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Abstract
Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory
shear viscosity is related to the rate of momentum transport by quasi-particles, and the
uncertainty relation suggests that the ratio of shear viscosity η to entropy density s in units of
h̄/kB is bounded by a constant. Here, h̄ is Planck’s constant and kB is Boltzmann’s constant.
A specific bound has been proposed on the basis of string theory where, for a large class of
theories, one can show that η/s � h̄/(4πkB). We will refer to a fluid that saturates the string
theory bound as a perfect fluid. In this review we summarize theoretical and experimental
information on the properties of the three main classes of quantum fluids that are known to
have values of η/s that are smaller than h̄/kB. These fluids are strongly coupled Bose fluids, in
particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma.
We discuss the main theoretical approaches to transport properties of these fluids: kinetic
theory, numerical simulations based on linear response theory and holographic dualities. We
also summarize the experimental situation, in particular with regard to the observation of
hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

A fluid is a material that can be described by the laws of
fluid dynamics. These laws imply that the response of a
fluid to slowly varying external perturbations is completely
governed by conservation laws. In the case of simple fluids,
such as water, the conserved quantities are mass, energy and
momentum.

The study of fluids is one of the oldest problems in
physics [1]. Understanding why certain materials make good
fluids, and others do not, has nevertheless remained a very
difficult question. The quality of a fluid can be characterized
by its shear viscosity η. Shear viscosity is defined in terms of
the friction force F per unit area A created by a shear flow with
transverse flow gradient ∇yvx :

F

A
= η ∇yvx. (1)

Viscosity causes dissipation which converts part of the kinetic
energy of the flow to heat. A good fluid is therefore
characterized by a small shear viscosity. Indeed, the inverse
of shear viscosity, ϕ = 1/η, is sometimes called fluidity.

The molecular theory of transport phenomena in dilute
gases goes back to Maxwell. Maxwell realized that shear
viscosity is related to momentum transport by individual
molecules. A simple estimate of the shear viscosity of a dilute
gas is

η = 1
3 nplmfp, (2)

where n is the density, p is the average momentum of the
molecules and lmfp is the mean free path. The mean free
path can be written as lmfp = 1/(nσ) where σ is a suitable
transport cross section. This implies that the shear viscosity
of a dilute gas grows with temperature (as p ∼ T 1/2) but is
approximately independent of density. This counterintuitive
result is confirmed by experiment, going back to experiments
carried out by Maxwell himself [2]. Equation (2) also shows
that the viscosity of an ideal gas is infinite, not zero. In order
to achieve thermal equilibrium we have to view the ideal gas as
the limit of an interacting system in which the scattering cross
section σ is taken to zero. In this limit the mean free path, and
with it the viscosity, goes to infinity.

At low temperatures gases condense into the liquid (or
solid) state. In a liquid transport is no longer governed by
the motion of individual molecules. A simple picture, due to
Frenkel, Eyring and others, is that momentum transport is due
to processes that involve the motion of vacancies [3]. These
processes can be viewed as thermally activated transitions in
which a molecule or a cluster moves from one local energy
minimum to another. The viscosity scales as [4, 5]

η � hneE/(kBT ), (3)

where E is the activation energy and h is Planck’s constant. We
note that the viscosity of a liquid has a very strong dependence
on temperature. We also observe that the overall scale involves
Planck’s constant. The appearance of h is related to Eyring’s
assumption that the collision time of the molecules is h/(kBT ),
the shortest timescale in a liquid. We will come back to this

assumption below. Equation (3) shows that the viscosity of
a liquid grows as the temperature is lowered. Together with
equation (2) this result implies that the viscosity of a typical
fluid has a minimum as a function of temperature, and that the
minimum is likely to occur in the vicinity of the liquid–gas
phase transition.

Experimental results show that the minimum value of
the viscosity of good fluids, like water, liquid helium and
liquid nitrogen, differs by many orders of magnitude, see
the data in table 1. The SI unit for viscosity is pascal
second (Pa s), the CGS unit is poise (P). Note that 1 Pa s =
10 P. Clearly, it is desirable to normalize the viscosity to a
suitable thermodynamic quantity in order to make more useful
comparisons. Equations (2) and (3) indicate that a suitable
ratio is provided by η/n. We note that the ratio of viscosity
over mass density ρ = mn is known as the kinematic viscosity
ν = η/ρ. The behavior of solutions of the Navier–Stokes
equation is governed by the Reynolds number

Re =
(

ρ

η

)
vL, (4)

which is the ratio of a property of the flow, its characteristic
velocity v multiplied by its characteristic length scale L, over
a property of the fluid, its kinematic viscosity. Good fluids
attain larger Reynolds numbers, and are more likely to exhibit
turbulent flow. Data for the ratio η/n are tabulated in table 1.
We observe that the ratiosη/n for good fluids are indeed similar
in magnitude.

A disadvantage of considering the ratio η/n is that it is
not possible to include relativistic fluids in the comparison.
In the case of a relativistic fluid the number of particles is not
conserved. As a consequence the quantity n is not well defined
in an interacting system. In a quark gluon plasma (QGP),
for example, only the net number of quarks (the number of
quarks minus the number of anti-quarks) is well defined, but the
number of quarks or the number of gluons is not. In section 3.1
we will show that the Reynolds number of a relativistic fluid
is defined in terms of the ratio η/(sT ), where s is the entropy
density and T is the temperature. This indicates that we should
consider the ratio η/s instead of η/n. We note that this ratio is
well defined in both the relativistic and non-relativistic limit,
and that s ∼ nkB for many fluids. For example, in a non-
interacting relativistic Bose gas s/n � 3.6 kB, and for non-
interacting fermions s/n � 4.2 kB. In a weakly interacting
non-relativistic gas s/n � kB up to logarithms of gn/(mT )3/2,
where g is the degeneracy factor. Data for η/s in units of h̄/kB

are also given in table 1.
We observe that good fluids are characterized by η/s ∼

h̄/kB. This value is consistent with simple theoretical
estimates. Consider the kinetic theory estimate in equation (2).
In the strong coupling limit the mean free path becomes very
small, but the uncertainty relation suggests that plmfp � h̄ [9].
For a rough estimate we may use the relation s � 3.6kBn and
conclude that η/s � h̄/(10.8 kB). A bound on η/s is also
indicated by the high temperature limit of Eyring’s formula,
equation (3). We note, however, that kinetic theory is not
reliable in the regime η/s ∼ h̄/kB, and other methods are
needed to determine the minimum value of η/s.
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Table 1. Viscosity η, viscosity over density and viscosity over entropy density ratio for several fluids. Data for water and helium taken
from [6, 7] and [8], data for Li and the quark gluon plasma (QGP) will be explained in section 5. For water and helium we show data at
atmospheric pressure and temperatures just below the boiling point and the λ transition, respectively. These data points roughly correspond
to the minimum of η/n at atmospheric pressure. We also show data near the tri-critical point which roughly corresponds to the global
minimum of η/s. Note that the QGP does not have a well-defined density.

Fluid P (Pa) T (K) η (Pa s) η/n (h̄) η/s (h̄/kB)

H2O 0.1 × 106 370 2.9 × 10−4 85 8.2
4He 0.1 × 106 2.0 1.2 × 10−6 0.5 1.9
H2O 22.6 × 106 650 6.0 × 10−5 32 2.0
4He 0.22 × 106 5.1 1.7 × 10−6 1.7 0.7
6Li (a = ∞) 12 × 10−9 23 × 10−6 �1.7 × 10−15 �1 �0.5
QGP 88 × 1033 2 × 1012 �5 × 1011 �0.4

A precise value of the viscosity bound was proposed based
on results from string theory. Kovtun et al conjectured that [10]

η

s
� h̄

4πkB
, (5)

for all fluids. We will call a fluid that saturates the bound (5) a
‘perfect fluid’. A perfect fluid dissipates the smallest possible
amount of energy, and satisfies the laws of fluid dynamics in
the largest possible domain. In a typical fluid, hydrodynamics
is an effective description of long wavelength fluctuations, but
in a perfect fluid hydrodynamics is reliable at distances as short
as the inter-particle spacing.

The viscosity bound conjecture raises a number of
interesting questions:

• Is the conjecture in equation (5) correct? Does this
bound, or some other bound on η/s, follow from the
general principles of quantum mechanics and statistical
mechanics?

• Is there a ‘perfect fluid’ in nature, i.e. can we observe a
fluid that attains the value η/s = h̄/(4πkB)? If yes, what
are the characteristics of such a fluid? Is it possible to
describe the fluid in terms of quasi-particles?

• How is η/s correlated with other transport properties, such
as bulk viscosity, diffusion constants and conductivities?
Are there bounds on other transport properties?

We will not be able to provide definitive answers to these
questions in this review. There are, however, a number of
recent results, from both theory and experiment, that shed light
on these issues:

• The experimental realization of new classes of quantum
fluids. Prior to 1995 the only bulk quantum fluids that
could be studied in the laboratory were the two isotopes
of liquid helium, 4He and 3He. In 1995 several groups
achieved quantum degeneracy in dilute atomic Bose gases.
In 1999 experimentalists also succeeded in producing
degenerate atomic Fermi gases [11, 12]. Using Feshbach
resonances it is possible to experimentally control the
interaction between the atoms, and to study equilibrium
and transport properties as a function of the interaction
strength.

• The experimental discovery of almost ideal hydrodynamic
flow in a completely different physical system, the QGP
created in heavy ion collisions at the Relativistic Heavy

Ion Collider (RHIC) at Brookhaven National Laboratory
[13–15]. The QGP also exhibits a large energy loss for
high energy colored particles, and a very small heavy
quark diffusion constant.

• Progress in non-equilibrium field theory culminated in
the calculation of transport coefficients of weakly coupled
gauge theory plasmas [16–18]. These results complete the
program of using kinetic theory to calculate the transport
properties of the three main classes of quantum liquids:
Bose gases, Fermi gases and gauge theory plasmas.

• The theoretical discovery of a completely new method
for computing the transport properties of very strongly
coupled fluids [19]. This method is based on the
holographic duality between certain strongly coupled field
theories in d = 4 space–time dimensions and weakly
coupled string theory in d = 10 [20]. For gauge theories
that have a weakly coupled string dual the shear viscosity
to entropy density ratio at infinite coupling is η/s =
h̄/(4πkB). It was also shown that the first correction to
this result at finite but large coupling increases η/s [21],
and it was conjectured that η/s = h̄/(4πkB) is a universal
lower bound [10].

It is the goal of this review to summarize these recent
developments. For this purpose we shall concentrate on three
representative fluids: 4He, a strongly coupled Bose fluid;
atomic Fermi gases near a Feshbach resonance, which are the
most strongly coupled Fermi liquids; and the QGP near the
critical temperature for condensation into hadron gas, which
is a very strongly coupled plasma. The review is structured
as follows: in section 2 we discuss the thermodynamics of
these quantum fluids. In section 3 we review theoretical
approaches to transport properties. We briefly summarize the
hydrodynamic description of relativistic and non-relativistic
fluids, as well as superfluids in sections 3.1–3.3. A general
connection between transport coefficients and the underlying
field theory is provided by Kubo relations, which we introduce
in section 3.4. In section 3.5 we concentrate on fluids that can
be described in terms of weakly coupled quasi-particles. In this
case transport properties can be computed using kinetic theory.
In section 4 we summarize results for transport coefficients that
have been obtained using holographic dualities. Finally, in
section 5 we discuss experimental results for the viscosity and
other transport properties of strongly coupled quantum fluids.

Needless to say, a review of this size cannot adequately
summarize all the work that has been done on the transport
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properties of quantum fluids. A standard reference on the
properties of liquid helium is [8], recent reviews on strongly
coupled Fermi gases are [22, 23] and the physics of the strongly
coupled QGP is discussed in [24]. The kinetic theory of dilute
Bose and Fermi gases is covered in textbooks, see [25, 26],
and the kinetic theory of gauge fields was reviewed in [27].
Reviews of the AdS/CFT correspondence with an emphasis
on transport theory are [28, 29], and reviews of relativistic
hydrodynamics can be found in [30–32].

