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RHIC serves the perfect fluid




Experiments at RHIC/LHC are consistent with the
idea that a thermalized plasma is produced, and
that the equation of state is that of a weakly cou-
pled gas of quarks and gluons.

But: Transport properties of the system (primarily
viscosity and energy loss) are in dramatic disagree-
ment with expectations for a weakly coupled QGP.

The plasma must be very strongly coupled.
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Why bulk viscosity?
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Real QCD is not scale invariant, and ¢ # 0. Usually, this is treated as
a nuisancance — it leads to uncertainties in the extraction of n. Here, |
want to estimate ( from data and see what (if anything) we can learn.



Fluids: Gases, liquids, plasmas, ...

Hydrodynamics: Long-wavelength, low-frequency
dynamics of conserved charges (or spontaneously
broken symmetry fields).
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Relativistic fluid

Conservation laws for baryon number and energy-momentum
psB _
o"j, =0

Constitutive relations: Stress tensor
1L, = (e + P)uyuy + Pny—no, — (1 (0 u)+0(0%)

reactive dissipative 2nd order

Expansion IIY; > 0IL;; > 011,



Regime of applicability
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fluid flow

property property

Bath tub : muvL > h hydro reliable
Heavyions: 71~ h need n < hs



Viscosity and dissipative forces

Shear viscosity determines shear stress ( “friction”) in fluid flow

F=An

dy
Bulk viscosity controls non-equlibrium pressure
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Kinetic theory

Kinetic theory: conserved quantities carried by quasi-particles.
Quasi-particles described by distribution functions f(x,p,t).

% + v 6;Ufp + ﬁ ' 6pfp — _C[fp]
t
C[fp] —

Shear viscosity corresponds to momentum diffusion
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» n~ gnﬁlmfp



Bulk viscosity and scale invariance

Consider scale invariant theory j; = x"II,,
oMj,=0 = Ij=0 = (=0

(Indirect) consequence: No simple kinetic theory estimate for bulk
viscosity due to elastic 2 < 2 scattering in relativistic (£, ~ p) or
non-relativistic limit (E, ~ p?).

fo P’ 2 O(BE})
E,T (3 BT

Use c2 = %, E,=pand C[6f=f"E,] = 0: Get 0 = 0.
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Bulk viscosity in kinetic theory

From air to the dilute pion gas: inelastic scattering
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QCD: Elastic vs inelastic reactions

g+g—g9+g (m~g°T?) g+g—g+g+g



Shear and bulk viscosity in heavy ion collisions (first guess)
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Note: vy also sensitive to eos, freezeout, hadronic phase.



Differential elliptic flow from dissipative hydrodynamics

Spectra computed on freeze-out surface (
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(“Cooper-Frye”)

“dau

Write f = f° + 6 f and match to hydrodynamics

ST = / 49, p'p" 6 £ (E,)

Only moments of 0 f fixed by 7, (. Need kinetic models.
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0 f from Chapman-Enskog & relaxation time approximation

Linear response to slowly varying thermodynamic variables

O = [exp (—B(x) (P*(B)u,(z))) F 1]~ P = (E,,p)

Drift term proportional to “driving term” 0 - u

LHS = 7 (;anp ) <p32 — B, 8(5?9)) (0 u)

Linearized collision operator f, = n, — np(l + np)xp (np = ]9)

RHS = —C[f,] ~ —n,(1 +n,)CL[xy]

Relaxation time approximation

Crlxp] =~ g‘gp)

T




Relaxation time approximation

Bulk viscosity second order in conformal breaking parameter dc?

2
1
— 2 h— —
C — 1577 (CS 3) Weinberg (1972)

Distribution function is first order in conformal breaking

2
n p 1
5f”f557ﬁ(03‘§> (0-u)

Near conformal fluids: Bulk viscous correction dominated by o f

Also note: RTA consistent with energy conservation only for very

specific choices of 7(FE))

be =0 = /dﬂpE§5fp



Distribution function in QGP

elastic 2 «<» 2 can be written as Fokker-Planck equation (diffusion

equation in momentum space)

P, OBE)\  Tua d (0 [4f
(0 - u) <§_03Ep ﬁﬂp>_ — (np(‘?pi [n;]>—|—...

2 2
drag coefficient g = 2 C;f;TmD log (mLD)
Find xp ~ (% — cg) Xs and (pure glue)

0.4402T3 1 L)\’
— log(a_l) ( ~47.9 (§ — cs) n

Arnold, Dogan, Moore (2006)
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Distribution function in QGP

P20 Xx(P)
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Pure glue: shear vs bulk QGP: quarks vs gluons

0fp = —np(1 £ 1p) [xs(p)PiDjoij + xB(P)(0 - u)]



Spectra and flow (pure QGP, no hadronic phase)
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Pion gas

Pion gas: Bulk viscosity governed by chemical non-equilibration

) E 0T
0fp = np(l T np) (_,u + =

T T2 ) = —np(1+np) (o + x1Ep)(0 - u)

More formal: g is a “quasi zero mode” which dominates C'~!

Inelastic rate determines g, energy conservation fixes Y1

2
XO:% q s

B 4F27T—>47T

where we have defined F = [ dQ, (% — 2E, a(ggp)) ny(1+ny)

S 2Mm

Lu, Moore (2011)



Hadron resonance gas (model)

Hadron gas: Assume bulk viscosity dominated by chemical relaxation

0fp = —np(Lxnp) (xo — x1Ep) (9 - 1)

Xo determined by rates, x; fixed by energy conservation

Slowest rate determines (, other rates fix du®/dpu,. Simple model

2 mesons
Xo = Xo
2.5  baryons

inspired by 1, = 2, and 2un = Suy. Find

(/s =10.05 = Jdu, =20MeV



dN/(2 Tt py dpy dy) [GeV?]

Spectra and flow: Pions and Protons
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Bounds on (/s from differential vy (here: K)
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Pion/Proton pr spectra (low Pr)
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Pion /Proton differential vy (pr) spectra (low pr)
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Conclusions

Bulk viscous corrections dominated by freezeout distributions

QGP: ¢ controlled by momentum rearrangement
Hadron gas: ¢ determined by chemical non-equilibration

A new way to look at fugacity factors in thermal fits?
RHIC spectra seem to require (/s < 0.05

Bulk viscosity not zero: Spectra prefer o, fine structure of vy improves
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dN/(2 Tt py dpy dy) [GeV?]

Spectra and flow: Kaons and Lambdas
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Flow: Interplay between shear and bulk viscosity
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Integrated vy versus centrality
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Distribution functions: Signs

Consider four-velocity u, with u* = —1 (ga5 = (—1,1,1,1))
8 fp = —npxsp™p” (Oaus) — npxp(0 - u)

Asymptotic behavior xs g ~ p*.

1

g
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Consider BJ flow: p®pP (Dqug) ~ —% and 0 - u ~

Elliptic flow

_ JASLf(9) +85(9)]cos(20) o s oy
= a0 1o (et (Gva) — (v} {dvo)

(v2)



Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both n,
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Elliptic flow: Shear vs bulk viscosity

Dissipative hydro with both 1, ¢

1
(BAN)1/3

i)
Bac = (1:¢) =

n>C

Dusling, Schaefer (2010)



