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Why consider fluctuations?

For consistency: Satisfy fluctuation-dissipation relations.

Fluid dynamics as an EFT: Fluctuations determine non-
analyticities in (w, k), and encode the resolution depen-
dence of low energy parameters (such as transport coef-
ficients).

Role of fluctuations enhanced in nearly perfect fluids
(n/s < 1).

Fluctuations are dominant near critical points.



Introduction: Dilute Fermi gas, BCS-BEC crossover
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Unitarity limit

Consider simple square well potential

a <0 a=00,eg =0 a>0,eg >0



Unitarity limit

Now take the range to zero, keeping eg ~ 0

Universal scattering amplitude 7 = -
i



Feshbach resonances

Atomic gas with two spin states: “1" and “]”
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Universal fluid dynamics

Many body system: Effective cross section oy, ~ n=2/3 (or oy ~ A?)

Systems remains hydrodynamic despite expansion



Almost ideal fluid dynamics
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Part |: Noncritical fluctuations

Hydrodynamic tails (non-analytic terms in the gradi-
ent expansion).

Fluctuations bounds on transport coefficients.
Fluid dynamics as a renormalizable effective theory.

Phenomenology?



Hydrodynamic fluctuations

Hydrodynamic variables fluctuate
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Hydro Loops: “Breakdown” of second order hydro

Correlation function in hydrodynamics
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Hydro Loops: RG and “breakdown” of 2nd order hydro

Cutoff dependence can be absorbed into bare parameters. Non-analytic
terms are cutoff independent.

Fluid dynamics is a “renormalizable” effective theory.
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Small n leads to large d7n: There must be a bound on 7n/n.
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2nd order hydro without fluctuations inconsistent.



Fluctuation induced bound on 7/

n(w)/s _
' '\ fluctuations
/// 0.15
wE TN kinetic theory
. 4 o ,

spectral function

non-analytic v/w term
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Fluctuation induced bulk stresses

Kubo relation for bulk viscosity
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Scale invariance not manifest

May use conservation of energy 0;€ + \Y - 7 = 0 to rewrite Kubo formula
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and consider coupling to fluctuations of p and T’
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Fluctuation induced bulk stresses
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Fluctuation contribution to bulk spectral function (A4; ~ (P
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Fluctuation induced bound on (/s

(Detuned) Unitary Fermi Gas Quark Gluon Plasma
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See also Kovtun, Yaffe (2003)
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Can we detect tails (numerical simulation)?
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Can we detect tails (experimentally)?
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Damping of collective modes (3d transverse breathing mode)

2d breathing mode: I'/w ~ -1 log(N)



Part Il: Critical Fluctuations

Expectation: If there is a critical endpoint in the QCD phase
diagram, then the dynamical universality class is that of model
H (liquid-gas).

Possible simplifications: Purely diffusive dynamics of order
parameter mode (model B).

The superfluid transition in the unitary Fermi gas (and in
liquid He) is described by model F.



Digression: Diffusion

Consider a Brownian particle

p(t) = —vpp(t) + ¢(t) (C)¢(t)) = rd(t —t')

drag (dissipation) white noise (fluctuations)

For the particle to eventually thermalize
(p?) = 2mT

drag and noise must be related
mi
YD

K =

Einstein (Fluctuation-Dissipation)



Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ (“model H")
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Linearized analysis (non-critical fluid)

Navier-Stokes equation: 0oV + vV20 = mode couplings + noise
1 —vk?pPL
Linearized propagator: ovl svt = - — - v =
propag < 7 J >wak 0 —’LUJ+VI€2
Fluctuation correction: > +

Renormalized viscosity:
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Hydro is a renormalizable stochastic field theory
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Linearized analysis (critical fluid)

Consider order parameter mode

Do = —DVQ% + mode couplings + (g

F [ {%(W)Q + 87+ Ao+ %#}

Dispersion relation iw = Dq¢*(r + ¢°) + ...

Use r ~ £72. Relaxation time for modes g ~ £~

T~E (2=4) ""Critical slowing down”

A more sophisticated analysis gives z ~ 3 and

n ~ 50.05 K~ 60.9 C -~ 62.8



Critical transport (helium)
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More dramatic enhancement in thermal conductivity and bulk viscosity (sound attenuation)



Critical behavior (unitary Fermi gas)
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Summary

Beautiful theory of hdrodynamic tails (RG, bounds on
transport coefficients, non-analyticities), but difficult to
observe in experiment (applies to both unitary gases and
heavy ion collisions).

Equilibrium critical behavior (A-transition) in cold gases
has been observed, transport behavior more difficult. Re-
cent developments (box potentials, local thermometers)
should help.

Possible test bed for studying critical behavior in expand-
ing systems.



