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RHIC serves the perfect fluid



Experiments at RHIC/LHC are consistent with the

idea that a thermalized plasma is produced, and

that the equation of state is that of a weakly cou-

pled gas of quarks and gluons.

But: Transport properties of the system (primarily

viscosity and energy loss) are in dramatic disagree-

ment with expectations for a weakly coupled QGP.

The plasma must be very strongly coupled.
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Why bulk viscosity?
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Real QCD is not scale invariant, and ζ 6= 0. Usually, this is treated as

a nuisancance – it leads to uncertainties in the extraction of η. Here, I

want to estimate ζ from data and see what (if anything) we can learn.



Fluids: Gases, liquids, plasmas, . . .

Hydrodynamics: Long-wavelength, low-frequency

dynamics of conserved charges (or spontaneously

broken symmetry fields).

τ ∼ τmicro τ ∼ λ

Historically: Water

(ρ, ǫ, ~π)



Relativistic fluid

Conservation laws for baryon number and energy-momentum

∂µjB
µ = 0

∂µΠµν = 0

Constitutive relations: Stress tensor

Πµν = (ǫ + P )uµuν + Pηµν−ησµν − ζηµν(∂ · u)+O(∂2)

reactive dissipative 2nd order

Expansion Π0
ij ≫ δΠ1

ij ≫ δΠ2
ij

σµν = ∆µα∆νβ
“

∂αuβ + ∂βuα −
2
3

ηαβ∂ · u
”

, ∆µν = ηµν + uµuν



Regime of applicability

Expansion parameter Re−1 =
η(∂u)

(ǫ + P )u2
=

η

sTτ
≪ 1

1

Re
=

η

~s
×

~

τT
fluid flow

property property

Bath tub : mvL ≫ ~ hydro reliable

Heavy ions : τT ∼ ~ need η < ~s



Viscosity and dissipative forces

Shear viscosity determines shear stress (“friction”) in fluid flow

F = A η
∂vx

∂y

Bulk viscosity controls non-equlibrium pressure

P = P0 − ζ(∂ · v)



Kinetic theory

Kinetic theory: conserved quantities carried by quasi-particles.

Quasi-particles described by distribution functions f(x, p, t).

∂fp

∂t
+ ~v · ~∇xfp + ~F · ~∇pfp = −C[fp]

C[fp] = �
p

- �
p

Shear viscosity corresponds to momentum diffusion

η ∼
1

3
n p̄ lmfp



Bulk viscosity and scale invariance

Consider scale invariant theory js
µ = xνΠµν

∂µjs
µ = 0 ⇒ Πµ

µ = 0 ⇒ ζ = 0

(Indirect) consequence: No simple kinetic theory estimate for bulk

viscosity due to elastic 2 ↔ 2 scattering in relativistic (Ep ∼ p) or

non-relativistic limit (Ep ∼ p2).

f0

EpT

(

p2

3
− c2

sEp
∂(βEp)

∂β

)

(∂ · u) = −C[δf ]

Use c2
s = 1

3 , Ep = p and C[δf =f0Ep] = 0: Get 0 = 0.



Bulk viscosity in kinetic theory

From air to the dilute pion gas: inelastic scattering

�m

m

�
O2 + O2 → O∗

2 + O∗

2 (∆E = ~ωn) π + π → 4π

QCD: Elastic vs inelastic reactions

� �
g + g → g + g (m2

g ∼ g2T 2) g + g → g + g + g



Shear and bulk viscosity in heavy ion collisions (first guess)

b

Ep
dN

d3p

∣

∣

∣

∣

pz=0

= v0(p⊥) (1 + 2v2(p⊥) cos(2φ) + . . .)

η suppresses v2, enhances v0

ζ suppresses v0, (typically) enhances v2

Note: v0 also sensitive to eos, freezeout, hadronic phase.



Differential elliptic flow from dissipative hydrodynamics

Spectra computed on freeze-out surface (“Cooper-Frye”)

Ep
dN

d3p
=

1

(2π)3

∫

σ

f(Ep)p
µdσµ

Write f = f0 + δf and match to hydrodynamics

δΠµν =

∫

dΩp pµpνδf(Ep)

Only moments of δf fixed by η, ζ. Need kinetic models.
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δf from Chapman-Enskog & relaxation time approximation

Linear response to slowly varying thermodynamic variables

f0
p = [exp (−β(x) (Pµ(β)uµ(x))) ∓ 1]

−1
Pµ = (Ep, ~p)

Drift term proportional to “driving term” ∂ · u

LHS =
np(1 ± np)

EpT

(

p2

3
− c2

sEp
∂(βEp)

∂β

)

(∂ · u)

Linearized collision operator fp = np − np(1 ± np)χp (np = f0
p )

RHS = −C[fp] ≃ −np(1 ± np)CL[χp]

