# Fluctuations in Cold Atomic Gases

# Thomas Schäfer

### North Carolina State University







# Why consider fluctuations?

For consistency: Satisfy fluctuation-dissipation relations.

Fluid dynamics as an EFT: Fluctuations determine nonanalyticities in  $(\omega, k)$ , and encode the resolution dependence of low energy parameters (such as transport coefficients).

Role of fluctuations enhanced in nearly perfect fluids  $(\eta/s \lesssim 1)$ .

Fluctuations are dominant near critical points.

$$\mathcal{L}_{\text{eff}} = \psi^{\dagger} \left( i\partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2$$



# Unitarity limit

Consider simple square well potential



a < 0  $a = \infty, \epsilon_B = 0$   $a > 0, \epsilon_B > 0$ 

# Unitarity limit

Now take the range to zero, keeping  $\epsilon_B \simeq 0$ 



#### Feshbach resonances

Atomic gas with two spin states: " $\uparrow$ " and " $\downarrow$ "



#### Universal fluid dynamics

Many body system: Effective cross section  $\sigma_{tr} \sim n^{-2/3}$  (or  $\sigma_{tr} \sim \lambda^2$ )



#### Systems remains hydrodynamic despite expansion

## Almost ideal fluid dynamics





Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy



O'Hara et al. (2002)

# Part I: Noncritical fluctuations

Hydrodynamic tails (non-analytic terms in the gradient expansion).

Fluctuations bounds on transport coefficients.

Fluid dynamics as a renormalizable effective theory.

Phenomenology?

#### Hydrodynamic fluctuations

Hydrodynamic variables fluctuate

$$\langle \delta v_i(x,t) \delta v_j(x',t) \rangle = \frac{T}{\rho} \delta_{ij} \delta(x-x')$$



Linearized hydrodynamics propagates fluctuations as shear or sound

$$\langle \delta v_i^T \delta v_j^T \rangle_{\omega,k} = \frac{2T}{\rho} (\delta_{ij} - \hat{k}_i \hat{k}_j) \frac{\nu k^2}{\omega^2 + (\nu k^2)^2}$$
 shear 
$$\langle \delta v_i^L \delta v_j^L \rangle_{\omega,k} = \frac{2T}{\rho} \hat{k}_i \hat{k}_j \frac{\omega k^2 \Gamma}{(\omega^2 - c_s^2 k^2)^2 + (\omega k^2 \Gamma)^2}$$
 sound

 $v = v_T + v_L$ :  $\nabla \cdot v_T = 0$ ,  $\nabla \times v_L = 0$   $\nu = \eta/\rho$ ,  $\Gamma = \frac{4}{3}\nu + \dots$ 

Hydro Loops: "Breakdown" of second order hydro

Correlation function in hydrodynamics

$$G_S^{xyxy} = \langle \{\Pi^{xy}, \Pi^{xy}\} \rangle_{\omega,k} \simeq \rho_0^2 \langle \{v_x v_y, v_x v_y\} \rangle_{\omega,k}$$



Match to response function in  $\omega \to 0$  (Kubo) limit

$$G_R^{xyxy} = P + \delta P - i\omega[\eta + \delta\eta] + \omega^2 \left[\eta\tau_\pi + \delta(\eta\tau_\pi)\right]$$

with

$$\delta P \sim T\Lambda^3 \qquad \delta \eta \sim \frac{T\rho\Lambda}{\eta} \qquad \delta(\eta\tau_{\pi}) \sim \frac{1}{\sqrt{\omega}} \frac{T\rho^{3/2}}{\eta^{3/2}}$$

### Hydro Loops: RG and "breakdown" of 2nd order hydro

Cutoff dependence can be absorbed into bare parameters. Non-analytic terms are cutoff independent.

Fluid dynamics is a "renormalizable" effective theory.

Small  $\eta$  enhances fluctuation corrections:  $\delta \eta \sim T \left(\frac{\rho}{\eta}\right)^2 \left(\frac{P}{\rho}\right)^{1/2}$ 

Small  $\eta$  leads to large  $\delta\eta$ : There must be a bound on  $\eta/n$ .

Relaxation time diverges:  $\delta(\eta \tau_{\pi}) \sim \frac{1}{\sqrt{\omega}} \left(\frac{\rho}{\eta}\right)^{3/2}$ 

2nd order hydro without fluctuations inconsistent.

## Fluctuation induced bound on $\eta/s$



Schaefer, Chafin (2012), see also Kovtun, Moore, Romatschke (2011)

#### Fluctuation induced bulk stresses

Kubo relation for bulk viscosity

$$\zeta = -\lim_{\omega \to 0} \operatorname{Im} \frac{1}{9\omega} \int dt d^3 x \, e^{-i\omega t} \, \langle [\Pi_{ii}(t,x), \Pi_{jj}(0)] \Theta(t) \rangle$$

Scale invariance not manifest

May use conservation of energy  $\partial_t \mathcal{E} + \vec{\nabla} \cdot \vec{j}^{\epsilon} = 0$  to rewrite Kubo formula

$$\zeta = -\lim_{\omega \to 0} \operatorname{Im} \frac{1}{\omega} \langle [\mathcal{O}(t, x), \mathcal{O}(0)] \rangle_{\omega k} \qquad \mathcal{O} = \frac{1}{3} \Pi_{ii} - \frac{2}{3} \mathcal{E}$$

and consider coupling to fluctuations of  $\rho$  and T

 $\mathcal{O} = \mathcal{O}_0 + a_{\rho\rho} (\Delta\rho)^2 + a_{\rho T} \Delta\rho \Delta T + a_{TT} (\Delta T)^2 + \dots$ 