2. Strongly coupled quantum fluids

In this section we will discuss equilibrium properties of
strongly interacting quantum fluids. We will specify the
effective action for bosonic, fermionic and gauge theory fluids,
identify the relevant physical scales and discuss the nature of
low energy excitations.

2.1. Bose fluids: dilute Bose gases

A gas of atoms satisfying Bose statistics can be described in
terms of a scalar field ψ(x, t) governed by the Hamiltonian

H =
∫

d3x ψ∗(x, t)

(
− h̄2∇2

2m

)
ψ(x, t)

+
1

2

∫
d3x1

∫
d3x2 ψ∗(x1, t)ψ(x1, t)V (x1 − x2)

×ψ∗(x2, t)ψ(x2, t), (6)

where m is the mass of the boson and V (x) is a potential.
The Hamiltonian is invariant with respect to translations and
rotations, as well as under the U(1) symmetry ψ → exp(iα)ψ .
Symmetries correspond to conservation laws. Translations
and rotations correspond to the conservation of linear and
angular momentum, and the U(1) symmetry is associated with
the conservation of the number of atoms. The Schrödinger
equation is also invariant under Galilean transformations x →
x − vt which act on the field as ψ(x, t) → exp(imv · x −
i
2mv2t)ψ(x−vt, t). This symmetry will play a role when we
consider the motion of fluids.

If the typical momenta are small compared with 1/r0,
where r0 is the range of the potential, we can approximate
the interaction by a contact term. For very small momenta the
leading contribution is an s-wave interaction:

V (x1 − x2) = C0δ(x1 − x2), (7)

where C0 can be related to the scattering length a, C0 =
4πh̄2a)/m. In order to make connections with the physics
of relativistic fluids it is also useful to introduce the lagrangian
L = ih̄ψ∂0ψ − H, where H is the Hamiltonian density. The
lagrangian is

L = ψ†

(
ih̄∂0 +

h̄2∇2

2m

)
ψ − C0

2

(
ψ†ψ

)2
. (8)

In the following we shall consider many-body systems
described by this lagrangian. We first study the relevant scales
in a weakly interacting Bose gas governed by the s-wave

scattering length. At high temperatures the Bose gas is a
classical Boltzmann gas. The average energy of the atoms is
3
2kBT and the average momenta are of order (mkBT )1/2. The
importance of quantum statistics is governed by the parameter
nvQ, where n is the density, vQ = λ3 is the quantum volume and

λ = 2πh̄√
2πmkBT

(9)

is the thermal wave length. Quantum statistics becomes
important for nvQ ∼ 1, and Bose condensation in an ideal gas
occurs at nvQ = 2.61, corresponding to a critical temperature

Tc = 2πh̄2

mkB

(
n

ζ(3/2)

)2/3

. (10)

The effects of a non-zero scattering length can be taken into
account order by order in an expansion in an1/3. At high
temperatures this is the standard virial expansion:

P = nkBT
{
1 + b2n + O(n2)

}
, (11)

where P is the pressure and b2 is the second virial coefficient.
In the limit of small a the second virial coefficient of a single
component Bose gas is given by [33]

b2 = − 1

4
√

2
λ3 + 2aλ2 , (12)

where the first term is due to quantum statistics and the second
term is related to the interaction. The second virial coefficient
is finite in the limit of a large scattering length. As a → ∞ the
interaction part approaches −√

2λ3, and the role of interactions
is governed by the same parameter that controls the effects of
quantum statistics.

The interaction also shifts the critical temperature for Bose
condensation. The calculation of this shift is a non-perturbative
problem, even if the scattering length is small. This is related
to the fact that fluctuations become large in the vicinity of a
second order phase transition, and perturbation theory breaks
down. One can show that δTc ∼ an1/3Tc, and there is a
physical argument that a repulsive scattering length (a > 0)
increases the value of Tc [34]. A numerical calculation using
the Landau–Ginzburg effective lagrangian gives [35]

Tc = (1.32 ± 0.02)an1/3Tc. (13)

Dilute Bose gases in which the scattering length is attractive
are not stable, but it is possible to create metastable systems
confined by external fields. Weak repulsive interactions
increase the transition temperature but suppress the condensate
fraction. If an1/3 is large then the Bose fluid will typically
solidify, but the phase structure and critical density depend
on details of the interaction. A hard sphere gas freezes at
an1/3 � 0.24 [36].

An issue which is very important for transport properties
is the nature of the quasi-particle excitations. At high
temperatures the cross section for binary scattering between
the atoms decreases with the thermal wavelength, σ ∼ λ2 ∼
1/(mT ), and the mean free path lmfp ∼ 1/(nσ) is large.
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As a consequence the atoms are good quasi-particles. At
very low temperatures the system is superfluid and there is
a Goldstone boson, the phonon, related to the breaking of the
U(1) phase symmetry. Phonons are derivatively coupled and
the interaction at low energy is weak. This implies that the
mean free path at low temperatures, T � Tc, is also large. The
phonon dispersion relation in a weakly non-ideal (na3 < 1)
Bose gas was first computed by Bogoliubov. The result is

εp = 1

2m

√(
p2 + 8πan

)2 − (8πan)2. (14)

For small momenta the dispersion relation is linear, εp � csp,
and the phonon velocity is given by cs = √

4πan/m.

2.2. Bose fluids: liquid helium

A simple s-wave interaction is sufficient for understanding the
properties of trapped atomic Bose gases, but more accurate
potentials are required for even a qualitative description of
liquid 4He. Accurate 4He potentials can be written as the sum
of a short range term and a long range van der Waals potential:

V (r) = Vsr(r) − C6

r6
. (15)

The coefficient C6 defines the van der Waals length scale
lVdW = (mC6/h̄

2)1/4. Accurate parametrizations of Vsr can be
found [37, 38]. These potentials have a van der Waals length
lVdW � 10.2a0, an effective range r � 14a0 and a very large
scattering length a � 189a0, where a0 = 0.529 Å is the Bohr
radius. The large s-wave scattering length is related to the
existence of a very weakly bound 4He dimer. The binding
energy of the dimer is B = −1.1 × 10−7 eV. There are many
interesting universal effects governed by the large scattering
length [39]. The density of liquid 4He is too large for these
phenomena to be important, but universal effects have been
observed in dilute atomic gases in which the scattering length
is large.

In the case of 4He the interaction between the atoms is not
weak, and it cannot be characterized in terms of the scattering
length only. In the high temperature limit 4He is a classical gas,
and corrections to the ideal gas behavior are described by the
virial expansion. The virial expansion provides a very accurate
description of the equation of state at normal pressure for
temperatures above 10 K. At temperatures below 10 K one has
to rely on quantum Monte Carlo (QMC) methods or variational
many-body wave functions [40]. At atmospheric pressure 4He
liquefies at 4.22 K, and it becomes superfluid at Tc = 2.17 K.
This temperature can be compared to the critical temperature
for Bose condensation of an ideal gas with the density of
liquid helium, n = 1/(3.6 Å)3, which is T 0

c = 3.1 K. The
dependence of Tc on the density in the case of a hard sphere gas
was studied by Grüter et al [41]. Helium is well described by an
effective hard sphere parameter a = 2.20 Å. Grüter et al show
that for na3 � 0.1 the critical temperature is larger than that
of a non-interacting gas, in agreement with equation (13). The
increase in Tc is small, reaching about 6%. For larger values of
na3 the critical temperature drops rapidly, until freezing occurs
at na3 ∼ 0.25.

The presence of strong interactions also manifests itself
in a small condensate fraction. Glyde et al measured the
number of condensed atoms N0(T ) using neutron scattering
on liquid 4He at saturated vapor pressure [42]. They find
N0(T )/N = f (1 − (T /Tc)

γ with f � (7.25 ± 0.75) × 10−2

and γ = 5.5±1. The superfluid transition is in the universality
class of the three-dimensional O(2) model. Renormalization
group arguments predict a mild non-analyticity in the specific
heat, cv ∼ t−α with t = (T −Tc)/Tc andα = −0.0151(3) [43].
This prediction agrees reasonably well with micro gravity
experiments which find α = −0.01285(4) [44].

The excitation spectrum of superfluid 4He shows
important differences as compared with the spectrum of a
dilute Bose condensed gas. As expected, at small momenta
the excitations are phonons with a linear dispersion relation
ε(p) = csp, where the speed of sound at normal pressure is
cs = 238 m s−1. At larger momenta the dispersion relation has
a second minimum, called the roton minimum. The dispersion
relation in the vicinity of the minimum is

ε(p) =  +
(p − p0)

2

2m∗ , (16)

where /kB = 8.7 K, m∗ = 0.14 m and p0/h̄ = 1.9 Å−1.
The roton plays a significant role in determining the specific
heat and transport properties near the critical temperature.
The existence of the roton is closely related to strong short
range correlations in liquid helium. These correlations can be
quantified in terms of the static structure factor S(q), which is
the Fourier transform of the density correlation function

S(q) = 1

ρ

∫
d3x e−iq·x [〈ρ(0)ρ(x)〉 − 〈ρ(0)〉2

]
. (17)

The static structure factor vanishes linearly in q for small
momenta, and approaches a constant value for large q. S(q)

has a sharp maximum at intermediate values of q, which
reflects the presence of correlations at the scale of the typical
inter-atomic distance. Feynman proposed a variational wave
function for excitations in liquid helium which gives ε(q) =
q2/(2mS(q)) [45]. This relation can also be derived from
an effective hydrodynamic Hamiltonian, see [25]. Feynman’s
result reproduces both the phonon dispersion relation at low
momentum, and the roton minimum at larger momentum.
In order to study the kinetics of liquid helium one has to
understand the scattering of phonons and rotons. The phonon–
phonon and phonon–roton interaction is determined by the
equation of state and by constraints from Galilean invariance
and U(1) symmetry [25]. We will discuss these constraints in
more detail in the next section, in connection with superfluid
Fermi gases.

2.3. Fermi liquids: the dilute Fermi gas at unitarity

In this section we consider non-relativistic Fermi liquids.
Fermionic systems are interesting because it is possible to make
strongly correlated liquids with only zero range interactions.
The Fermi liquid is described by the same lagrangian as in
equation (8)

L = ψ†

(
i∂0 +

∇2

2m

)
ψ − C0

2

(
ψ†ψ

)2
, (18)
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where ψ is now a two-component fermion field with mass m.
The coupling constants C0 is related to the scattering length by
the same relation as in the bosonic case, C0 = (4πh̄2a)/m.

Over the last 10 years there has been truly remarkable
progress in the study of cold, dilute gases of fermionic
atoms in which the scattering length a of the atoms can be
controlled experimentally. These systems can be realized
in the laboratory using Feshbach resonances, see [46] for a
review. A small negative scattering length corresponds to a
weak attractive interaction between the atoms. This regime is
known as the Bardeen–Cooper–Schrieffer (BCS) limit. As the
strength of the attractive interaction increases the scattering
length becomes larger. It diverges at the point where a two-
body bound state is formed. The point a = ∞ is called the
unitarity limit, because the scattering cross section saturates
the s-wave unitarity bound σ = 4π/k2. On the other side
of the resonance the scattering length is positive. For large
positive values of a the two-body binding energy is related to
the scattering length by B = h̄2/(ma2). The regime in which
the binding energy becomes large is called the Bose–Einstein
condensation (BEC) limit.

We now consider properties of the many-body system
as a function of the s-wave scattering lengths. In the high
temperature limit the equation of state is again that of an
ideal gas, and the leading correction is described by the virial
expansion. For small a the second virial coefficient is

b2 = 1

8
√

2
λ3 +

1

2
aλ2. (19)

In the limit a → ∞ the interaction term goes to −λ3/(2
√

2).
The Fermi gas becomes degenerate as nλ3 ∼ 1. In the limit
in which the scattering length is large the Fermi gas becomes
strongly interacting at the same temperature at which quantum
effects become important.

