Effective Field Theory and

the Nuclear Many-Body Problem

Thomas Schaefer
North Carolina State University

Schematic Phase Diagram of Dense Matter

Nuclear Effective Field Theory

Nucleons are point particles
Low Energy Nucleons: Interactions are local
Long range part: pions

Systematically improvable
Advantages:
Symmetries manifest (Chiral, gauge, ...)
Connection to lattice QCD

Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons
$\mathcal{L}_{\text {eff }}=\psi^{\dagger}\left(i \partial_{0}+\frac{\nabla^{2}}{2 M}\right) \psi-\frac{C_{0}}{2}\left(\psi^{\dagger} \psi\right)^{2}+\frac{C_{2}}{16}\left[(\psi \psi)^{\dagger}\left(\psi \stackrel{\leftrightarrow}{\nabla}^{2} \psi\right)+\right.$ h.c. $]+\ldots$

Simplifications: neutrons only, no pions (very low energy)

Match to effective range expansion

$$
p \cot \delta_{0}=-\frac{1}{a}+\frac{1}{2} \Lambda^{2} \sum_{n} r_{n}\left(\frac{p^{2}}{\Lambda^{2}}\right)^{n+1}
$$

Coupling constants

$$
C_{0}=\frac{4 \pi a}{M} \quad C_{2}=\frac{4 \pi a^{2}}{M} \frac{r}{2}
$$

Few Body Physics: Successes

NN scattering: $\mathrm{N}^{3} \mathrm{LO}$ potentials

External currents: $n p \rightarrow d \gamma$ etc.

Three body systems: Efimov effect, Phillips line

Four body physics, ...

The Nuclear Matter Problem is Hard: Traditional View
NN Potential has a very strong hard core

3-body forces, isobars, relativity, ... important

Saturation density too small

The Nuclear Matter Problem is Hard: EFT View

NN Potential has a very strong hard core

Short distance behavior not relevant

3-body forces, isobars, relativity, . . . important

3-body: Yes; Isobars, relativity: Absorbed in counterterms

Saturation density too small

Yes: NN system and nuclear matter (?) are fine tuned

Toy Problem (Neutron Matter)

Limiting case ("Bertsch" problem)

$$
\begin{aligned}
\left(k_{F} a\right) & \rightarrow \infty \\
\left(k_{F} r\right) & \rightarrow 0
\end{aligned}
$$

No Expansion Parameters!

Universal properties $\left[E_{F}=k_{F}^{2} /(2 m), n_{f}=(2 m \mu)^{3 / 2} /\left(3 \pi^{2}\right)\right.$]

$$
\begin{aligned}
\left.(E / A)\right|_{T=0} & =\xi\left(E^{(0)} / A\right)=\xi \frac{3}{5} E_{F} \\
\left.\Delta\right|_{T=0} & =\zeta E_{F} \quad \quad\left[T_{c}=\zeta^{\prime} T_{F}\right] \\
P(T, \mu) & =\frac{2}{5} \mu n_{f}(\mu) f\left(T / T_{F}\right)
\end{aligned}
$$

Perfect Liquids

Neutron Matter ($\mathrm{T}=1 \mathrm{MeV}$)

$$
\text { sQGP }(\mathrm{T}=180 \mathrm{MeV})
$$

Trapped Atoms ($\mathrm{T}=1 \mathrm{neV}$)

Universality

What do these systems have in common?

$$
\text { dilute: } r \rho^{1 / 3} \ll 1
$$

strongly correlated: $a \rho^{1 / 3} \gg 1$

Feshbach Resonance in ${ }^{6} \mathrm{Li}$

Neutron Matter

You have to work with the scattering length (and range parameters) you have, not with the scattering length you want!

Donald H. Rumsfeld (SecDef, retired)

Warmup: Low Density Expansion

Finite density: $\mathcal{L} \rightarrow \mathcal{L}-\mu \psi^{\dagger} \psi \Rightarrow$ Modified propagator

$$
G_{0}(k)_{\alpha \beta}=\delta_{\alpha \beta}\left(\frac{\theta\left(k-k_{F}\right)}{k_{0}-k^{2} / 2 M+i \epsilon}+\frac{\theta\left(k_{F}-k\right)}{k_{0}-k^{2} / 2 M-i \epsilon}\right)
$$

Perturbative expansion

$$
\begin{aligned}
& \epsilon_{F} \rho \\
& \frac{E}{A}=\frac{k_{F}^{2}}{2 M}\left[\frac{3}{5}+\left(\frac{2}{3 \pi}\left(k_{F} a\right)+\frac{4}{35 \pi^{2}}(11-2 \log (2))\left(k_{F} a\right)^{2}\right)+\ldots\right]
\end{aligned}
$$

