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Outline

We wish to extract the properties of nearly perfect (low viscosity)

fluids from experiments with trapped gases, colliding nuclei, etc.

The natural tool for these studies is the Navier-Stokes equation, which

describes the macroscopic motion of a fluid in which viscous

corrections are small.

The problem is that this is not the case flor the entire system. There is

a dilute corona in which fluid dynamics is not applicable.



Hydroynamics

Hydrodynamics (undergraduate version): Newton’s

law for continuous, deformable media.



Fluids: Gases, liquids, plasmas, . . .

Hydrodynamics (postmodern): Effective theory of

non-equilibrium long-wavelength, low-frequency dy-

namics of any many-body system.

non−conserved
density density

conserved

τ ∼ τmicro τ ∼ λ

τ ≫ τmicro : Dynamics of conserved charges.

Water: (ρ, ǫ, ~π)



Not your grandfathers fluid

Consider a many body system (unitary Fermi gas) with σ ∼ 1/k2

Can be made using Feshbach resonances in dilute atomic gases.

Systems remains hydrodynamic despite expansion



Effective theories for fluids (Unitary Fermi Gas, T > TF )
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Effective theories (Strong coupling)
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Gradient expansion (simple non-relativistic fluid)

Simple fluid: Conservation laws for mass, energy, momentum

∂ρ

∂t
+ ~∇~ ρ = 0

∂ǫ

∂t
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∂πi
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+
∂
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Ward identity: mass current = momentum density

~ ρ ≡ ρ~v = ~π

Constitutive relations: Gradient expansion for currents

Energy momentum tensor

Πij = Pδij + ρvivj + η
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Gradient expansion, Kubo formula

Consider background metric gij(t, x) = δij + hij(t, x). Linear response

δΠxy = −1

2
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Harmonic perturbation hxy = h0e
−iωt

Gxyxy
R = P − iηω + . . .
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T .



Fluid dynamics from kinetic theory

Microscopic picture:

Quasi-particle distribution

function fp(x, t)

ρ(x, t) =

∫

dΓpmfp(x, t)

πi(x, t) =

∫

dΓp pifp(x, t)

Πij(x, t) =

∫

dΓp pivjfp(x, t)

Boltzmann equation
(

∂

∂t
+ ~v · ~∇x + ~F · ~∇p

)

fp(t, x, ) = C[fp]

Collision term C[f1] =

∫

dΓ234(f1f2 − f3f4)w(12; 34)
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Fluid dynamics from kinetic theory

Conservation laws (collision term)
∫

dΓpMp C[fp] = 0 Mp = {1, p, Ep}

Moments of Boltzmann equation imply fluid dynamic conservation laws

∂ρ

∂t
+ ~∇~ ρ = 0

∂ǫ

∂t
+ ~∇~ ǫ = 0

∂πi
∂t

+
∂

∂xj
Πij = 0

Need constitutive equations (and equation of state)

~ ρ =? ~ ǫ =? Πij =?



Kinetic theory: Knudsen expansion

Chapman-Enskog expansion f = f0 + δf1 + δf2 + . . .

Gradient exp. δfn = O(∇n)

≡ Knudsen exp. δfn = O(Kn
n)

Zeroth order result: f0 = exp(−β(Ep − ~p · ~u− µ)) β = 1/T

~ ρ = ~π = ρ~u

~ ǫ = (E + P )~u P =
2

3
E

Πij = ρuiuj + Pδij

First order result: δf1 = −f0 η
PT v

ivjσij + . . .

δ(1)Πij = −ησij
δ(1) ǫ

i = −ηujσij − κ∇iT



Kinetic theory: Knudsen expansion

For given w(12; 34) also obtain prediction for η, κ

η =
15

32
√
π
(mT )3/2 κ =

225

128
√
πm

(mT )3/2

Second order result Chao, Schaefer (2012), Schaefer (2014)
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relaxation time τπ = η/P



Experiments: Elliptic flow
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Determination of η(n, T )

Measurement of AR(t, E0) determines η(n, T ). But:

gas

heat current

viscous stress

n(x)

v(x)

xδΠ( )

transition regime

fluid The whole cloud is not a fluid.

Can we ignore this issue?

No. Hubble flow & low density

viscosity η ∼ T 3/2 lead to

paradoxical fluid dynamics.

Q̇ =

∫

σ · δΠ = ∞



Possible Solutions

Combine hydrodynamics & Boltzmann equation. Not straightforward.

Hydrodynamics + non-hydro degrees of freedom (Ea; a = x, y, z)

∂Ea
∂t

+ ~∇ · ~ ǫa = −∆Pa

2τ
∆Pa = Pa − P

∂E
∂t

+ ~∇ · ~ ǫ = 0 E =
∑

a

Ea

τ small: Fast relaxation to Navier-Stokes with τ = η/P

τ large: Additional conservation laws. Ballistic expansion.



Anisotropic hydro from kinetic theory

Consider modified expansion

f = fA + δf ′1 + δf ′2 + . . .

Anisotropic distribution function

fA = exp

(

− (pa −mua)
2

2mTa
− µ

T̄

)

T̄ = (
∏

Ta)
1/3

• fA is an exact solution of the Boltzmann equation in

the ballistic limit.

• The viscous stresses and dissipative corrections to

the energy current have the same form as in the

Chapman-Enskog theory.



Anisotropic Hydrodynamics from kinetic theory

Moments of the Boltzmann equation with Mp = {1, ~p, EP }.

Navier-Stokes with δΠaa = ∆Pa

Moments of the Boltzmann equation with p2a

∂Ea
∂t

+ ~∇ · ~ ǫa = −∆Pa

2τ
∆Pa = Pa − P

with Pa = 2Ea (P = 2
3E) and τ = η/P .

Solve fluid dynamic equations for small τ

δΠaa = ∆Pa = −ησaa

Ballistic limit τ → ∞: Conservation law for Ea.



Anisotropic Hydrodynamics: Aspect ratio
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Consider η = αn and α ∈ [0,∞)

Navier-Stokes: Ideal hydro → very viscous hydro.

A-hydro: Ideal hydro → ballistic expansion.

AVH1 hydro code, M. Bluhm & T.S. (2015)



Anisotropic Hydrodynamics: Evolution of δΠaa

η = αnn η = αT (mT )
3/2
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AVH1 hydro code, M. Bluhm & T.S. (2015)



Anisotropic Hydrodynamics: Comparison with Boltzmann

T/TF =

0.79, 1.11, 1.54

Dots: Two-body Boltzmann equation with full collision kernel

Lines: Anisotropic hydro with η fixed by Chapman-Enskog

High temperature (dilute) limit: Perfect agreement!

AVH1 hydro code, M. Bluhm & T.S. (2015)



Elliptic flow: High T limit

Quantum viscosity η = η0
(mT )3/2

~2

Cao et al., Science (2010)

Bluhm et al., PRL (2016)

T/TF =

0.79, 1.11, 1.54

fit: η0 = 0.28± 0.02

theory: η0 = 15
32

√
π
= 0.269



Outlook

Fluid dynamics as an E(F)T?

Unfold temperature, density dependence of η/s.

Applications to other transport problems: Diffu-

sion, superfluid hydrodynamics.