At low temperatures and in the BCS limit, a < 0 and
n1/3|a| < 1, the Fermi gas can be described as a Landau–
Fermi liquid. The excitations are weakly interacting particles
and holes which carry the quantum numbers of the elementary
fermions. At very low temperatures the particle–particle
interaction near the Fermi surface becomes large, and the Fermi
liquid undergoes a phase transition to a BCS superfluid. The
transition temperature is [47]

Tc = 8eγ EF

(4e)1/3e2π
exp

(
− π

2kF|a|
)

, (20)

where γ is the Euler constant. The Fermi momentum kF is
defined by the relation

n = k3
F

3π2
, (21)

and EF = k2
F/(2m) is the Fermi energy. This relation defines a

‘Fermi momentum’ even in the case that no sharp Fermi surface
exists. Note that TF ≡ EF is the degeneracy temperature (we
have set kB = 1). Also note that n1/3|a| < 1 implies Tc � TF.

In the Bose–Einstein limit the fermions form tightly bound
molecules. The residual interaction between the molecules
is repulsive, and the many-body system behaves as a weakly

non-ideal Bose gas. The Bose gas condenses at the critical
temperature given in equation (10). Using the fact that the
mass of molecules is 2m, and that their density is n/2, we get

Tc = 0.21EF. (22)

Variational calculations suggest that at zero temperature the
evolution from weak to strong coupling is smooth [48].
The system is a pair condensate for all values of the coupling,
but the size of the pairs evolves from being much smaller
than the inter-particle spacing in the BEC limit to being much
larger in the BCS limit. This idea is confirmed by QMC
calculations [49] and experimental observations [50].

Of particular interest is the crossover (‘unitarity’) regime
where a → ∞. The Fermi gas at unitarity possesses a
number of interesting properties. First of all, the system
is scale invariant [51, 52]. This implies, for example, that
all energy scales in the many-body system, such as the
critical temperature, the gap and the chemical potential, are
proportional to the Fermi energy:

Tc = αEF,  = βEF, µ = ξEF. (23)

Similarly, all length scales are given by numerical constants
times the inverse Fermi momentum. The values of the
universal constants α, β, ξ, . . . can be determined using QMC
calculations, or from experiments on harmonically trapped
fermions. QMC calculations performed by Burovski et al
give Tc = 0.152(7)EF [53], and Carlson et al obtained
 = 0.50(3)EF [54] and µ = 0.44(1)EF [55]. A summary
of experimental results was recently given by Luo and
Thomas [56].

Second, the unitarity regime is the most strongly
correlated simple many-body system. The crossover regime is
continuously connected to both the non-interacting Fermi gas
and the non-interacting Bose gas, but neither limit provides
a quantitatively accurate description. Very important for the
purpose of this review is the observation of hydrodynamic
behavior and low viscosity in very dilute Fermi gases in the
unitarity limit.

In order to study the kinetic description of a dilute Fermi
gas at unitarity we have to determine the nature of the quasi-
particles and their interaction. In the high temperature limit the
excitations are elementary fermions, even in the limit a → ∞.
This is related to the fact that the average cross section is of
order λ2, where λ ∼ T −1/2 is the thermal wave length. In the
low temperature superfluid phase the dominant excitation is
the phonon. The dispersion relation is

εp = csp, cs =
√

ξ

3
vF, (24)

where vF = kF/m is the Fermi velocity and ξ is the
universal parameter defined in equation (23). Corrections to
equation (24) are of the order p2/(mµ) [57], and become large
when p ∼ kF. The dispersion relation for momenta near kF

is not well constrained. The static structure factor has been
measured in QMC simulations, and it does not show a liquid-
like peak [58]. This suggests that the dispersion relation does
not have a roton minimum.
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The three- and four-phonon interaction is completely fixed
by the equation of state and symmetry constraints. These
constraints are most easily derived from an effective lagrangian
for the phonon field. The phonon field is defined as the phase
of the order parameter

〈ψψ〉 = |〈ψψ〉|e2iϕ. (25)

We now construct the most general lagrangian for the field ϕ

which is consistent with Galilei invariance and U(1) symmetry.
A U(1) transformation changes the phase of the wave function
and acts as a shift on the phonon field, ϕ → ϕ + α. Invariance
under the U(1) symmetry requires that the lagrangian only
contains derivatives of ϕ. The phase symmetry can be extended
to time-dependent transformations ψ → exp(iα(t))ψ if the
chemical potential transforms as µ → µ + h̄∂0α. This is a
symmetry of the effective lagrangian if the chemical potential
always appears in the combination µ + h̄∂0ϕ. Finally, under a
Galilei transformation with velocity v the phonon transforms
as ϕ(x, t) → ϕ(x − vt) − mv · x + O(v2). This implies
that time derivatives of ϕ have to be accompanied by spatial
derivatives of ϕ. At leading order in derivatives of ϕ we can
incorporate these symmetries by constructing a lagrangian that
only depends on the variable

X = µ − h̄∂0ϕ − (h̄∇ϕ)2

2m
. (26)

The functional form of the lagrangian L(X) is fixed by the
observation that for a constant phonon field the lagrangian
reduces to a function of µ. Since differentiating the lagrangian
with respect to the chemical potential gives the density this
function must be the pressure P(µ). We conclude that

L = P(X) = 25/2m3/2

15π2ξ 3/2

(
µ − h̄∂0ϕ − (h̄∇ϕ)2

2m

)5/2

, (27)

where we have used the fact that, up to a numerical factor, the
pressure of the interacting system is equal to that of a free gas.
We have also used the fact that this factor can be related to the
ratio ξ = µ/EF. Phonons are low energy excitations and we
can expand equation (27) in powers of ∂0ϕ and ∇iϕ. We find

L = 1
2 (∂0φ)2 − 1

2c2
s (∇φ)2 − α

[
(∂0φ)3 − 9c2

s ∂0φ (∇φ)2
]

− 3
2α2

[
(∂0φ)4 + 18c2

s (∂0φ)2 (∇φ)2 − 27c4
s (∇φ)4

]
+ · · · ,

(28)

where we have rescaled the field ϕ = const × φ to make
it canonically normalized. We have also defined α =
πc

3/2
s ξ 3/4/(31/48µ2). We observe that the three- and four-

phonon vertices are completely fixed by the speed of sound cs.
This implies that there are no free parameters that enter into
the kinetic theory of phonons. We also note that equation (27)
generates phonon self-interactions to arbitrary order in the
phonon field, but to leading order in the number of derivatives.
Terms involving higher derivatives of ϕ were constructed in
[52]. These terms involve non-trivial constraints from not just
scale invariance, but from the full conformal symmetry of the
Fermi gas at unitarity.

About units. Up to this point, we have explicitly displayed
factors of h̄, c and kB. From now on we will work in natural
units and set h̄ = kB = c = 1.

2.4. Gauge theories: Quantumchromodynamics (QCD)

QCD is governed by the lagrangian

L = −1

4
Ga

µνG
a
µν +

Nf∑
f

ψ̄f (iD/ − mf )ψf , (29)

where ψf is a Dirac fermion with flavor index f and mf is the
quark mass. We have suppressed the color (A = 1, . . . , Nc)
and spinor (α = 1, . . . , 4) indices of the fermion fields. The
covariant derivative acting on the quark fields is

iD/ ψ = γ µ

(
i∂µ + gAa

µ

λa

2

)
ψ, (30)

where Aa
µ is a gauge potential and λa (a = 1, . . . , N2

c − 1) are
the Gell–Mann matrices. The field strength tensor is defined by

Ga
µν = ∂µAa

ν − ∂νA
a
µ + gf abcAb

µAc
ν, (31)

where f abc are the SU(Nc) structure constants and g is a
coupling constant. In the standard model Nc = 3 and Nf = 6,
but three out of the six flavors are too heavy to play much of a
role in the dynamics of QCD, and we shall mostly concentrate
on Nf = 3 flavors. The total quark density

ρq =
∑
f

ψ
†
f ψf (32)

is conserved and we can introduce a chemical potential µ

coupled to ρq. The phase structure and transport properties
of QCD at finite µ are an interesting subject [59], but in this
review we will concentrate on QCD at non-zero temperatures
and zero or very small chemical potentials. It is interesting
to note that at low quark densities the relevant degrees of
freedom are protons and neutrons. In the low energy limit
the interaction between neutrons and protons is governed by
an effective lagrangian of the type given in equation (18). The
scattering length is a function of the quark masses, and it is
theoretically possible to tune the light quark masses to a point
where the neutron–neutron scattering length diverges. The real
world is close to this point, as the experimental value of the
scattering is ann � −17 fm is much larger than typical QCD
scales. This implies that there is a point in the QCD phase
diagram where the long distance physics is equivalent to that
of a dilute atomic Fermi gas at unitarity.

For many purposes we can consider the first three flavors
(up, down and strange) to be approximately massless. In
this limit the QCD lagrangian contains a single dimensionless
parameter, the coupling constant g. If quantum effects are
taken into account the coupling becomes scale dependent. At
leading order the running coupling constant is

g2(q) = 16π2

b0 log(q2/�2
QCD)

, b0 = 11

3
Nc − 2

3
Nf . (33)
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This result implies that as a quantum theory, QCD is
not characterized by a dimensionless coupling, but by a
dimensionful scale, the QCD scale parameter �QCD. This
phenomenon is called dimensional transmutation. We
also observe that the coupling decreases with increasing
momentum. This is the phenomenon of asymptotic freedom.

At high temperatures the dominant momenta are on the
order of T , and for T � �QCD asymptotic freedom implies
that bulk thermodynamics is governed by weak coupling. The
weak coupling expansion of the equation of state is

P = T 4
{
c0 + c2g

2 + c3g
3 + (c′

4 log(g) + c4)g
4 + · · ·} , (34)

where the first term is the Stefan–Boltzmann law and

c0 = π2

90

(
2
(
N2

c − 1
)

+ 4NcNf
7

8

)
(35)

depends on the number of degrees of freedom (2(N2
c − 1)

gluons and 4NcNf quarks). We note that in a theory of massless
particles the equation of state is always sensitive to quantum
statistics, even if the temperature is high. The first correction
is [60]

c2 = −N2
c − 1

144

(
Nc +

5

4
Nf

)
. (36)

The perturbative expansion in equation (34) is evaluated with
g taken to be the running coupling constant evaluated at a
scale q ∼ T . The precise scale is not uniquely determined—
changing the scale corresponds to reshuffling higher order
corrections in the perturbative expansion. The scale is usually
chosen to improve the apparent rate of convergence. This
criterion gives a value close to 2πT .

We note that the perturbative expansion is not a power
series in the fine structure constant αs = g2/(4π). The
expansion contains square roots and logarithms of αs. Non-
analytic terms in the expansion are related to infrared sensitive
diagrams. For example, the g3 term in equation (34) is due to
ring diagrams (also called the plasmon term). Ring diagrams
are one-loop gluon diagrams in which the leading order gluon
self-energy has been summed to all orders. We also note that
the weak coupling expansion cannot be extended to arbitrarily
high powers in g. At O(g6) one encounters infrared divergent
diagrams which can only be summed non-perturbatively, by
computing the partition function of three-dimensional QCD at
zero temperature.

In order to analyze the relevant scales in high temperature
QCD in more detail we consider the current–current interaction

M = ja
µ�ab

µνj
b
ν , (37)

where ja
µ is a color current and �ab

µν
is the gluon polarization

function. The tensor structure of the gluon polarization
function can be decomposed into a transverse and a
longitudinal part:

�µν(q) = �T(q)P T
µν + �L(q)P L

µν

P T
ij = δij − q̂i q̂j , P T

00 = P T
0i = 0,

P L
µν = −gµν +

qµqν

q2
− P T

µν.