Fluctuation induced bulk stresses



Fluctuation contribution to bulk spectral function  $(A_i \sim (P - \frac{2}{3}\mathcal{E})^2)$ :

$$\zeta(\omega) = \zeta(0) - \left(\frac{A_T}{(2D_T)^{3/2}} + \frac{A_\Gamma}{\Gamma^{3/2}}\right) \frac{\sqrt{\omega}}{36\sqrt{2}\pi} \,.$$

Fluctuation bound

$$\zeta_{min} = \left(\frac{A_T}{2D_T^2} + \frac{\sqrt{5}A_\Gamma}{\sqrt{3}\Gamma^2}\right)\sqrt{\frac{T}{m}}\,.$$

Consider  $\lambda/a \sim 1$ . Get  $\zeta/s \gtrsim 0.1$ 

Fluctuation induced bound on  $\zeta/s$ 



Non-relativistic fluid, M. Martinez, T. S. (2017); relativistic fluid, Akamatsu et al. (2018)

See also Kovtun, Yaffe (2003)

#### Can we detect tails (numerical simulation)?



Numerical results for spectral functions (Wlazlowski et al.)

Can we detect tails (experimentally)?



Damping of collective modes (3d transverse breathing mode)

2d breathing mode:  $\Gamma/\omega \simeq \frac{1}{16\pi} \log(N)$ 

# Part II: Critical Fluctuations

Expectation: If there is a critical endpoint in the QCD phase diagram, then the dynamical universality class is that of model H (liquid-gas).

Possible simplifications: Purely diffusive dynamics of order parameter mode (model B).

The superfluid transition in the unitary Fermi gas (and in liquid He) is described by model F.

# Digression: Diffusion

Consider a Brownian particle

 $\dot{p}(t) = -\gamma_D p(t) + \zeta(t)$ 

$$\langle \zeta(t)\zeta(t')\rangle = \kappa\delta(t-t')$$

drag (dissipation) white noise (fluctuations)

For the particle to eventually thermalize

 $\langle p^2 \rangle = 2mT$ 

drag and noise must be related

$$\kappa = \frac{mT}{\gamma_D}$$

Einstein (Fluctuation-Dissipation)



#### Hydrodynamic equation for critical mode

Equation of motion for critical mode  $\phi$  ("model H")

$$\frac{\partial \phi}{\partial t} = D\nabla^2 \frac{\delta \mathcal{F}}{\delta \phi} - g \vec{\nabla} \phi \cdot \frac{\delta \mathcal{F}_T}{\delta \vec{\pi}} + \zeta_\phi$$

Diffusive Reactive White Noise

Free energy functional: Order parameter  $\phi,$  momentum density  $\vec{\pi}=\rho\vec{v}$ 

$$\mathcal{F} = \int d^d x \, \left[ \frac{1}{2} (\vec{\nabla}\phi)^2 + \frac{r}{2} \phi^2 + \lambda \phi^4 + \frac{1}{2} \vec{\pi}^2 \right]$$

Fluctuation-Dissipation relation

 $\langle \zeta_{\phi}(x,t)\zeta_{\phi}(x',t')\rangle = 2DT\delta(x-x')\delta(t-t')$ ensures  $P[\phi] \sim \exp(-\mathcal{F}[\phi]/T)$ 



### Linearized analysis (non-critical fluid)

Navier-Stokes equation:

Linearized propagator:

Fluctuation correction:



Renormalized viscosity:

$$\eta = \eta_0 + c_\eta \frac{T\rho\Lambda}{\eta_0} - c_\tau \sqrt{\omega} \frac{T\rho^{3/2}}{\eta_0^{3/2}}$$

Hydro is a renormalizable stochastic field theory

Linearized analysis (critical fluid)

Consider order parameter mode

$$\partial_0 \phi = -D\nabla^2 \frac{\delta \mathcal{F}}{\delta \phi} + mode \ couplings + \zeta_\phi$$
$$\mathcal{F} = \int d^3x \left\{ \frac{1}{2} (\nabla \phi)^2 + \frac{r}{2} \phi^2 + \lambda \phi^4 + \frac{1}{2} \vec{\pi}^2 \right\}$$

Dispersion relation  $i\omega = Dq^2(r+q^2) + \dots$ 

Use  $r \sim \xi^{-2}$ . Relaxation time for modes  $q \sim \xi^{-1}$ :

 $\tau \sim \xi^z$  (z = 4) "Critical slowing down"

A more sophisticated analysis gives  $z\simeq 3$  and

$$\eta \sim \xi^{0.05} \qquad \kappa \sim \xi^{0.9} \qquad \zeta \sim \xi^{2.8}$$

# Critical transport (helium)



Agosta, Wang, Meyer (1987)

More dramatic enhancement in thermal conductivity and bulk viscosity (sound attenuation)

# Critical behavior (unitary Fermi gas)



# Summary

Beautiful theory of hdrodynamic tails (RG, bounds on transport coefficients, non-analyticities), but difficult to observe in experiment (applies to both unitary gases and heavy ion collisions).

Equilibrium critical behavior ( $\lambda$ -transition) in cold gases has been observed, transport behavior more difficult. Recent developments (box potentials, local thermometers) should help.

Possible test bed for studying critical behavior in expanding systems.