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Nuclear Effective Field Theory

Low Energy Nucleons:

Nucleons are point particles

Interactions are local

Long range part: pions

� � � � � � � � � �

Advantages:

Systematically improvable

Symmetries manifest (Chiral, gauge, . . .)

Connection to lattice QCD
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Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons

Leff = ψ†
(

i∂0 +
∇2

2M

)

ψ− C0

2
(ψ†ψ)2 +

C2

16

[

(ψψ)†(ψ
↔

∇
2

ψ)+h.c.
]

+ . . .

Simplifications: neutrons only, no pions (very low energy)

Match to effective range expansion
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a
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2
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rn
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Coupling constants

C0 =
4πa
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4πa2

M
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Few Body Physics: Successes

NN scattering: N3LO potentials

External currents: np→ dγ etc.

Three body systems: Efimov effect, Phillips line

Four body physics, . . .
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The Nuclear Matter Problem is Hard: Traditional View

NN Potential has a very strong hard core

3-body forces, isobars, relativity, . . . important

Saturation density too small
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The Nuclear Matter Problem is Hard: EFT View

NN Potential has a very strong hard core

Short distance behavior not relevant

3-body forces, isobars, relativity, . . . important

3-body: Yes; Isobars, relativity: Absorbed in counterterms

Saturation density too small

Yes: NN system and nuclear matter (?) are fine tuned
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Toy Problem (Neutron Matter)

Limiting case (“Bertsch” problem)

(kFa) → ∞

(kF r) → 0

No Expansion Parameters!

a

r

k −1
F

Universal properties [EF = k2
F /(2m), nf = (2mµ)3/2/(3π2)]

(E/A)|T=0 = ξ(E(0)/A) = ξ
3

5
EF

∆|T=0 = ζEF [Tc = ζ ′TF ]

P (T, µ) =
2

5
µnf (µ)f(T/TF )
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Perfect Liquids

sQGP (T=180 MeV)

Trapped Atoms (T=1 neV)

Neutron Matter (T=1 MeV)
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Universality

What do these systems have in

common?

dilute: rρ1/3 ¿ 1

strongly correlated: aρ1/3 À 1

a

r

k −1
F

Feshbach Resonance in 6Li Neutron Matter
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Warmup: Low Density Expansion

Finite density: L → L− µψ†ψ ⇒ Modified propagator

G0(k)αβ = δαβ

( θ(k − kF )

k0 − k2/2M + iε
+

θ(kF − k)

k0 − k2/2M − iε

)

Perturbative expansion

� � � � � � ��� ��� � � � � ��� � � �
	

E

A
=

k2
F

2M

[

3

5
+

(

2

3π
(kFa) +

4

35π2
(11 − 2 log(2))(kFa)

2

)

+ . . .

]
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Low Density Expansion: Higher orders

Effective range corrections

E

A
=

k2
F

2M

1

10π
(kFa)

2(kF r)

Logarithmic terms

E

A
=

k2
F

2M
(g − 1)(g − 2)

16

27π3
(4π − 3

√
3)(kFa)

4 log(kFa)

related to log divergence in 3 → 3 scattering amplitude

local counterterm D(ψ†ψ)3 exists if g ≥ 3
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Nonperturbative Methods

Lattice Field Theory (D. Lee’s talk)

Other numerical methods: GFMC, VMC, . . .

Expansion in number of species (large N)

Expansion in dimensionality (large d, ε = 4 − d)
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Large N approximation(s)

Large N gives mean field dynamics. What mean field?

Determined by symmetries of the interaction

SU(2N) symmetric interaction

L = C0(ψ
†
fψf )2

N N(C0N)

ρ =
1

N
〈ψ†ψ〉

Sp(2N) symmetric interaction

L = C0

∣

∣ψfJ fgψg

∣

∣

2

N N(C0N)

Φ =
1

N
〈ψfJ fgψg〉
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Large N approximations

SU(2N): Hartree + ring diagrams (x = NkFa/π)

E

A
=

k2
F

2M
×
[(3

5
+

2x

3

)

+
1

N
R(x) + . . .

