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Two body scattering in 2d and 3d

Consider zero range interaction
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3d: Tune Cj to unitarity. Two body scattering matrix
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2d: Classical scale invariance, broken by quantum effects
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|. Scale invariant fluid dynamics in 3d

Many body system: Effective cross section oy, ~ n=2/3 (or o4y ~ A2)

Systems remains hydrodynamic despite expansion



Scale and conformal symmetry
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|deal fluid dynamics
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First order viscous hydrodynamics
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Second order conformal hydrodynamics

Relaxation of shear stress is a second order hydro term. Complete list
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New transport coefficients 7., A\;, ;

Can be written as a relaxation equation for 7% = §I1¥
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Chao, Schaefer (2011)



Why second order fluid dynamics?

Scaling (“Hubble™) expansion

p(zi,t) = po(bi(t)x:), vi(@j,t) = a;(t)w;
ideal stresses dissipative stresses
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|deal stresses propagate with speed ~ cg, dissipative stresses propagate
with infinite speed. Hydro always breaks down in the dilute corona.

Solved by relaxation time 7, ~ 4.



ll. Scale invariant fluid dynamics: Observations

Hydrodynamic
expansion converts

coordinate space

anisotropy

to momentum space
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Elliptic flow: Breakdown of scale invariant hydrodynamics?

“ switch from conformal hydro to scale breaking kinetics
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no breakdown seen in the data




Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both n,
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Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both n,
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Dusling, Schaefer (2010)



lIl. Bulk viscosity and conformal symmetry breaking

Conformal symmetry breaking (thermodynamics)
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Quasi-particles:

Bulk viscosity
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IVV. Viscosity in two dimensions

Kinetic theory with zero range interaction
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Shear viscosity in 2d and 3d
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Viscous damping
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Comparison to collective mode data
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See arXiv:1111.7242, data from Vogt et al. arXiv:1111.1173.

Also: Bruun arXiv:1112.2395, Baur et al. arXiv:1301.0358.



V. Thermal fluctuations

Hydrodynamic variables fluctuate

(dv;(x,t)0v; (2, t)) = —d;;0(x — )

Linearized hydrodynamics propagates fluctuations as shear or sound
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Hydro Loops: “Breakdown"” of second order hydro

Response function G = (6(¢)[I1*Y, I1"Y]), 1., = pu,vy,

SO

GH™ = P+ 6P + iwln + on) + w® 97 + 6(y75)]

3d: Enhanced shear viscosity, divergent relaxation time

mer ()G (3

Fluctuations large if bare viscosity is small



Fluctuation induced bound on 7n/s

fluctuations

kinetic theory

spectral function

non-analytic \/w term

See arXiv:1209.1006, also Kovtun, Moore, Romatschke (2011).



Fluctuations in 2d

2d: Logarithmic divergence in shear viscosity
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Collective modes: Logarithmic dependence on number of particles

5(Q) = log(N) hard to observe
n 167

Power divergence in relaxation time
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Outlook

Can we observe bulk viscosity away from unitarity in 3d, or
near the crossover in 2d? What about bulk viscosity in the

superfluid phase?

Need local measurements of 77/s in 2d and 3d. Requires sec-
ond order hydrodynamics or hydro+kinetics calculations.

Measurements of the viscous relaxation time (based on collec-

tive modes and elliptic flow?).

QMC measurements of the viscosity spectral function. Can
we see fluctuation effects? Quasi-particle behavior?



Scale breaking in 2d monopole frequency

Scale invariance implies undamped monopole mode w = 2wy.

Frequency shift due to scale breaking Randeria, Taylor (2012)
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High temperature limit: Virial expansion
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