(38)

We will consider the polarization function in the limit of weak
coupling (g < 1), and for ω � q � T , where ω, q are the
energy and momentum transfer. We find

�ab L(q) = δab

q2 + m2
D

, (39)

�ab T(q) = δab

q2 − i π
4 m2

D
ω
|q|

, (40)

where

m2
D = g2T 2

(
1 +

Nf

6

)
(41)

is called the Debye mass. The longitudinal term governs
the color-Coulomb interaction between static charges. We
observe that the Coulomb interaction is screened at distances
r ∼ m−1

D ∼ 1/(gT ). In perturbation theory the static magnetic
interaction is unscreened [16], but non-static magnetic
interactions are dynamically screened at a distance r ∼
(m2

Dω)−1/3. This phenomenon, known as Landau damping,
is due to the coupling of gluons to particle–hole (or particle–
antiparticle) pairs, and also play a role in electromagnetic
plasmas. Unlike classical plasmas the QCD plasma has a
non-perturbative static magnetic screening mass mM ∼ g2T .
This is the scale that determines the non-perturbative g6 term
in the pressure. Modes below the magnetic screening scale
contribute

P ∼ T

∫ mM

d3k ∼ g6T 4. (42)

The gluon polarization tensor also determines the propagation
of gluonic modes. For this purpose we need the full energy
and momentum dependence of �T,L, see [61]. For momenta
q � gT there are two transverse modes with dispersion
relation ω � q. For momenta q < gT there are two
transverse and one longitudinal mode. The longitudinal mode
is sometimes called the plasmon. The energy of all three modes
approaches ω = ωp = mD/

√
3 as q → 0. The quantity ωp

is known as the plasma frequency. The gluon (and plasmon)
decay constant in the limit q → 0 is [62]

γ = 6.64
g2NcT

24π
. (43)

An important issue is how small the coupling has to be in
order for the perturbative estimates to be applicable. The
convergence properties of the weak coupling expansion for
the pressure are extremely poor. The series shows no signs of
converging unless the coupling is taken to be much smaller
than one, g � 1, corresponding to completely unrealistic
temperatures on the order of 1 TeV. The problem is mostly due
to the non-analytic terms in the expansion, and convergence
can be improved significantly by considering resummation
schemes or self-consistent quasi-particle expansions [63].
Convergence can also be improved by using a hierarchy of
effective field theories for the hard (p ∼ T ), electric (p ∼ gT )
and magnetic (p ∼ g2T ) sectors of the QCD plasma [64].
Ordinary perturbation theory corresponds to treating the hard
and the electric sector perturbatively, but convergence can be

8
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improved by treating both the electric and the magnetic sector
non-perturbatively [65].

Despite these advances accurate results at temperatures
that can be reached in heavy ion collisions at RHIC have to rely
on numerical simulations of the QCD partition function on a
space–time lattice, see [66] for a review. Lattice simulations
with realistic quark masses find a phase transition at the critical
temperature Tc = 192(8) MeV [67]. The transition is a
rapid (but smooth) crossover from a low temperature phase
that exhibits chiral symmetry breaking and confinement to
a chirally restored and deconfined high temperature phase4.
The energy density reaches about 85% of the ideal gas value
at T � 2Tc and then evolves very slowly toward the non-
interacting limit.

Below the critical temperature the degrees of freedom
are hadrons. The lightest hadrons are pions, which are the
Goldstone bosons associated with the spontaneous breaking
of the chiral symmetry of the QCD lagrangian. We can view
pions as a spin–isospin sound wave that propagates in the QCD
vacuum. Because quarks are not massless the chiral symmetry
is not exact, and pions have non-zero masses. The masses
of the charged and neutral pions are mπ± = 139 MeV and
mπ0 = 135 MeV. The lightest particle which is not a type of
sound wave is the rho meson, with a mass of 770 MeV. The
chiral symmetry constrains the pion scattering amplitudes. As
in the case of phonons, these constraints are obtained most
easily from the low energy effective chiral lagrangian. At
leading order we have

L = f 2
π

4
Tr
[
∂µ�∂µ�†

]
+
[
B Tr(M�†) + h.c.

]
+ · · · , (44)

where � = exp(iφaλa/fπ) (a = 1, . . . , 8) is the chiral field,
fπ = 93 MeV is the pion decay constant, B is proportional to
the quark condensate, and M = diag(mu, md, ms) is the mass
matrix. We note that fπ can be viewed as the stiffness of the
QCD vacuum:

f 2
π = 2mq

m2
π

∂Pvac

∂mq
, (45)

where Pvac � 0.5 GeV fm−3 is the vacuum pressure and
mq = (mu + md)/2. This result follows from the Gell–Mann–
Oakes–Renner relation m2

πf 2
π = (mu +md)〈ψ̄ψ〉 together with

(∂Pvac)/(∂m) = 〈ψ̄ψ〉. An expansion of � in powers of the
field φa determines the interaction between pions. Restricting
ourselves to the SU(2) flavor sector (pions only) we get

L = 1

2
(∂µφa)2 − 1

2
m2

π (φa)2

+
1

6f 2
π

[
(φa∂µφa)2 − (φa)2(∂µφb)2

]
+ · · · , (46)

where φa (a = 1, 2, 3) is the pion field. This result is clearly
analogous to the phonon interaction in equation (28). There
are, however, some minor differences. Because of parity and
isospin symmetry there are no vertices with an odd number
of pions. We also note that the leading four-pion interaction
has two derivatives, while the four-phonon term involves four
derivatives.
4 This issue is not completely settled. Aoki et al find distinct crossover
transitions at significantly lower temperatures, Tχ = 151 MeV for chiral
symmetry restoration, and Tdec = 175 MeV for deconfinement [68].

2.5. Gauge theories: super-conformal QCD

QCD is a complicated theory, and a significant amount of
effort has been devoted to the study of generalizations of
QCD that possess a larger amount of symmetry, in particular
supersymmetry. Supersymmetry is a symmetry that relates
bosonic and fermionic fields. The simplest supersymmetric
cousin of QCD is SUSY gluodynamics, a theory of gluons and
massless fermions in the adjoint representation of the color
group called gluinos. Theories with more supersymmetry
involve extra fermions and colored scalar fields. The most
supersymmetric extension of QCD is a theory with four
supersymmetries, called N = 4 SUSY QCD. Theories with
even more supersymmetry contain fields with spin 3/2 and 2,
and therefore involve gravitational interactions. These theories
are known as supergravity.

The lagrangian of N = 4 SUSY QCD is

L = − 1
4Ga

µνG
a
µν − iλ̄a

i σ
µDµλa

i + Dµφ
† a
ij Dµφa

ij + Lλλφ + Lφ4 ,

(47)
where Ga

µν is the usual field strength tensor, λa
i is the gluino

field and φa
ij is a colored Higgs field. The gluino is a two-

component (Weyl) fermion in the adjoint representation of the
color group. The index i (i = 1, . . . , 4) transforms in the
fundamental representation of a global SU(4)R ‘R-symmetry’.
This symmetry interchanges the bosons and fermions that
are related by the four supersymmetries, and is analogous to
the flavor symmetry of QCD. The Higgs is a scalar field in
the adjoint representation of color, and in an anti-symmetric
tensor (six dimensional) of SU(4)R . Note that the total
number of fermionic fields, 8(N2

c − 1), is indeed equal to the
number of bosonic fields. We have not explicitly displayed the
Yukawa couplings Lλλφ and Higgs self-couplings Lφ4 , see [69].
Both interaction terms only involve the dimensionless gauge
coupling g.

N = 4 SUSY QCD has a vanishing beta function
and is believed to be a conformal field theory (CFT). As
a consequence there is no dimensional transmutation, no
confinement or spontaneous symmetry breaking and no phase
transition. The theory is a Coulomb phase for all values of the
coupling g and the temperature T . However, if g is not small
then there is no obvious way to compute thermodynamic or
transport properties of the plasma.

An interesting new approach is provided by the duality
between strongly coupled large Nc gauge theory and weakly
coupled string theory on AdS5 × S5 discovered by Maldacena
[20]. We will have more to say about this approach in section 4.
For now we observe that the correspondence can be extended
to a finite temperature. In this case the relevant configuration
is an AdS5 × S5 black hole. The temperature of the gauge
theory is given by the Hawking temperature of the black hole,
and the entropy is given by the Hawking–Beckenstein formula
S = A/(4G), where A is the surface area of the event horizon
and G is Newton’s constant.

The AdS/CFT correspondence makes predictions for the
thermodynamics of the gauge theory in the limit of a large
number of colors, Nc → ∞. The perturbative expansion of
a SU(Nc) Yang–Mills theory involves the ‘t Hooft coupling
λ = g2Nc. In the weak coupling limit we take Nc → ∞ with
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Figure 1. Entropy density in units of the Stefan–Boltzmann value for pure gauge QCD and N = 4 supersymmetric QCD. The left panel
shows the entropy density of pure gauge QCD as a function of T/Tc. The gray band is the lattice result. The solid lines show a resummed
QCD calculation [63]. The different lines correspond to different choices for a non-perturbative parameter c�. The dashed lines mark an
error band determined by variations in the QCD renormalization scale. The right panel shows the entropy density of SUSY QCD as a
function of the ‘t Hooft coupling λ. The curves are labeled as in the left panel.

λ = const and λ � 1. Using the AdS/CFT correspondence we
can also study the strong coupling limit Nc → ∞ with λ � 1.
N = 4 SUSY QCD is a conformal theory and scale invariance
implies that ε = 3P as well as s = 4P/T , where ε is the
energy density and s is the entropy density. By dimensional
analysis the entropy density of the interacting system must be
proportional to the entropy density s0 of the free system. The
weak and strong coupling expansions for s/s0 are [70–72]

s

s0
=




3

4
+

45ζ(3)

32
λ−3/2 + · · · λ � 1,

1 − 3

2π2
λ +

√
2 + 3

π3
λ3/2 + · · · λ � 1.

(48)

This result has a number of remarkable features. First we
observe that the entropy density at infinite coupling only differs
by a factor 3/4 from the result in the free theory. We also note
that the first non-trivial corrections in the strong and weak
coupling limit are consistent with the idea that the evolution
from weak to strong coupling is smooth. Equation (48)
was compared with resummed perturbation theory and Pade
approximants in [73], see figure 1. The authors argue that at
the ‘QCD-like’ point s/s0 = 0.85 neither the strong nor the
weak coupling expansion are quantitatively reliable, but that
resummed perturbation theory is useful in this regime.

3. Transport theory

In this section we summarize theoretical approaches to
transport phenomena in strongly coupled quantum fluids.
The most general of these approaches is hydrodynamics.
Hydrodynamics is based on the observation that correlation
functions at low energy and small momentum are governed by
the evolution of conserved charges. Conservation laws imply
that the densities of conserved charges cannot relax locally,
but have to propagate or diffuse out to large distance. This
corresponds to hydrodynamic excitations with dispersion laws
of the form ω ∼ q (sound) or ω ∼ iq2 (diffusion).

Hydrodynamics can be developed as an expansion in
derivatives of the fluid velocity and the thermodynamic
variables. The leading order theory, called ideal
hydrodynamics, only depends on the equation of state, and is
exactly time reversible. The next order theory, (first order)
viscous hydrodynamics, involves a new set of parameters
called transport coefficients, and describes dissipative, time-
irreversible phenomena. The validity of hydrodynamics is
controlled by the relative size of the next-to-leading order
terms. If dissipation is dominated by shear viscosity5 then
the expansion parameter is 1/Re, where Re is the Reynolds
number defined in equation (4).

The values of the transport coefficients can be extracted
from experiment, or computed from an underlying field theory.
The connection between transport coefficients and correlation
functions in a (quantum) field theory is provided by linear
response theory. Using linear response theory one can relate
transport coefficients to the zero energy and zero momentum
limit of a retarded correlation function. These relations are
known as Kubo formulae, see section 3.4.

Calculations based on the Kubo formula are difficult,
in particular if the interaction is not weak. The situation
simplifies if the system allows a microscopic description
in terms of quasi-particles. In that case we can use an
intermediate effective theory, known as kinetic theory, to relate
the microscopic lagrangian to the hydrodynamic description.
Kinetic theory also provides a more microscopic criterion
for the applicability of hydrodynamics. Using the kinetic
estimate for the shear viscosity in equation (2) we get 1/Re ∼
(cs/v)(lmfp/L) where cs is the speed of sound and the ratio

Kn = lmfp

L
(49)

is called the Knudsen number. Hydrodynamics is valid if the
mean free path is much smaller than the characteristic size, and
the Knudsen number is small.
5 If dissipation is dominated by heat transport, then the expansion parameter
is 1/(Re · Pr), where Pr is the Prandtl number defined in equation (140).
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The calculation of transport coefficients in kinetic theory
is reviewed in section 3.5. If the interaction between quasi-
particles is strong then the kinetic description breaks down.
A new approach to extracting transport properties from a
strongly coupled field theory is the holographic method which
we will discuss in the next section. Using holography the
calculation of the retarded correlator can be reduced to a
classical computation in a suitable dual theory.