Low Density Expansion: Higher orders

Effective range corrections

$$
\frac{E}{A}=\frac{k_{F}^{2}}{2 M} \frac{1}{10 \pi}\left(k_{F} a\right)^{2}\left(k_{F} r\right)
$$

Logarithmic terms

$$
\frac{E}{A}=\frac{k_{F}^{2}}{2 M}(g-1)(g-2) \frac{16}{27 \pi^{3}}(4 \pi-3 \sqrt{3})\left(k_{F} a\right)^{4} \log \left(k_{F} a\right)
$$

related to log divergence in $3 \rightarrow 3$ scattering amplitude

local counterterm $D\left(\psi^{\dagger} \psi\right)^{3}$ exists if $g \geq 3$

Nonperturbative Methods

Lattice Field Theory

Other numerical methods: GFMC, VMC, ...

Expansion in number of species (large N)

Expansion in dimensionality (large $\mathrm{d}, \epsilon=4-d$)

Lattice Field Theory

Lee, Schaefer (2004)
pure neutron matter, $T=4 \mathrm{MeV}$

Large N approximation(s)

Large N gives mean field dynamics. What mean field?

Determined by symmetries of the interaction

SU(2N) symmetric interaction

$$
\mathcal{L}=C_{0}\left(\psi_{f}^{\dagger} \psi_{f}\right)^{2}
$$

$$
\rho=\frac{1}{N}\left\langle\psi^{\dagger} \psi\right\rangle
$$

$\operatorname{Sp}(2 \mathrm{~N})$ symmetric interaction $\left(\mathcal{J}=\left(\sigma_{2}\right) \otimes \ldots \otimes\left(\sigma_{2}\right)\right)$

$$
\mathcal{L}=C_{0}\left|\psi_{f} \mathcal{J}^{f g} \psi_{g}\right|^{2}
$$

$$
\Phi=\frac{1}{N}\left\langle\psi_{f} \mathcal{J}^{f g} \psi_{g}\right\rangle
$$

$N \quad N\left(C_{0} N\right)$

Large N approximations

$\operatorname{SU}(2 N)$: Hartree + ring diagrams $\left(x=N k_{F} a / \pi\right)$

$$
\begin{aligned}
& \frac{E}{A}=\frac{k_{F}^{2}}{2 M} \times\left[\left(\frac{3}{5}+\frac{2 x}{3}\right)\right. \\
& \left.\quad+\frac{1}{N} R(x)+\ldots\right] \quad(\rightarrow \infty)
\end{aligned}
$$

Furnstahl \& Hammer (2002)

$\left(C_{0} N\right)^{k}$
Sp(2N): BCS + fluctuations

$$
\begin{gathered}
\frac{\Omega}{N}=-\int \frac{d^{3} p}{(2 \pi)^{3}}\left\{\sqrt{\epsilon_{p}^{2}+\Phi^{2}}-\epsilon_{p}-\frac{m \Phi^{2}}{p^{2}}\right\}+O(1 / N) \\
\xi=0.591-0.312 / N+\ldots=0.279 \quad(N=1)
\end{gathered}
$$

Large d Limit

In medium scattering strongly restricted by phase space

Find limit in which ladders are leading order

$$
\left(C_{0} / d\right) \cdot 1 / d
$$

$$
\begin{gathered}
\lambda \equiv\left[\frac{\Omega_{d} C_{0} k_{F}^{d-2} M}{d(2 \pi)^{d}}\right] \\
\lambda=\operatorname{const}(d \rightarrow \infty) \\
\quad \xi=\frac{1}{2}+O(1 / d)
\end{gathered}
$$

Steele (1999), Schaefer et al (2003)

Pairing in the Large d Limit

BCS gap equation

$$
\Delta=\frac{\left|C_{0}\right|}{2} \int \frac{d^{d} p}{(2 \pi)^{d}} \frac{\Delta}{\sqrt{\epsilon_{p}^{2}+\Delta^{2}}}
$$

Solution

$$
\begin{gathered}
\Delta=\frac{2 e^{-\gamma} E_{F}}{d} \exp \left(-\frac{1}{d \lambda}\right) \\
\Delta=0.375 E_{F}
\end{gathered}
$$

$O(1)+$

$O\left(d^{-1}\right)$

Pairing energy (subleading in $1 / \mathrm{d}$)

$$
\frac{E}{A}=-\frac{d}{4} E_{F}\left(\frac{\Delta}{E_{F}}\right)^{2} \sim \frac{1}{d}
$$

Upper and lower critical dimension

Zero energy bound state for arbitrary d

$$
\psi^{\prime \prime}(r)+\frac{d-1}{r} \psi^{\prime}(r)=0 \quad\left(r>r_{0}\right)
$$

$\mathrm{d}=2$: Arbitrarily weak attractive $\mathrm{d}=4$: Bound state wave function potential has a bound state $\psi \sim 1 / r^{d-2}$. Pairs do not overlap

$$
\xi(d=2)=1 \quad \xi(d=4)=0
$$

Conclude $\xi(d=3) \sim 1 / 2$?
Try expansion around $d=4$ or $d=2$?