]

(→ ∞)

Furnstahl & Hammer (2002)

� ��� � � �

�� � � ��
�

Sp(2N): BCS + fluctuations

Ω

N
= −

∫

d3p

(2π)3

{

√

ε2p + Φ2 − εp − mΦ2

p2

}

+O(1/N)

ξ = 0.591 − 0.312/N + . . . = 0.279 (N = 1)

Sachdev (2006)
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Large d Limit

In medium scattering strongly restricted by phase space

P
2

+ k
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P k

2

Find limit in which ladders are leading order

��� � ��� 	�
 � ���

� � � ��� 	�

 
 � ���

λ ≡
[

ΩdC0k
d−2
F M

d(2π)d

]

λ = const (d→ ∞)

ξ =
1

2
+O(1/d)

Steele (1999), Schaefer et al (2003)
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Pairing in the Large d Limit

BCS gap equation

∆ =
|C0|
2

∫

ddp

(2π)d

∆
√

ε2p + ∆2

Solution

∆ =
2e−γEF

d
exp

(

− 1

dλ

)

∆ = 0.375EF

=

= +

O(1) + O

(

d
−1

)

Pairing energy (subleading in 1/d)

E

A
= −d

4
EF

(

∆

EF

)2

∼ 1

d
.
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Upper and lower critical dimension

Zero energy bound state for arbitrary d

ψ′′(r) +
d− 1

r
ψ′(r) = 0 (r > r0)

d=2: Arbitrarily weak attractive

potential has a bound state

ξ(d=2) = 1

d=4: Bound state wave function

ψ ∼ 1/rd−2. Pairs do not overlap

ξ(d=4) = 0

Conclude ξ(d=3) ∼ 1/2?

Try expansion around d = 4 or d = 2?

Nussinov & Nussinov (2004)
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Epsilon Expansion

EFT version: Compute scattering amplitude (d = 4 − ε)

'

iD
ig ig

T =
1

Γ
(

1 − d
2

)

(m

4π

)−d/2 (

−p0 +
εp
2

)1−d/2

' 8π2ε

m2

i

p0 +
εp

2 + iδ

g2 ≡ 8π2ε

m2
D(p0, p) =

i

p0 +
εp

2 + iδ

Weakly interacting bosons and fermions
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Epsilon Expansion

Effective lagrangian for atoms Ψ = (ψ↑, ψ
†
↓) and dimers φ

L = Ψ†
(

i∂0 +
σ3∇2

2m

)

Ψ + µΨ†σ3Ψ + Ψ†σ+Ψφ+ h.c.

Perturbative expansion: φ = φ0 + gϕ. Free part

L0 = Ψ†
[

i∂0 + δµ+ σ3

~∇2

2m
+ φ0(σ+ + σ−)

]

Ψ+ϕ†
(

i∂0 +
~∇2

4m

)

ϕ .

Interacting part (g2, µ = O(ε))

LI = g
(

Ψ†σ+Ψϕ+ h.c
)

+ µΨ†σ3Ψ−ϕ†
(

i∂0 +
~∇2

4m

)

ϕ .

Nishida & Son (2006)
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Epsilon Expansion

Consistency conditions

+ = O(ε) Also: tadpoles cancel

Effective potential

O(1) O(1) O(ε)

ξ =
1

2
ε3/2 +

1

16
ε5/2 ln ε

− 0.0246 ε5/2 + . . .

ξ(ε=1) = 0.475

Problem: Higher order corrections large (∼ 100 %)!
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Near two dimensions

Scattering amplitude near d=2 (ε̄ = d− 2)

A(p0, p) = i
2π

m
ε̄+O(ε̄2) g2 =

2πε̄

m

Effective potential (similar to (kFa) expansion)

O(1) O(ε̄) O(ε̄2)

ξ = 1 − ε̄+O(ε̄2)

= 0 (ε̄ = 1)

Superfluid gap (BCS + screening correction)

∆ =
2µ

e
exp

(

−1

ε̄

)
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Combine expansions near d=2 and d=4

2 2.5 3 3.5 4
d

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ξ

Conclude ξ = (0.3 − 0.4)

Arnold et al. (2006)

other app: Rupak (2006), Kryjevski,Rupak,S (2006)
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Summary

Several systemtic approaches available

None of them is perfect, emphasize different aspects

Can be combined in interesting ways

Real nuclear matter

More perturbative. Problem becomes easier?

1/a, range corrections have been studied

Explicit pions, three body clusters, . . .
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