# Perfect Fluidity in Cold Atomic Gases?

**Thomas Schaefer** 

North Carolina State University



## Hydrodynamics

Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.



Historically: Water  $(\rho, \epsilon, \vec{\pi})$ 

#### Example: Simple Fluid

Continuity equation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0$$

Euler (Navier-Stokes) equation

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j}\Pi_{ij} = 0$$

Energy momentum tensor

$$\Pi_{ij} = P\delta_{ij} + \rho v_i v_j + \eta \left(\partial_i v_j + \partial_j v_i - \frac{2}{3}\delta_{ij}\partial_k v_k\right) + \dots$$
reactive dissipative

# Elliptic Flow

Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy b



### Elliptic Flow II



Requires "perfect" fluidity ( $\eta/s < 0.1$  ?) (s)QGP saturates (conjectured) universal bound  $\eta/s = 1/(4\pi)$ ?

#### Viscosity Bound: Rough Argument

Kinetic theory estimate of shear viscosity

$$\eta \sim \frac{1}{3}n\bar{v}ml = \frac{2}{3}n\left(\frac{1}{2}m\bar{v}^2\right)\frac{l}{\bar{v}} = \frac{2}{3}nE\tau_{mft}$$

Entropy density:  $s \sim k_B n$ . Uncertainty relation implies

$$\frac{\eta}{s} \sim \frac{nE\tau_{mft}}{k_B n} \sim \frac{E\tau_{mft}}{k_B} \ge \frac{\hbar}{k_B}$$

Validity of kinetic theory as  $E\tau \sim \hbar$ ? Why  $\eta/s$ ? Why not  $\eta/n$ ?

#### Holographic Duals at Finite Temperature

Thermal (conformal) field theory  $\equiv AdS_5$  black hole

Hawking temperature of CFT temperature  $\Leftrightarrow$ black hole Hawking-Bekenstein entropy **CFT** entropy  $\Leftrightarrow$  $\sim$  area of event horizon weak coupling Strong coupling limit S  $s = \frac{\pi^2}{2} N_c^2 T^3 = \frac{3}{4} s_0$ strong coupling Gubser and Klebanov  $\lambda = g^2 N$ 

Extended to transport properties by Policastro, Son and Starinets

### Quark Gluon Plasma Equation of State (Lattice)



Compilation by F. Karsch (SciDAC)

Holographic Duals: Transport Properties

Thermal (conformal) field theory  $\equiv AdS_5$  black hole

Hawking-Bekenstein entropy **CFT** entropy  $\Leftrightarrow$  $\sim$  area of event horizon Graviton absorption cross section shear viscosity  $\Leftrightarrow$  $\sim$  area of event horizon  $\frac{\eta}{s}$ Strong coupling limit  $\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$ ħ Son and Starinets  $4\pi k_B$  $g^2 N_c$ 0

Strong coupling limit universal? Provides lower bound for all theories?

### Viscosity Bound: Common Fluids



### Viscosity Bound: Counter Examples?

non relativistic systems: can make S/N large

$$\frac{\eta}{s} = \frac{1}{\log(N_s)} \frac{c\sqrt{mT}}{a^2 n}$$

modified conjecture: applies to systems that can be embedded in a relativistic (gauge?) theory

T. Cohen: Consider heavy-light mesons in QCD with  $N_F = N_c \rightarrow \infty$ 

$$m_Q = m_Q^0 N_F \qquad n = \frac{n_0}{\log(N_F)}, \qquad T = \frac{T_0}{N_F \log(N_F)^{1/2}}$$
$$\frac{\eta}{s} \sim \frac{1}{\log(N_s)} \qquad \text{stable fluid? } s \text{ well defined?}$$

**Designer Fluids** 

Atomic gas with two spin states: " $\uparrow$ " and " $\downarrow$ "



"Unitarity" limit  $a 
ightarrow \infty$ 

$$\sigma = \frac{4\pi}{k^2}$$

Why are these systems interesting?

