary) limit

$$
n^{1 / 3} a \rightarrow \infty
$$

Lattice Results

Canonical $T=0$ calculation: $\xi=0.25(3)$ (D. Lee)
Not extrapolated to zero lattice spacing

Green Function Monte Carlo

Other lattice results: $\xi=0.42$ (Bulgac et al. ,UMass)
Experiment: $\xi=0.27_{-0.09}^{+0.12}[1], 0.51 \pm 0.04[2], 0.74 \pm 0.07[3]$
[1] Bartenstein et al., [2] Kinast et al., [3] Gehm et al.

Other Lattice Calculations

Neutron matter with realistic interactions (pions)
Sign problem returns; can be handled at $T \neq 0$
Neutron matter with finite polarization
Sign problem returns
Nuclear Matter (neutrons and protons)
No sign problem in $S U(4)$ limit (Wigner symmetry)
Need a three body force (can be handled with HS)
Isospin asymmetry possible

Analytic Approaches: Ladder Diagrams

Sum ladder diagrams at finite density (Brueckner theory)

Independent of renormalization scale $\mu_{P D S}$

$$
\text { Unitary Limit }\left(k_{F} a\right) \rightarrow \infty: \xi=0.32
$$

Large N approximation: Ring Diagrams

Consider N fermion species. Define $x \equiv N k_{F} a / \pi$

$$
\frac{E}{A}=\frac{k_{F}^{2}}{2 M} \times\left[\left(\frac{3}{5}+\frac{2 x}{3}\right)+\frac{1}{N}\left(\frac{3}{\pi} H(x)-\frac{2 x}{3}+\frac{4}{35}(22-2 \log (2)) x^{2}\right)\right]
$$

$$
N\left(C_{0} N\right)
$$

$\left(C_{0} N\right)^{k}$

depends on PDS scale parameter $\mu_{P D S}$
not suitable for $\left(k_{F} a\right) \rightarrow \infty$

Large d Limit

In medium scattering strongly restricted by phase space

Find limit in which ladders are leading order

$$
\left(C_{0} / d\right) \cdot 1 / d
$$

$$
\lambda \equiv\left[\frac{\Omega_{d} C_{0} k_{F}^{d-2} M}{d(2 \pi)^{d}}\right]
$$

$$
\lambda=\text { const }(d \rightarrow \infty)
$$

$$
\left(C_{0} / d\right)^{k} \cdot 1 / d
$$

Particle-Particle Scattering Amplitude

$$
\int \frac{d^{D-1} q}{(2 \pi)^{D-1}} \frac{\theta_{q}^{+}}{k^{2}-q^{2}+i \epsilon}=f_{v a c}(k)+\frac{k_{F}^{d-2} \Omega_{d}}{2(2 \pi)^{d}} f_{P P}^{d}(\kappa, s)
$$

$$
f_{P P}^{(d)}(s, \kappa)=\frac{1}{d} f_{P P}^{(0)}(s, \kappa)\left(1+O\left(\frac{1}{d}\right)\right) .
$$

Example: 2nd order diagram

$$
\int \frac{d^{d} P}{(2 \pi)^{d}} \int \frac{d^{d} k}{(2 \pi)^{d}} \theta_{k}^{-} f_{P P}^{(d)}(\kappa, s)=\frac{k_{F}^{2 d}}{(d+1)^{2}}\left[\frac{\Omega_{d}}{(2 \pi)^{d}}\right]^{2} \frac{4}{d+1}+\ldots
$$

Energy per particle is given by

$$
\frac{E_{2}}{A}=2\left[\frac{\Omega_{d} C_{0} k_{F}^{d-2} M}{(d+1)(2 \pi)^{d}}\right]^{2}\left(\frac{k_{F}^{2}}{2 M}\right) .
$$

Ladder diagrams form geometric series

$$
\frac{E}{A}=\left\{1+\frac{\lambda}{1-2 \lambda}+O\left(\frac{1}{d}\right)\right\}\left(\frac{k_{F}^{2}}{2 M}\right)
$$

$$
\lambda \rightarrow \infty: \quad \xi=\frac{1}{2}+O(1 / d)
$$

Pairing in the Large d Limit

BCS gap equation

$$
\Delta=\frac{\left|C_{0}\right|}{2} \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{\Delta}{\sqrt{\epsilon_{p}^{2}+\Delta^{2}}}
$$

Solution

$$
\Delta=\frac{2 e^{-\gamma} E_{F}}{d} \exp \left(-\frac{1}{d \lambda}\right)\left(1+O\left(\frac{1}{d}\right)\right)
$$

Pairing Energy

$$
\frac{E}{A}=-\frac{d}{4} E_{F}\left(\frac{\Delta}{E_{F}}\right)^{2} \sim \frac{1}{d}
$$

Screening Corrections

Screening corrections suppressed as $d \rightarrow \infty$

Shallow Bound States For Arbitary d

Upper and lower critical dimension (Nussinov \& Nussinov)
$d=2$: Arbitrarily weak attractive potential has a bound state

$$
\xi(d=2)=1
$$

$d=4$: Bound state wave function $\psi \sim 1 / r^{d-4}$. Pairs do not overlap

$$
\xi(d=4)=0
$$

Conclude $\xi(d=3) \sim 1 / 2$? Try expansion around $d=4$?

Summary

Numerical Approaches

No sign problem, can compute EOS, T_{c}, \ldots
Extensions: pions, range corrections, two flavors

Analytical Approaches

Large d: $\xi=1 / 2+O(1 / d)$. Higher orders?
Other ideas? $(\epsilon=4-d ?, \ldots)$