Epsilon Expansion

EFT version: Compute scattering amplitude ($d=4-\epsilon$)

$$
\begin{gathered}
T=\frac{1}{\Gamma\left(1-\frac{d}{2}\right)}\left(\frac{m}{4 \pi}\right)^{-d / 2}\left(-p_{0}+\frac{\epsilon_{p}}{2}\right)^{1-d / 2} \simeq \frac{8 \pi^{2} \epsilon}{m^{2}} \frac{i}{p_{0}+\frac{\epsilon_{p}}{2}+i \delta} \\
g^{2} \equiv \frac{8 \pi^{2} \epsilon}{m^{2}} \quad D\left(p_{0}, p\right)=\frac{i}{p_{0}+\frac{\epsilon_{p}}{2}+i \delta}
\end{gathered}
$$

Weakly interacting bosons and fermions

Epsilon Expansion

Effective lagrangian for atoms $\Psi=\left(\psi_{\uparrow}, \psi_{\downarrow}^{\dagger}\right)$ and dimers ϕ

$$
\mathcal{L}=\Psi^{\dagger}\left(i \partial_{0}+\frac{\sigma_{3} \nabla^{2}}{2 m}\right) \Psi+\mu \Psi^{\dagger} \sigma_{3} \Psi+\Psi^{\dagger} \sigma_{+} \Psi \phi+\text { h.c. }
$$

Perturbative expansion: $\phi=\phi_{0}+g \varphi$. Free part

$$
\mathcal{L}_{0}=\Psi^{\dagger}\left[i \partial_{0}+\delta \mu+\sigma_{3} \frac{\vec{\nabla}^{2}}{2 m}+\phi_{0}\left(\sigma_{+}+\sigma_{-}\right)\right] \Psi+\varphi^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{4 m}\right) \varphi
$$

Interacting part $\left(g^{2}, \mu=O(\epsilon)\right)$

$$
\mathcal{L}_{I}=g\left(\Psi^{\dagger} \sigma_{+} \Psi \varphi+h . c\right)+\mu \Psi^{\dagger} \sigma_{3} \Psi-\varphi^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{4 m}\right) \varphi
$$

Epsilon Expansion

Consistency conditions

Effective potential

$$
\begin{aligned}
\xi=\frac{1}{2} \epsilon^{3 / 2}+ & \frac{1}{16} \epsilon^{5 / 2} \ln \epsilon \\
& -0.0246 \epsilon^{5 / 2}+\ldots \\
\xi(\epsilon=1)= & 0.475
\end{aligned}
$$

Problem: Higher order corrections large ($\sim 100 \%$)!

Near two dimensions

Scattering amplitude near $\mathrm{d}=2(\bar{\epsilon}=d-2)$

$$
\mathcal{A}\left(p_{0}, p\right)=i \frac{2 \pi}{m} \bar{\epsilon}+O\left(\bar{\epsilon}^{2}\right) \quad g^{2}=\frac{2 \pi \bar{\epsilon}}{m}
$$

Effective potential (similar to $\left(k_{F} a\right)$ expansion)

$$
\begin{aligned}
\xi= & 1-\bar{\epsilon}+O\left(\bar{\epsilon}^{2}\right) \\
& =0 \quad(\bar{\epsilon}=1)
\end{aligned}
$$

$O(1) \quad O(\bar{\epsilon}) \quad O\left(\bar{\epsilon}^{2}\right)$

Superfluid gap (BCS + screening correction)

$$
\Delta=\frac{2 \mu}{e} \exp \left(-\frac{1}{\bar{\epsilon}}\right)
$$

Combine expansions near $\mathrm{d}=2$ and $\mathrm{d}=4$

Conclude $\xi=(0.3-0.4)$

Arnold et al. (2006)
other appl.: Kryjevski,Rupak,Schaefer (2006)

Few Body Physics

Few body physics perturbative despite large scattering length

$n D$ scattering (no range terms)

$$
a_{n D}(s=3 / 2) \simeq 4.78 \mathrm{fm} \quad a_{n D}^{\exp }=6.35 \pm 0.02 \mathrm{fm}
$$

Also: $a_{D D}(s=2) \simeq 3.15 \mathrm{fm}$

Outlook

Several systemtic approaches available
None of them is perfect, emphasize different aspects
Can be combined in interesting ways
Real nuclear matter
More perturbative. Problem becomes easier?
$1 / a$, range corrections have been studied
Explicit pions, three body clusters, ...

Real nuclei

Density functionals (LDA, KS, ...)