System is intrinsically quantum mechanical

cross section saturates unitarity bound

System is scale invariant at unitarity. Universal thermodynamics

$$\frac{E}{A} = \xi \left(\frac{E}{A}\right)_0 = \xi \frac{3}{5} \left(\frac{k_F^2}{2M}\right)$$

System is strongly coupled but dilute

$$(k_F a) \to \infty$$
  $(k_F r) \to 0$ 

Strong elliptic flow observed experimentally

## Elliptic Flow





Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy



## **Collective Modes**



Ideal fluid hydrodynamics, equation of state  $P \sim n^{5/3}$ 

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n\vec{v}) = 0$$
  
$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{mn}\vec{\nabla}P - \frac{1}{m}\vec{\nabla}V$$
  
$$\omega = \sqrt{\frac{10}{3}}\omega_{\perp}$$

#### Damping of Collective Excitations



Kinast et al. (2005)

## Viscous Hydrodynamics

Energy dissipation  $(\eta, \zeta, \kappa)$ : shear, bulk viscosity, heat conductivity)

$$\dot{E} = -\frac{\eta}{2} \int d^3x \left( \partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right)^2 - \zeta \int d^3x \left( \partial_i v_i \right)^2 - \frac{\kappa}{T} \int d^3x \left( \partial_i T \right)^2$$

Shear viscosity to entropy ratio

(assuming  $\zeta = \kappa = 0$ )

$$\frac{\eta}{s} = \frac{3}{4} \xi^{\frac{1}{2}} (3N)^{\frac{1}{3}} \frac{\Gamma}{\omega_{\perp}} \frac{\bar{\omega}}{\omega_{\perp}} \frac{N}{S}$$

see also Bruun, Smith, Gelman et



al.

## Damping dominated by shear viscosity?

Study dependence on flow pattern



Study particle number scaling

viscous hydro:  $\Gamma \sim N^{-1/3}$ 

Boltzmann:  $\Gamma \sim N^{1/3}$ 

Role of thermal conductivity?

suppressed for scaling flows:  $\delta T \sim T(\delta n/n) \sim const$ 

#### Kinetic Theory

Quasi-Particles: Kinetic Theory

$$T_{ij} = \int d^3p \, \frac{p_i p_j}{E_p} f_p,$$

Boltzmann equation

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p + \vec{F} \cdot \vec{\nabla}_p f_p = C[f_p]$$

Linearized theory (Chapman-Enskog):  $f_p = f_p^0(1 + \chi_p/T)$ 

$$\eta \ge \frac{\langle \chi | X \rangle^2}{\langle \chi | C | \chi \rangle} \qquad \quad \langle \chi | X \rangle = \int d^3 p \, f_p^0 \, \chi_p \, p_{ij} v_{ij}$$
$$v_{ij} = v^2 \delta_{ij} - 3 v_i v_j$$



## Elliptic Flow

Free scaling expansion

$$n(r_{\perp}, r_z) = \frac{1}{b_{\perp}^2 b_z} n_0 \left(\frac{r_{\perp}}{b_{\perp}}, \frac{r_z}{b_z}\right)$$
$$\ddot{b}_{\perp} = \frac{\omega_{\perp}^2}{b_{\perp} (b_{\perp}^2 b_z)^{\gamma}}$$

Viscous damping

$$\dot{E} = -\frac{4}{3} \left(\frac{\dot{b}_{\perp}}{b_{\perp}} - \frac{\dot{b}_z}{b_z}\right)^2 \int d^3x \,\eta(x)$$
$$\Delta E = \int dt \,\dot{E} \quad \text{converges quickly}$$





## Elliptic Flow (cont)

Can define  $v_2 = \langle \cos(2\phi) \rangle$  as in HI collisions



Can also sweep to BEC regime and simulate recombination models

## Final Thoughts

Cold atomic gases provide interesting, strongly coupled, model system in which to study sources of dissipation.

#### $\eta/s\sim 1/2$

Smaller than any other known liquid (except for QGP?). Since other sources of dissipation exist, this is really an upper bound.

There are reliable calculations of  $\eta/s$  at high T (Bruun, Smith, ...) and low T (Rupak and T.S). Extrapolate to  $T \sim T_F$ 

Conjectured bound has a smooth non-relativistic limit. Note that the  $a \to \infty$  limit can also be realized in QCD (by tuning  $\mu, \mu_e$  and  $m_q$ ).

But: In non-relativistic systems  $s \gg n$  possible

Purely field theoretic proofs?

 $\mathcal{N} = 4$  SUSY YM is special because there is no phase transition. In real systems there is a phase transition as the coupling becomes large, and the new phase (confined in QCD, superfluid in the atomic system) has weakly coupled low energy excitations, and a large viscosity.

No quasi-particles in sQGP?