3.1. Hydrodynamics

3.1.1. Non-relativistic fluids. The hydrodynamics of a
one-component non-relativistic fluid is governed by the
conservation laws of energy, mass (particle number) and
momentum:

∂ε

∂t
+ ∇ · j ε = 0, (50)

∂ρ

∂t
+ ∇ · g = 0, (51)

∂gi

∂t
+ ∇j�ij = 0. (52)

Here, ε is the energy density, ρ is the mass density, g is the
momentum density and �ij is the stress tensor. The relations
between the conserved currents and the hydrodynamic
variables are called constitutive relations. These relations can
be determined order by order in an expansion in derivatives
of the flow velocity and the thermodynamic variables. The
leading order result is called ‘ideal hydrodynamics’. At this
order the constitutive relations are completely fixed by Galilean
invariance, rotational invariance and conservation of entropy.
The result is

j ε = v(ε + P), (53)

g = ρv, (54)

�ij = Pδij + ρvivj , (55)

where ε = ε0 + 1
2ρv2 and ε0 is the energy density in the rest

frame of the fluid. There are six hydrodynamic variables, v,
ρ, ε and P , which are determined by the five conservation
laws (50)–(51). In order for the equations to close we need to
supply an equation of state P = P(ε, ρ). Since hydrodynamic
variables evolve slowly, the equation of state is the one in
thermal equilibrium.

In ideal hydrodynamics the equations of continuity and
momentum conservation are

∂ρ

∂t
+ ∇ · (ρv) = 0, (56)

∂v

∂t
+ (v · ∇) v = − 1

ρ
∇P. (57)

The equation of momentum conservation is known as the Euler
equation. In the case of ideal hydrodynamics the equation
of energy conservation can be rewritten as conservation of
entropy:

∂s

∂t
+ ∇ · (vs) = 0. (58)

At next order in the derivative expansion dissipative terms
appear. The size of these terms is controlled by new parameters

called transport coefficients. The relation g = ρv is not
modified (it follows from Galilean invariance), but two new
coefficients appear in the stress tensor. We can write �ij =
Pδij + ρvivj + δ�ij with

δ�ij = −η
(∇ivj − ∇j vi − 2

3δij∇ · v
)− ζ δij (∇ · v) . (59)

Here, η is the shear viscosity and ζ is the bulk viscosity.
The correction to the energy current has the form jε

i =
vi(ε + P) + vj δ�ij + Qi with

Q = −κ∇T , (60)

where T is the temperature and κ is the thermal conductivity.
The second law of thermodynamics implies that η, ζ, κ � 0.
The equation of momentum conservation with the viscous
stresses (59) included is known as the Navier–Stokes equation.

The linearized hydrodynamic equations describe the
propagation of sound and diffusive modes. In the case of a
non-relativistic fluid there is a pair of sound modes that couple
to the pressure/density and the longitudinal velocity, a pair of
diffusive shear modes that couple to the transverse velocity
and a diffusive heat mode. The longitudinal and transverse
components of the velocity are defined by v = vL + vT

with ∇ × vL = 0 and ∇ · vT = 0. The hydrodynamic
modes govern the hydrodynamic correlation functions. The
transverse velocity correlation function is defined by

Svv
ij (ω, k) = 〈δvT

i δvT
j 〉ω,k

=
∫

d3x dt ei(ωt−k·x)〈δvT
i (x, t)δvT

j (0, 0)〉, (61)

where δvT
i (x, t) = vT

i (x, t)−〈vT
i (x, t)〉 is a fluctuation of the

velocity. Linearized hydrodynamics gives

Svv
ij (ω, k) = 2T

ρ

(
δij − k̂i k̂j

) νk2

ω2 + ν2k4
, (62)

where ν = η/ρ is the kinetic viscosity. The dependence
of the correlation function on ω and k is determined by the
laws of hydrodynamics, equations (50–51), and the overall
normalization is fixed by the thermodynamic relation

〈δvi(x, t)δvj (x
′, t)〉 = T

ρ
δij δ(x − x′). (63)

We observe that the transverse velocity correlation function
has a diffusive pole, where the diffusion constant is given by
the kinematic viscosity. The entropy correlation function has
a diffusive pole governed by the thermal diffusion constant
χ = κ/(cpρ), where cp is the specific heat at constant pressure.
The correlation function is

Sss(ω, k) = 〈δsδs〉ω,k = 2cp

ρ

χk2

ω2 + χ2k4
. (64)

The pressure correlation function contains the sound pole and
is given by

Spp(ω, k) = 〈δpδp〉ω,k = 4ρT c3
s

γ c2
s k

2 + γT(ω2 − c2
s k

2)

(ω2 − c2
s k

2)2 + 4γ 2c2
s ω

2
,

(65)
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where cs = [(∂P )/(∂ρ)|s]1/2 is the speed of sound and
γ = γη,ζ + γT is the coefficient of sound absorption (the
inverse sound attenuation length). The contributions to γ from
viscosity and thermal conductivity are given by

γη,ζ = k2

2ρcs

(
ζ +

4

3
η

)
, γT = k2csρ

2T
χ

(
∂T

∂P

)
s

. (66)

These results illustrate the criterion for the validity of
hydrodynamics given above. Hydrodynamics is based on a
small momentum expansion. Applied to equation (65) this
implies that ω ∼ csk � k2η/ρ. Taking the characteristic size
to be L ∼ 1/k this is equivalent to η/(csρL) � 1. A more
microscopic criterion follows from the kinetic estimate of the
shear viscosity given in equation (2): hydrodynamics describes
sound waves with a wave length that is large compared with
the mean free path, L � lmfp.

3.1.2. Superfluid hydrodynamics. Superfluidity is
characterized by the spontaneous breakdown of the U(1)

symmetry associated with the conserved particle number. By
Goldstone’s theorem the spontaneous breaking of a continuous
symmetry leads to the appearance of a gapless mode. This
mode has to be included in the hydrodynamic description of
the system. We introduced the Goldstone boson field ϕ in
equation (25). The quantity vs = ∇ϕ/m can be interpreted as
the superfluid velocity. Since vs is the gradient of a phase the
superfluid velocity is irrotational, ∇ × vs = 0.

We have to generalize the constitutive equations to include
both the normal fluid velocity vn and the superfluid velocity vs.
In the ideal fluid case (no dissipation) the result is completely
fixed by Galilean invariance and thermodynamic relations.
The constitutive equations are

g = ρnvn + ρsvs, (67)

�ij = Pδij + ρnvn,ivn,j + ρsvs,ivs,j , (68)

jε = ρsT vn + (µ + 1
2v2

s )(ρnvn + ρsvs) + ρnvnvn · (vn − vs),

(69)

where ρn and ρs are the normal and superfluid density of
the system. The total density ρ = ρn + ρs is the sum of
the normal and superfluid contributions. The ratio ρs/ρ is
a function of the temperature, the chemical potential and the
relative velocity |vn − vs|. This function, like the equation of
state P(µ, T , |vn − vs|), depends on microscopic details. The
conservation laws are given by equations (50)–(51). These
equations have to be supplemented by an equation of motion for
the superfluid velocity. Landau showed that Euler’s equation
for the superfluid velocity is given by [74]

∂vs

∂t
+ (vs · ∇)vs = −∇µ. (70)

Because vs is irrotational we can rewrite the convective
derivative on the lhs of equation (70) as a total derivative,
vs · ∇vs = 1

2∇(v2
s ).

As in the case of a normal fluid we may consider
dissipative corrections to the constitutive equations. The
form of these terms is constrained by rotational and Galilean

invariance, and by the second law of thermodynamics. The
viscous corrections to the energy momentum tensor are

δ�ij = −η
(∇ivn,j + ∇j vn,i − 2

3δij∇ · vn
)

−δij

(
ζ1∇ · (ρs (vs − vn)) + ζ2 (∇ · vn)

)
. (71)

We observe that viscous shear stresses only arise from the
normal component of the flow. In addition to the normal bulk
viscosity term proportional to ζ2 there is a second contribution
that involves the relative motion of the normal and superfluid
components. Two additional bulk viscosities appear in the
dissipative correction to the rhs of equation (70). We replace
∇µ by ∇(µ + H) with

H = −ζ3∇ · (ρs (vs − vn)) − ζ4∇ · vn. (72)

Onsager’s symmetry principle requires that ζ4 = ζ1. The
dissipative correction to the energy current is δjε

i = vn,j δ�ij +
ρs(vs,i − vn,i )H + Qi where Qi = −κ∇iT as in the case of a
normal fluid.

Superfluid hydrodynamics contains two velocity fields,
the normal flow velocity vn and the superfluid (irrotational)
flow velocity vs. This extra degree of freedom leads to an
additional sound mode called second sound. The velocity of
second sound depends strongly on temperature and vanishes at
the critical temperature where ρs/ρ → 0. If thermal expansion
can be neglected second sound is an oscillatory motion of the
superfluid against the normal fluid which does not lead to any
mass transport and can be viewed as a pure entropy wave.

3.1.3. Relativistic fluids. In a relativistic fluid the equations
of energy and momentum conservation can be written as a
single equation

∂µT µν = 0, (73)

where T µν is the energy momentum tensor. In ideal fluid
dynamics the form of Tµν is completely fixed by Lorentz
invariance,

T µν = (ε + P)uµuν + Pηµν , (74)

where uµ is the fluid velocity (u2 = −1) and ηµν =
diag(−1, 1, 1, 1) is the metric tensor. In a relativistic theory
there need not be a conserved particle number. If a conserved
particle number, for example baryon number, exists then there
is a second hydrodynamic equation that expresses particle
number conservation:

∂µ(nuµ) = 0, (75)

where n is the particle density. As in the non-relativistic case
the hydrodynamic equations have to be supplemented by an
equation of state P = P(ε) or P = P(ε, n). The four
equations given in equation (73) can be split into two sets using
the longitudinal and transverse projectors:

||
µν = −uµuν, µν = ηµν + uµuν. (76)

With the help of the thermodynamic relations dε = T ds and
ε + P = sT the longitudinal equation is equivalent to entropy
conservation

∂µ(suµ) = 0, (77)
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and the transverse equation is the relativistic Euler equation

Duµ = − 1

ε + P
∇⊥

µ P , (78)

where D = u · ∂ and ∇⊥
µ = µν∂

ν . Comparison with
equation (57) shows that the inertia of a relativistic fluid is
governed by ε + P .

The form of the dissipative terms depends on the precise
definition of the fluid velocity. A useful choice is to define uµ

by the requirement that in the local rest frame T 00 = ε and
T 0i = 0. This definition is called the Landau frame [74]. In
this frame the dissipative correction to the energy momentum
tensor in the rest frame has the same form as in the non-
relativistic case, see equation (59). We write the stress tensor
as T µν = T

µν

0 +δ(1)T µν +δ(2)T µν + · · ·, where T
µν

0 is the stress
tensor of the ideal fluid given in equation (74), δ(1)T µν is the
first order viscous correction, etc. A covariant expression for
δ(1)T µν is

δ(1)T µν = −ησµν − ζµν∂ · u, (79)

where we have defined

σµν = µανβ
(
∂αuβ + ∂βuα − 2

3ηαβ∂ · u
)

. (80)

The dissipative correction to the conserved particle current is
jµ = nuµ + δjµ with

δ(1)jµ = −κ

(
nT

ε + P

)2

⊥
µ

(µ

T

)
, (81)

where κ is the thermal conductivity and µ is the
chemical potential associated with the conserved density n.
Alternatively, one can define the velocity via the conserved
particle current (Eckart frame). In that case there is no
dissipative contribution to jµ and the thermal conductivity
appears in the stress tensor.

