Fluctuations and the QCD critical point
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The phase diagram of QCD

_ . 1 a a
L= q]f(ZJD B mf)Qf - @GMVG,U,V

200

2

S
[47]
=3
'_
v
=5
—
¢
4}]
o B
5
'—

Nuclei Net Baryon Density



2000: Dawn of the collider era at RHIC
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What did we find?

Heavy ion collisions at RHIC are described by a very simple theory:

wavTa per  (everything flows)
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Hydro converts initial state geometry, including fluctuations,
to flow. Attenuation coefficient is small, /s ~ 0.08h/kp,
indicating that the plasma is strongly coupled.



2010: The energy frontier at LHC

Pb+ Pb@2.76 ATeV, now 5.5 ATeV



What did we find?

Even the smallest droplets of QGP fluid produced in (high
multiplicity) pp and pA collisions exhibit collective flow.
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Small viscosity 17/s ~ 0.08h/kp implies short mean
free path and rapid hydrodynamization.



The next step (2010-21):
RHIC beam energy scan (BES 1/I1)

Can we locate the phase transition itself, either by locating a critical point,
or identifying a first order transition?
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What is a Phase of QCD? Phases of Gauge Theories

Coulomb Higgs Confinement
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Standard Model: U(1) x SU(2) x SU(3)



What is a Phase of QCD? Phases of Gauge Theories

Coulomb Higgs Confinement
o o
e e e
" . o
. - . oo
[
R AR ANV
) ¢ IVWAMAAMAMAAMAAMAMAY A @
e2 e—mr
Vi(r) ~ - Vir) ~— . V(r) ~ kr

QCD: High T phase High 1 phase Low T, iu phase



What is a Phase of QCD? Phases of Gauge Theories
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No local order parameters: Phases can be continuously connected.



Phases of QCD: Global symmetries

Local order parameters and change of symmetry: Sharp phase transitions.
M — RM <M> #+(0 =— DBroken Symmetry
QCD: Approximate chiral symmetry (L, R) € SU(3)r x SU(3)r

Vi p = Lrg¥L g5 Vr,p = Rrg¥R,g

Broken explicitly by quark masses m¢ < Agcp, spontaneously by quark
condensate

(W g R+ Vs RYg L) = 072



Transitions without change of symmetry: Liquid-Gas

Phase diagram of water Characteristics of a liquid
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Signatures of the critical endpoint

Scalar order parameter ¢ = p — pg

Flg] = / P2 {K(V6)? + 6% + A6* + ho)

Free energy functional:

Correlation length diverges

Critical opalescence



Signatures of the critical endpoint

Correlation length diverges

Critical opalescence

Scalar order parameter ¢ = p — pg

Flg] = / P2 {k(VO)? +16” + A6t + ho)

F'[¢] universal, ¢ could be the mag-
netization of a spin system.

T — 1T
~tTY = -
3 T
3 2
V:ZE_l_O(G ) >~ 0.58

Classical fluids are in the universality
class of the 3d Ising model.



Critical endpoint in QCD?

Quarks have finite masses. — No sharp phase transitions required, but first
order transitions could be present.

_| L | L | [ D | |__
200 —
- % & 6x18% A
: E * o 6x243
150 ,-_ § i O 6x323 _-
S i i i
P B ] e i
Lattice QCD: 100 = oaf . "~
e el ]
The = 0 transition is a crossover. - T
50 |- Thee
| | | | | | | 1 1 1 | 1 1 1 | |-
3.4 3.5 3.6 3.7
6/9?
Temperature

Aoki et al., Nature (2006)



Crossover: Experimental indications

The speed of sound ¢? = g—]g determines the acceleration history of the
fireball. Sharp phase transition: ¢? = 0. Crossover: Soft point ¢Z(min) > 0
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Pratt et al, PRL (2013)

Reconstruct sound speed from particle spectra, HBT source sizes and
emission duration



Critical endpoint in QCD?

What happens for p # 07 Lattice calculations cannot tell (the QCD sign
problem). Two options: The transition weakens, or it strengthens.

If the transition strengthens for ;1 > 0 (as suggested by models) then there
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is a critical endpoint.
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How would we know?

Basic Idea: Control u via beam energy (change number of stopped
nucleons)
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Study fluctuation observables such as ((AN,)?)

Look for enhancement/non-monotonic behavior.



More sensitive observables: Higher order cumulants

Consider curtosis: k4 = (¢p?) — 3(¢?)?
Stronger divergence near critical point: rky/k3 ~ &3

Non-trivial dependence on t (— beam energy)
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Compare to BES-| data

Many details: Couple fluctuations to particles /N, ~ ¢, model freezeout
curve, map Ising EOS to QCD phase diagram, include resonance decays.
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High energy baseline, fluctuations are Gaussian.

Some indication of non-Gaussian behavior at lower energy.



Dynamical Theory

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:
e Critical equation of state.

e Possible Goldstone modes (chiral field in QCD?)

e Stochastic fluxes, fluctuation-dissipation relations.



Digression: Diffusion

Consider a Brownian particle

p(t) = —vpp(t) + ¢(t) (C)¢(t)) = rd(t —t')

drag (dissipation) white noise (fluctuations)

For the particle to eventually thermalize
(p?) = 2mT

drag and noise must be related
mi
YD

K =

Einstein (Fluctuation-Dissipation)



Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ (“model H")
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Free energy functional: Order parameter ¢, momentum density @ = wv
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Numerical realization

Stochastic relaxation equation (“model A")

Oph = —I’?—Z ¢ (C(z, )¢ (2", ")) =TT6(x — 2")o(t — t)

Naive discretization

OF [T
O (At)a3

Noise dominates as At — 0, leads to discretization ambiguities in the

Yt + At) = P(t) + (At) 0 60%) =1

equilibrium distribution.

|ldea: Use Metropolis update

Y (t + At) )+ 2 (At)d p = min(1,e P27)



Numerical realization

Central observation

(Wt + At T) — (¢, T)) = —(At)r%+0((m)2)
([t + At Z) —(t, D)]°) = 2(ATT + 0 ((At)?) .

Metropolis realizes both diffusive and stochastic step. Also

Ply] ~ exp(=SF[Y])

Note: Still have short distance noise; need to adjust bare parameters such
as I', m?, \ to reproduce physical quantities.



Numerical results (critical Navier-Stokes)

Order parameter (3d) Order parameter/velocity field (2d)




Critical Navier-Stokes (model H)

Renormalized viscosity
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What's next?

Couple to realistic fluid background,

convert fluid elements to particles.



Outlook

Opportunity: Discover QCD critical point by observing
critical fluctuations in heavy ion collisions. Intriguing
hints present in BES-I data.

Challenge: Propagate fluctuations of conserved charges
in relativistic fluid dynamics. Describe initial state fluc-
tuations and final state freezeout.

Experiment: BES-II is being analyzed.
Other opportunities: Chiral dynamics, small systems.

Learned many things about fluid dynamics along the way.