Relaxation time approximation

CL[χp] ≃
χp

τ(Ep)



Relaxation time approximation

Bulk viscosity second order in conformal breaking parameter δc2
s

ζ = 15η

(

c2
s −

1

3

)2

Weinberg (1972)

Distribution function is first order in conformal breaking

δf ∼ f0
p

η

sT

p2

T 2

(

c2
s −

1

3

)

(∂ · u)

Near conformal fluids: Bulk viscous correction dominated by δf

Also note: RTA consistent with energy conservation only for very

specific choices of τ(Ep)

δǫ = 0 =

∫

dΩp Ẽ2
pδfp



Distribution function in QGP

elastic 2 ↔ 2 can be written as Fokker-Planck equation (diffusion

equation in momentum space)

(∂ · u)

(

p2

3
− c2

sEp
∂ (βEp)

∂β

)

=
TµA

np

∂

∂pi

(

np
∂

∂pi

[

δfp

np

])

+ . . .

drag coefficient µA =
g2CAm2

D

8π log
(

T
mD

)

Find χB ∼
(

1
3 − c2

s

)

χS and (pure glue)

ζ =
0.44α2

sT
3

log(α−1
s )

ζ ∼ 47.9

(

1

3
− c2

s

)2

η

Arnold, Dogan, Moore (2006)



Distribution function in QGP
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Pure glue: shear vs bulk QGP: quarks vs gluons

δfp = −np(1 ± np) [χS(p)p̂ip̂jσij + χB(p)(∂ · u)]



Spectra and flow (pure QGP, no hadronic phase)
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Pion gas

Pion gas: Bulk viscosity governed by chemical non-equilibration

δfp = np(1 + np)

(

δµ

T
+

EpδT

T 2

)

= −np(1 + np)(χ0 + χ1Ep)(∂ · u)

More formal: χ0 is a “quasi zero mode” which dominates C−1

Inelastic rate determines χ0, energy conservation fixes χ1

χ0 =
ζ

F
ζ =

βF2

4Γ2π→4π

where we have defined F =
∫

dΩp

(

p2

3 − c2
sEp

∂(βEp)
∂β

)

np(1 + np)

ζ ≃ 12285
f8

π

m5
π

exp

(

−
2mπ

T

)

Lu, Moore (2011)



Hadron resonance gas (model)

Hadron gas: Assume bulk viscosity dominated by chemical relaxation

δfa
p = −np(1 ± np) (χa

0 − χ1Ep) (∂ · u)

χa
0 determined by rates, χ1 fixed by energy conservation

Slowest rate determines ζ, other rates fix δµa/δµπ. Simple model

χa
0 ≃ χπ

0







2 mesons

2.5 baryons

inspired by µρ = 2µπ and 2µN = 5µπ. Find

ζ/s = 0.05 ⇒ δµπ = 20 MeV



Spectra and flow: Pions and Protons
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Bounds on ζ/s from differential v2 (here: Ks)
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Pion/Proton pT spectra (low PT )
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Pion/Proton differential v2(pT ) spectra (low pT )
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Conclusions

Bulk viscous corrections dominated by freezeout distributions

QGP: ζ controlled by momentum rearrangement

Hadron gas: ζ determined by chemical non-equilibration

A new way to look at fugacity factors in thermal fits?

RHIC spectra seem to require ζ/s ∼< 0.05

Bulk viscosity not zero: Spectra prefer δµ, fine structure of v2 improves



Extras: Second order hydrodynamics
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Spectra and flow: Kaons and Lambdas

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0  1  2  3  4  5

dN
/(

2 
π 

p T
 d

p T
 d

y)
 [G

eV
-2

]

pT [GeV]

Kaons
Lambda

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5

v 2
 (

p T
)

pT [GeV]

Kaons
Lambda

η/s = 0.16 ζ/s = 0.04



Flow: Interplay between shear and bulk viscosity
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Integrated v2 versus centrality
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Distribution functions: Signs

Consider four-velocity uα with u2 = −1 (gαβ = (−1, 1, 1, 1))

δfp = −npχSpαpβ〈∂αuβ〉 − npχB(∂ · u)

Asymptotic behavior χS,B ∼ p2.

Consider BJ flow: pαpβ〈∂αuβ〉 ∼ −
p2

T

τ and ∂ · u ∼ 1
τ .

δfp ∼
η

s

(pT

T

)2 1

τT
−

ζ

s

(pT

T

)2 1

τT

Elliptic flow

〈v2〉 =

∫

dφ [f(φ) + δf(φ)] cos(2φ)
∫

dφ [f(φ) + δf(φ)]
≃ 〈v0

2〉 + 〈δv2〉 − 〈v0
2〉〈δv0〉



Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both η, ζ
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Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both η, ζ

βη,ζ = (η, ζ)
EF

E

1

(3λN)1/3
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Dusling, Schaefer (2010)