The hydrodynamic equations determine the propagation
of sound and diffusive modes. We consider the case without
a conserved particle number. In this case all the modes can
be found by considering correlation functions of the energy–
momentum current gi = T 0i . The longitudinal and transverse
correlation functions are

SL
gg(ω, k) = 2sT

�sω
2k2

(ω2 − c2
s k

2)2 + (�sωk2)2
, (82)

ST
gg(ω, k) = 2ηk2

ω2 + (
η

sT
k2)2

. (83)

As in the non-relativistic fluid we find a pair of sound waves
and a pair of diffusive shear modes. The sound attenuation
length is given by

�s =
4
3η + ζ

sT
, (84)

and the analog of the kinematic viscosity is the ratio η/(sT ).
A new issue that arises in viscous relativistic hydrody-

namics is the apparent lack of causality of the equations of
motion. The problem can be seen by inspecting the linearized

equation for the diffusive shear mode. The equation is first
order in time, but second order in spatial gradients. As a re-
sult discontinuities in the initial conditions can propagate with
infinite speed. This is not really a problem of the hydrody-
namic description—the relevant modes are outside the domain
of validity of hydrodynamics—but the acausal modes cause
difficulties in numerical implementations. To overcome these
difficulties one can include second order gradient corrections
in the stress tensor. The resulting theory is called second or-
der viscous hydrodynamics. One can show that for physically
reasonable ranges of the second order coefficients the theory is
causal [31]. In general, there are a large number of second or-
der terms. A complete classification of the second order terms
in a relativistic conformal fluid was recently given in [75]. Con-
formal symmetry implies that ζ = 0 and δ(1)Tµν = −ησµν .
The second order correction is

δ(2)T µν = ητII
[〈Dσµν〉 + 1

3 σµν(∂ · u)
]

+λ1σ
〈µ
λσ

ν〉λ + λ2σ
〈µ
λ�

ν〉λ + λ3�
〈µ

λ�
ν〉λ, (85)

where σµν is the first order shear tensor defined above,

A〈µν〉 = 1
2µανβ

(
Aαβ + Aβα − 2

3µναβAαβ

)
(86)

denotes the transverse traceless part of Aαβ and

�µν = 1
2µανβ

(
∂αuβ − ∂βuα

)
(87)

is the vorticity. Equation (85) defines four new second order
transport coefficients, τII and λ1,2,3. These coefficients can
be determined using kinetic theory [76] or the AdS/CFT
correspondence [75, 77].

Equation (85) is a constitutive relation that determines the
stress tensor in terms of thermodynamic variables. Formally,
we may replace time derivatives by spatial derivatives using
the lower order equations of motion. Another option, inspired
by the approach of Israel and Stewart [78], is to promote
πµν = δT µν to a hydrodynamic variable. The equation of
motion for πµν is

πµν = −ησµν − τII

[
〈Dπµν〉 +

4

3
πµν(∂ · u)

]

+
λ1

η2
π

〈µ
λ πν〉λ − λ2

η
π

〈µ
λ �ν〉λ + λ3�

〈µ
λ �ν〉λ. (88)

This equation describes the relaxation of πµν to the Navier–
Stokes form −ησµν . There are also a number of more
phenomenological approaches that include some subset of
higher order terms, for example the already mentioned Israel–
Stewart formalism [78] or the equations of Lindblom and
Geroch [79], see [31] for a review. We note that whatever
formalism is used, a necessary condition for the applicability
of second order hydrodynamics is that higher order corrections
are small, δ(2)T µν � δ(1)T µν � T µν .

Remarks. The second order formalism was initially
developed for non-relativistic fluids by Burnett [80, 81], see
[82] for a review. Higher order hydrodynamic equations
can be derived from kinetic theory by computing moments
of the Boltzmann equation. This procedure is known as
Grad’s moment method [83]. It is not easy to find systems
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in which the second order theory provides a quantitative
improvement over the Navier–Stokes equation. An example is
the work of Uhlenbeck, Foch and Ford on sound propagation
in gases [84, 85]. Finally, we note that relativistic superfluid
hydrodynamics was formulated by Carter, Khalatnikov and
Lebedev [86, 87], see [88–90] for more recent studies that
emphasize the connection to effective field theory.

3.2. Diffusion

An important diagnostic of the properties of a fluid is the
diffusion of a dilute gas of impurities suspended in the fluid.
We will see, in particular, that if the fluid is composed of quasi-
particles then the diffusion of impurities and the shear viscosity,
which is related to momentum diffusion, are closely linked.
The two transport coefficients have the same dependence on
the coupling constant, and their temperature dependence is the
same up to kinematic factors. In a perfect fluid, however, this
link may be broken: the diffusion constant goes to zero while
the shear viscosity remains finite.

We will assume that the number of impurity particles
is conserved. The number density satisfies the continuity
equation

∂n

∂t
+ ∇ ·  = 0. (89)

If the number density varies smoothly then the current  can be
expressed in terms of the thermodynamic variables. At leading
order in derivatives of the density we can write � = −D∇n,
where D is the diffusion constant. Inserting this expression
into the continuity equation gives the diffusion equation

∂n

∂t
= D∇2n. (90)

A more microscopic view of diffusion is provided by studying
the Brownian motion of an individual suspended particle. The
motion is described by a stochastic (Langevin) equation

dp

dt
= −ηDp + ξ(t), 〈ξi(t)ξj (t

′)〉 = κδij δ(t − t ′). (91)

Here, p is the momentum of the particle, ηD is the drag
coefficient and ξ(t) is a stochastic force. The coefficient κ

is related to the mean square momentum change per unit time,
3κ = 〈(p)2〉/(t). The Langevin equation can be integrated
to determine the mean squared momentum. In the long time
limit (t � η−1

D ) the particle thermalizes and we expect that
〈p2〉 = 3mT . This requirement leads to the Einstein relation

ηD = κ

2mT
. (92)

The relation between ηD and the diffusion constant can be
determined from the mean square displacement. At late times
〈[x(t)]2〉 = 6D|t | and

D = T

mηD
= 2T 2

κ
. (93)

A special case is the diffusion of large spherical particles
suspended in a simple fluid. In this case the drag coefficient can
be computed using the Navier–Stokes equation and the drag is
related to the shear viscosity of the fluid, ηD = 6πηa/m, where
a is the radius of the particles. This leads to a relation between
the diffusion constant and the shear viscosity, D = T/(6πηa).

3.3. Dynamic universality

In the vicinity of a second order phase transition fluctuations
of the order parameter relax slowly. This implies that order
parameter fluctuations have to be included in the hydrodynamic
description. The resulting hydrodynamic models describe
universal features of transport phenomena near a continuous
phase transition [91]. Dynamic universality classes, like the
well-known static ones, depend on the symmetries of the order
parameter and the number of dimensions. Universal aspects
of transport also depend on the nature of the order parameter,
whether it is conserved or not, and on the presence of couplings
(non-vanishing Poisson brackets) between the order parameter
and the conserved fields. In this section we will briefly
review the hydrodynamic description of a simple fluid near the
liquid–gas endpoint. This theory is known as model H in the
classification of Hohenberg and Halperin [91]. We will see that
critical fluctuations lead to a divergent shear and bulk viscosity
at the liquid–gas endpoint. The hydrodynamic description of
the superfluid–normal transition in liquid helium and dilute
atomic gases is called model F. This model describes the
divergence of the heat conductivity at the superfluid transition.

Near the critical point sound modes (ω ∼ k) are higher in
energy than diffusive modes (ω ∼ k2), and the longitudinal
components of the momentum density g can be neglected.
A minimal model that describes the coupling of the order
parameter φ to the transverse momentum density gT is [91]

∂φ

∂t
= λ0∇2 δFT

δφ
− g0∇φ · δFT

δg
+ ζφ, (94)

∂gi

∂t
= P T

ij

[
η0∇2 δFT

δgj

+ g0(∇jφ)
δFT

δφ
+ ζgj

]
, (95)

where P T
ij = (δij + ∇i∇j /∇2) is a transverse projector, ζφ and

ζgj
are random forces, and the free energy FT = F − Fh is

given by

F =
∫

ddx

[
1

2
(∇φ)2 +

r0

2
φ2 + u0φ

4 +
1

2
g2

]
, (96)

Fh =
∫

ddx [hφ + A · g] , (97)

where h and A are external fields. The coefficients λ0

and η0 are the bare values of the thermal conductivity and
shear viscosity. Fluctuations cause the physical value of
the zero frequency transport coefficients to diverge near the
critical point. In order to study the critical behavior of the
bulk viscosity the longitudinal component of g has to be
included [92].

In a normal fluid the only conserved charges are the
particle density, the energy density and the momentum density.
The order parameter is a suitable linear combination of
the energy density and the particle density. In QCD the
hydrodynamic variables include the chiral condensate, and the
conserved energy density, baryon density and isospin density.
The QCD phase diagram is expected to have two critical points,
one that corresponds to the endpoint of the nuclear liquid–
gas phase transition and another one that is related to the
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endpoint of the first order chiral phase transition [93]. QCD
hydrodynamics in the vicinity of the chiral critical point was
analyzed by Son and Stephanov [94] who argue that the chiral
endpoint, like the nuclear liquid–gas endpoint, is correctly
described by model H. The values of the critical exponents
can be determined using the epsilon expansion. The shear and
bulk viscosity diverge with the correlation length ξ as [91, 92]

η ∼ ξxη (xη � 0.06), ζ ∼ ξxζ (xη � 2.8). (98)

The critical endpoint is in the same static universality class
as the Ising model and ξ ∼ t−0.63, where t = (T − Tc)/T .
We note that the divergence in the bulk viscosity is much
stronger than the divergence in the shear viscosity. These
results demonstrate that, while there is empirical evidence for
the suggestion that the viscosity minimum is located at the
endpoint of the liquid–gas phase transition (see table 1), this
idea cannot be rigorously correct. Indeed, both η/s and ζ/s

diverge near the critical endpoint.

3.4. Kubo relations and spectral functions

Hydrodynamics is an effective description of the low energy,
long wavelength response of a fluid. The transport coefficients
appear as unknown constants in the hydrodynamic equations.
These constants can be extracted from experiment, or
computed from a more microscopic theory. The relationship
between transport coefficients and correlation functions in
a microscopic quantum field theory is provided by Kubo
relations. We have seen that hydrodynamics fixes the
low energy and low momentum behavior of the correlation
functions of conserved charges, see equations (62–65). In
the field theory these correlation functions can be computed
using linear response theory. The response is governed by the
retarded correlation function. In the case of shear viscosity the
relevant correlation function is

G
xy,xy

R (ω, k) = −i
∫

dt

∫
d3x ei(ωt−k·x)�(t)

× 〈[
T xy(x, t), T xy(0, 0)

]〉
, (99)

where T µν is the energy momentum tensor. The spectral
function is defined by ρ(ω, k) = −2 Im GR(ω, k). The
imaginary part of the retarded correlator is a measure
of dissipation, while the correlation function S(ω, k) (see
section 3.1.1) is related to fluctuations. The relation between
these two functions is called the fluctuation–dissipation
theorem [95]. In the low frequency limit ρ(ω, k) =
(ω/T )S(ω, k). Matching the correlation function from linear
response theory to the hydrodynamic correlator gives the Kubo
relation

η = lim
ω→0

lim
k→0

ρxy,xy(ω, k)

2ω
. (100)

The formula for the bulk viscosity involves the trace of the
energy momentum tensor

ζ = 1

9
lim
ω→0

lim
k→0

ρii,jj (ω, k)

2ω
, (101)

and analogous results can be derived for the thermal
conductivity and diffusion constants.

Table 2. Lattice QCD results for the ratio of shear and bulk
viscosity to entropy density in a pure gluon plasma. The
calculations were performed for three different temperatures, given
in units of the critical temperature Tc. Data from [97, 103].

T 1.02Tc 1.24Tc 1.65Tc

η/s 0.102(56) 0.134(33)
ζ/s 0.73(3) 0.065(17) 0.008(7)

The spectral function contains information about the
physical excitations that carry the response. We will discuss
this issue in more detail when we compare the strong
coupling (AdS/CFT) and weak coupling spectral functions in
section 4. Dispersion relations connect the spectral function to
correlation functions with different analyticity properties. The
Matsubara (imaginary energy) correlation function is

GE(iωn) =
∫

dω

2π

ρ(ω)

ω − iωn

, (102)

where ωn = 2πnT is the Matsubara frequency. The imaginary
time correlation function is given by

GE(τ) =
∫

dω

2π
K(ω, τ)ρ(ω), (103)

where the kernel K(ω, τ) is defined by

K(ω, τ) = cosh[ω(τ − 1/(2T ))]

sinh[ω/(2T )]

= [1 + nB(ω)] e−ωτ + nB(ω)eωτ , (104)

and nB(ω) is the Bose distribution function. Equation (103)
is the basis of attempts to compute transport coefficients
using imaginary time QMC data [96–99]. The idea is to
compute GE(τ) numerically, invert the integral transform
in equation (103) to obtain ρ(ω) and then extract transport
coefficients from ρ ′(0). The difficulty is that GE(τ) is typically
only computed on a small number of points, and that the
imaginary time correlator is not very sensitive to the slope of the
spectral function at low energy. Many recent calculations make
use of the maximum entropy method to obtain numerically
stable spectral functions and reliable error estimates [100, 101].
It was also observed that one can minimize the contribution
from continuum states to the imaginary time Green function
by studying the correlators of conserved charges, energy and
momentum density, at non-zero spatial momentum [102, 103].
In more physical terms this means that one is extracting the
viscosity from the sound pole rather than the shear pole. In
table 2 we summarize some recent lattice QCD results on
the shear and bulk viscosity in the high temperature phase
of pure gauge QCD. We observe that the shear viscosity
to entropy density ratio is close to the conjectured bound
1/(4π). The bulk viscosity is large in the vicinity of the phase
transition but decreases quickly and becomes extremely small
at T = 1.64Tc.

3.5. Kinetic theory: shear viscosity

If the fluid can be described in terms of weakly interacting
quasi-particles then the hydrodynamic variables can be written
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in terms of quasi-particle distribution functions fp(x, t). In the
case of a non-relativistic fluid the energy current, momentum
current and stress tensor are given by

jε
i (x, t) =

∫
d3p

(2π)3
Epvp,ifp(x, t), (105)

gi(x, t) =
∫

d3p

(2π)3
mvp,ifp(x, t), (106)

�ij (x, t) =
∫

d3p

(2π)3
mvp,ivp,j fp(x, t), (107)

where Ep is the quasi-particle energy and vp,i = (∂Ep)/(∂pi) is
the quasi-particle velocity. The equation of motion for fp(x, t)

is the Boltzmann equation

∂fp

∂t
+ v · ∇fp + F · ∇p fp = C[fp], (108)

where F is an external force and C[fp] is the collision
term. In local thermal equilibrium the distribution function
is determined by the local temperature, chemical potential and
flow velocity. We have

f 0
p (x, t) = 1

exp((Ep − v · p − µ)/T ) ∓ 1
, (109)

where the ∓ sign corresponds to bosons/fermions. Transport
coefficients characterize how the distribution function relaxes
to its equilibrium value if it is perturbed slightly away from it.
We can write

fp(x, t) = f 0
p (x, t) + δfp(x, t) (110)

and linearize the Boltzmann equation in δfp. In order
to determine transport coefficients we also use a gradient
expansion of the local velocity, temperature and chemical
potential and linearize the Boltzmann equation in the ‘driving
terms’ ∇ivj , ∇iT and ∇iµ. This procedure is known as the
Chapman–Enskog method. In the next section we will describe
the method in the case of phonon mediated transport in a
superfluid, and then discuss some of the modifications that
appear when studying high temperature Fermi and Bose gases
as well as gauge theories.

3.5.1. Phonons in dilute Fermi gases. In the following we
will concentrate on the shear viscosity of the low temperature,
superfluid, phase of the dilute Fermi gas at unitarity. The
calculation is similar to the computation of the shear viscosity
of superfluid helium, but as explained in section 2.3 the low
energy effective theory of the dilute Fermi gas is more tightly
constrained. We discuss the shear viscosity of liquid helium, as
well as the viscosity of the low temperature (chiral symmetry
broken) phase of QCD in section 3.5.2. The stress tensor of a
phonon gas is

�ij (x, t) = c2
s

∫
d3p

(2π)3

pipj

Ep
fp(x, t). (111)

In order to study the shear viscosity we write δfp =
−χ(p)f 0

p (1 + f 0
p )/T with

χ(p) = g(p)
(
pipj − 1

3δijp
2
) (∇ivj + ∇j vi − 2

3δij∇ · v
)
.

(112)

Inserting this ansatz into the energy momentum tensor gives

η = 4c2
s

15T

∫
d3p

(2π)3

p4

2Ep
f 0

p (1 + f 0
p )g(p). (113)

The function g(p) is determined by the linearized Boltzmann
equation. Linearizing the lhs of the Boltzmann equation in
derivatives of v, µ, T gives

dfp

dt
� c2

s

f 0
p (1 + f 0

p )

2EpT
pij vij , (114)

where we have defined

pij = pipj − 1
3δijp

2, vij = ∇ivj + ∇j vi − 2
3δij∇ · v.

(115)
The rhs of the Boltzmann equation contains the collision term
C[fp]. In the present case the dominant contribution arises
from binary 2 ↔ 2 collisions. The linearized collision term is

C2↔2[fp] � 1 + f 0
p

2EpT

∫
d�(k; k′, p′)(1 + f 0

k )f 0
k′f

0
p′ |M|2

× [
g(p)pij + g(k)kij − g(k′)k′

ij − g(p′)p′
ij

]
vij

≡ f 0
p (1 + f 0

p )

2EpT
Cij [g(p)]vij , (116)

where M is the scattering matrix element,

d�(k; k′, p′) =

 ∏

q=k,k′,p′

d3q

(2π)32Eq




×(2π)4δ(4)(p + k − k′ − p′) (117)

is the phase space, and we have defined the linearized collision
operator Cij [g(p)]. The linearized Boltzmann equation can
now be written as

Cij [g(p)] = c2
s

T
pij . (118)

This result can be used to rewrite the relation for the viscosity
in equation (113) as

η = 2

5

∫
d3p

(2π)3

f 0
p (1 + f 0

p )

2EpT
pijg(p)Cij [g(p)]. (119)

The two relations equations (113) and (119) can be used
to derive a variational estimate of the shear viscosity. We
can view equation (113) as an inner product with measure
f 0(1 + f 0)/(2Ep) and write

η = 2
5 〈X|g〉 , (120)

where X = (c2
s /T )pij and g = g(p)pij . The linearized

Boltzmann equation is C|g〉 = |X〉 and equation (119) can
be written as η = 2

5 〈g|C|g〉. The linearized collision
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(a) (b)

Figure 2. Leading order processes that contribute to the shear viscosity of the Fermi gas in the unitarity limit at low temperatures (a) and
high temperatures (b). Dashed lines are phonon propagators and solid lines are fermion propagators.

operator C is a Hermitian, negative semi-definite operator.
The zero eigenvalues of C correspond to the conservation
laws for energy, momentum and particle number. Consider
a variational ansatz |gvar〉 for the exact solution |g〉 of the
linearized Boltzmann equation. The triangle equality implies

〈gvar|C|gvar〉〈g|C|g〉 � 〈gvar|C|g〉2 = 〈gvar|X〉2. (121)

Using η = 2
5 〈g|C|g〉 we get

η � 2

5

〈gvar|X〉2

〈gvar|C|gvar〉2
. (122)

This result is, of course, not a lower bound on the exact value
of η, but it is a bound within the approximation that is used
to compute the collision term. A popular choice for gvar is
the driving term X. This ansatz provides a good estimate in
the case of non-relativistic particles interacting via short range
interactions, as well as for gauge boson exchanges in QCD,
but not in the case of phonon scattering6.

A systematic method for improving the variational
estimate is based on orthogonal polynomials. We can
construct a complete set of polynomials that are orthogonal
with respect to the inner product defined in equation (120).
In non-relativistic physics these polynomials are known as
Sonine polynomials [107] and suitable generalizations can be
constructed for Bose and Fermi gases [108]. We now fix an
integer N and expand the solution of the linearized Boltzmann
equation in the first N polynomials. At finite N solving the
Boltzmann equation reduces to the problem of inverting an
N × N matrix. The solution provides a variational estimate
forη which becomes exact asN → ∞. Convergence is usually
quite fast.

To complete the calculation of the shear viscosity we
need to compute the scattering amplitude M. The collision
operator at leading order in T/µ is determined by the scattering
amplitude at leading order in q/µ, where q = p, p′, k, k′. The
amplitude is given by the diagrams in figure 2(a) with vertices
and propagators determined by the effective lagrangian given
in equation (28). The expression for M is not very instructive
and can be found in [108]. The best estimate for η is obtained
by using g(p) ∼ p−1. We find

η = 9.3 × 10−6 ξ 5

c3
s

T 8
F

T 5
, (123)

6 A detailed discussion of upper and lower bounds on transport coefficients
can be found in [104, 105]. We also refer the reader to comparisons of the
variational results with exact solutions of the Boltzmann equation [106].

where ξ � 0.4 is the universal parameter we introduced in
equation (23). In the low temperature limit the entropy density
is dominated by the phonon contribution

s = 2π2

45

T 3

c3
s

. (124)

The ratio η/s drops sharply with temperature. Extrapolating
to T = Tc � 0.15TF gives η/s ∼ 0.8, with very large
uncertainties.

3.5.2. Phonons and rotons in liquid helium, pions in QCD.
The calculations of shear viscosity of liquid 4He below the λ

point are similar to the computation of η in the superfluid Fermi
gas. The main difference is that close to Tc it is important
to include the roton contribution. Rotons form a dilute
gas, and unlike phonons, their cross section is approximately
constant. As a consequence the roton viscosity is independent
of the roton density, see the discussion below equation (2).
The typical roton momentum is determined by the roton
minimum of the dispersion relation and depends only weakly
on temperature. This implies that the roton viscosity is almost
temperature independent. The value of the roton viscosity
depends on the poorly known roton–roton interaction. A fit
to experimental data for the shear viscosity below the lambda
point gives ηr � 1.2 × 10−5 P. The leading correction to the
roton term comes from phonon–roton scattering. Landau and
Khalatnikov find [25]

η = ηr +
A

T 1/2
exp

(


T

)
10 + 8�̄/�ph

1 + 8�̄/�ph
, (125)

where  is the roton energy defined in equation (16), A is a
constant and �/�ph is the ratio of the roton–roton and roton–
phonon relaxation rates. This ratio scales as T 4.5 exp(/T ).
For T < 0.9 K we can use �̄ � �ph and the temperature
dependence of the phonon–roton term is governed by the
T −0.5 exp(/T ) term. For T < 0.7 K phonon–phonon
scattering dominates and the viscosity scales as T −5, as in the
previous section. At even smaller temperatures, T < 0.5 K,
phonon splitting, also known as Beliaev damping, becomes
important and the temperature dependence changes toη ∼ T −1

[109]. The roton contribution to the entropy density is

sr = 2(m∗)1/2p2
0

(2π)3/2T 1/2

(
1 +

3T

2

)
exp

(
−

T

)
, (126)

where m∗ and p0 are given in equation (16). The phonon
contribution is given by equation (124) with cs = 238 m s−1.
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Figure 3. Leading order processes that contribute to the shear viscosity of a pure gluon plasma. The coefficient k defined in equation (133)
is determined by the t-channel diagram. The full leading order result, including the coefficient µ∗, requires the remaining diagrams, as well
as gluon bremsstrahlung from the external legs (not shown).

If we push equations (125) and (126) to the limit of their
applicability, T ∼ 2 K, we find η/s ∼ 2.

The computation of the shear viscosity in low temperature
QCD also proceeds along similar lines. The analog of
the phonon in QCD is the pion, and pion interactions are
governed by the effective lagrangian given in equation (46).
The pion is not massless, mπ = 139 MeV. At very low
temperatures, T � mπ , the pion scattering amplitude is
approximately constant and the viscosity is only weakly
temperature dependent. At higher temperatures we can set
mπ � 0 and the scattering amplitude is energy dependent.
The main difference as compared with phonon scattering is
that the four-pion interaction is of the form (φ∂φ)2 instead
of (∂φ)4, and that there is no three-pion interaction. As a
consequence the ππ scattering matrix element scales as the
second power of the external momenta. The pion entropy
is given by equation (124) with cs = c/

√
3 and an isospin

degeneracy factor 3. An approximate calculation of the ratio
η/s gives [110, 111]

η

s
= 15

16π

f 4
π

T 4
. (127)

Variational solutions of the Boltzmann equation reported in
[112] give η/s ratios that are about five times larger. The
first study of the shear viscosity of a pion gas can be found
in [113]. More detailed investigations of the viscosity of
hadronic mixtures were published in [110, 114].

3.5.3. Non-relativistic atoms: dilute Fermi gases and 4He.
The shear viscosity of the dilute Fermi gas at high temperatures
is determined by binary scattering between the atoms. The
s-wave scattering matrix is

M = 4π

m

1

1/a + iq
, (128)

where q is the relative momentum. In the unitarity limit
a → ∞ the scattering amplitude diverges as 1/q in the limit
of small momenta. For T � TF the infrared divergence is
effectively cut off by the thermal momentum (mT )1/2. The
viscosity in the high temperature limit is [115, 116]

η = 15

32
√

π
(mT )3/2. (129)

This result is based on the variational function g(p) ∼ 1.
Corrections due to more complicated distribution functions are

small, η/η < 2% [117]. The scaling of η with temperature
can be understood as a combination of the T 1/2 scaling of a
dilute hard sphere gas (see section 1) with an extra factor (mT )

from the 1/q2 behavior of |M|2. The high temperature limit
of the entropy density is that of a classical gas

s = 2
√

2

3π2
(mTF)

3/2

[
log

(
3
√

π

4

T 3/2

T
3/2

F

)
+

5

2

]
. (130)

Combining equations (129) and (130) gives η/s ∼
x3/2/ log(x) with x = T/TF. The classical expression for
the entropy becomes unphysical (negative) for T � Tc.
Extrapolating to T � 2Tc gives η/s � 0.5.

The shear viscosity of helium is governed by scattering in
the potential given in equation (15). In the high temperature
limit the dominant contribution does not come from the Van
der Waals tail, but from the repulsive short range contribution.
For a potential of the form V ∼ r−ν the viscosity scales as T s

with s = 1
2 + 2

ν−1 [118]. In the case of a Lennard-Jones (6–12)
potential this implies η ∼ T 0.68. A somewhat better fit to the
data is provided by

η = η0

(
T

T0

)0.647

(131)

with η0 = 1.88 × 10−5 Pa s and T0 = 273.15 K. The entropy
density is given by the classical result, equation (130). For
T = 10 K we get η/s � 4, and extrapolating to T = 4 K
gives η/s � 1.5. Very accurate calculations that are based
on realistic potentials and include higher order terms in the
density can be found in [119]. These calculations are reliable
down to about 10 K.

3.5.4. Gauge fields in QCD. The shear viscosity of a QGP
is determined by binary quark and gluon scattering. We first
consider a pure gluon plasma. The leading order gluon–gluon
scattering diagrams are shown in figure 3. The squared tree
level amplitude is

|M|2 = 9g4

2

(
3 − ut

s2
− us

t2
− ts

u2

)
, (132)

where g is the gauge coupling and s, t, u are the Mandelstam
variables. The differential cross section diverges for small
momentum transfer q as 1/q4. This is the standard
Rutherford behavior, which arises from t-channel gluon
exchange. In the calculation of the shear viscosity the
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differential cross section is weighted by an extra factor of
(1 − cos θ), where θ is the scattering angle. The quantity
σT = ∫

d cos θ (dσ)/(d cos θ)(1 − cos θ) is known as the
transport cross section. The transport cross section diverges
logarithmically at small θ . This divergence is regulated by
medium corrections to the gluon propagator, see equations (39)
and (40). Electric gluon exchanges are screened at a distance
rD ∼ m−1

D , and the electric contribution to σT is proportional
to g4 log(mD). There is no static magnetic screening, but
gluons with energy ω are dynamically screened at a distance
r ∼ (ωm2

D)−1/3. After integrating over energy the magnetic
contribution also scales as g4 log(mD). Combining electric and
magnetic t-channel exchanges gives [16, 17]

η = k
T 3

g4 log(µ∗/mD)
, (133)

where k = 27.13. We will specify the coefficient µ∗

below. This result corresponds to an optimized trial function
χ(p) = A(p)pij vij , but the simple approximation A(p) ∼
const agrees with the exact result to better than 1%. In
order to compute the shear viscosity of a QGP we have to
include t-channel diagrams for quark–quark and quark–gluon
scattering. The result is of the same form as equation (133)
with [17]

k(Nf) = (27.13, 60.81, 86.47, 106.67), (Nf = 0, 1, 2, 3).

(134)

Note that k increases with Nf faster than the total number of
degrees of freedom. This is related to the fact that quarks
have smaller color charges than gluons, which implies that
quark–gluon scattering amplitudes are suppressed relative to
gluon–gluon amplitudes.

In order to make an absolute prediction for the
shear viscosity we need to determine the constant µ∗ in
equation (133). This coefficient receives contributions from
s and u-channel gluon exchanges. These contributions are
straightforward to include. A more difficult problem arises
from the fact that µ∗ is sensitive to soft (q ∼ mD) binary
2 → 2 scattering followed by collinear 1 → 2 splitting.
The inverse mean free time for this process is given by
τ−1 ∼ g4T 3/m2

D × g2 ∼ g4T , comparable to the transport
mean free time τ−1

tr ∼ T 4/η ∼ g4T . Since the scattering
angle is zero collinear splitting does not directly contribute to
shear viscosity, but it degrades the momentum and assists in
randomizing the momentum distribution in subsequent binary
collisions.

The difficulty with collinear splitting is that the formation
time of the emitted gluon is of order 1/(g2T ). This is
the same order of magnitude as the quasi-particle lifetime
given in equation (43), which implies that kinetic theory is
breaking down. Arnold et al showed that if interference
between subsequent gluon emission processes, the Landau–
Pomeranchuk effect, is taken into account an effective
Boltzmann equation with 2 → 2 and 1 → 2 collision terms
can be derived [120]. Arnold et al find [18]

µ∗(Nf = 0) = 2.765 T . (135)

They also show thatµ∗ is only weakly dependent on the number
of flavors, µ∗(Nf = 3) = 2.957 T , and compute additional
terms in an expansion in inverse logarithms of µ∗/mD.

The entropy density of the QGP is given by

s = 2π2

45

(
2(N2

c − 1) +
7

8
4Nf

)
T 3. (136)

Higher order corrections to the entropy density are large, but
the situation in the regime T � 2Tc can be improved using
resummation schemes, see figure 1. The resummed entropy
differs from the free gas result by no more than 15% for
T > 2Tc. The magnitude of higher order corrections to the
viscosity is not known, but next-to-leading order results for the
heavy quark diffusion constant suggest that higher corrections
to transport coefficients are large [121].

The leading order QCD result is shown in figure 4.
Clearly, η/s is strongly dependent on the coupling, and without
performing higher order calculations it is not clear what value
of αs one should use at a given temperature. An interesting
perspective is provided by exact results for η/s in the strong
coupling limit of N = 4 SUSY Yang–Mills theory, see
section 4. These results can be compared to weak coupling
calculations based on kinetic theory [123]. The weak coupling
result for η/s in the N = 4 theory is smaller than the
corresponding ratio in QCD by a factor ∼ 1/7. This is related
to the fact that in the N = 4 theory all states are in the adjoint
representation, and that the theory contains extra scalars. Both
of these differences lead to larger cross sections.

Weak and strong coupling results for η/s as a function of
the ‘t Hooft coupling λ = g2Nc in SUSY Yang–Mills theory
are shown in the right panel of figure 4. We observe that
η/s in the N = 4 theory reaches the strong coupling limit
when extrapolated to a ‘t Hooft coupling λ = g2Nc � 12.
As discussed in section 2.5 this is a large Nc result. Naively
extrapolating to Nc = 3 the value λ � 12 corresponds to
αs = g2/(4π) � 0.3. We also note that the value of ‘t Hooft
coupling at which the weak coupling result for η/s reaches
the strong coupling limit is larger than the coupling λ ∼ 5 at
which the corresponding expression for the entropy reaches the
strong coupling limit s/s0 = 0.75, see figure 1. If we consider
s/s0 = 0.8 to be the ‘QCD-like’ point, then we should restrict
ourselves to λ < 5. In this case η/s does not drop below 0.5.

3.6. Kinetic theory: Other transport properties

3.6.1. Bulk viscosity. Bulk viscosity measures the amount of
energy dissipated as a fluid is slowly expanded or compressed.
In a conformally invariant system changing all the momenta
and positions by a constant scale factor connects equilibrium
states and the bulk viscosity must vanish. In kinetic theory
bulk viscosity is typically sensitive to processes that change
the particle number or the composition of the system. The
kinetic theory prediction for bulk viscosity is proportional
to the corresponding relaxation time, and to deviations
from conformality in the equation of state. Depending on
the interplay between these two effects, the temperature
dependence of the bulk viscosity can differ dramatically
between different fluids, and between shear and bulk viscosity.

19



Rep. Prog. Phys. 72 (2009) 126001 T Schäfer and D Teaney

Figure 4. Shear and bulk viscosity to entropy density ratio in QCD (left panel) and N = 4 supersymmetric Yang–Mills theory (right panel).
The left panel shows the shear and bulk viscosity to entropy density ratio in QCD with Nf = 3 flavors as a function of the strong coupling
constant αs, from [122]. The right panel shows the ratio η/s in N = 4 SUSY Yang–Mills theory as a function of the ‘t Hooft coupling
λ = g2Nc. The solid line shows the weak coupling result, the dotted line is an extrapolation of the weak coupling result to the strong
coupling regime, the dashed line is λ → ∞ result from the AdS/CFT correspondence and the dashed–dotted line is the leading correction to
the strong coupling result, from [123].

There are many fluids for which bulk viscosity is not an
important source of dissipation, either because they are
approximately incompressible, like water, or because the fluid
is compressible but approximately scale invariant, like the
QGP. On the other, we have seen that bulk viscosity is the
dominant source of dissipation near a second order phase
transition, see equation (98).

The Fermi gas at unitarity is exactly conformal and the
bulk viscosity in the normal phase vanishes. In the low
temperature phase conformal invariance requires ζ1 = ζ2 = 0,
but ζ3 can be non-zero [124]. This coefficient was recently
computed in [125]. The result is sensitive to non-linearities
in the phonon dispersion relation. If 1 → 2 phonon splitting
is kinematically allowed then ζ3 ∼ T 3, where the constant
of proportionality depends on the curvature of the dispersion
relation. The bulk viscosity of liquid helium was calculated by
Khalatnikov [25]. As in the case of shear viscosity the main
contribution comes from phonons and rotons. Khalatnikov
finds that ζ2, the bulk viscosity of the normal component,
is about an order of magnitude bigger than η. The other
two bulk viscosities, ζ1 and ζ3, involve motion of the normal
fluid relative to the superfluid. They have different physical
units, and cannot be directly compared with ζ2. The linear
combination that appears in the damping of second sound is
αζ = ζ2 +ρ2ζ3 −2ρζ1. At normal density there are significant
cancellations between these terms and ζ2 ∼ (ρ2ζ3 − 2ρζ1).
The bulk viscosity of helium vapor is small. Note that the bulk
viscosity of most gases is dominated by internal excitations,
such as rotational and vibrational modes.

The bulk viscosity of a pion gas at low temperature was
computed by Chen and Wang [126]. They find that the bulk
viscosity scales as ζ ∼ T 7/f 4

π (up to logarithms). The bulk
viscosity of the high temperature QGP phase was calculated
by Arnold et al [122]. The result is

ζ = Aα2
s T

3

log(µ∗/mD)
, (137)

where A = 0.443 and µ∗ = 7.14 T in pure gauge QCD.
In full QCD with Nf = 3 quark flavors A = 0.657 and
µ∗ = 7.77 T . We observe that ζ scales as α4

s × η. The trace
anomaly ε − 3P is proportional to α2

s , so bulk viscosity scales
like the shear viscosity times the second power of the deviation
from conformality. This is in agreement with a simple formula
proposed by Weinberg [127], ζ ∼ (c2

s − 1
3 )2η. However,

Weinberg’s relation is known to be violated in some theories,
see [128] for an example.

3.6.2. Diffusion. The diffusion of impurities in liquid helium
has been studied in some detail. Of particular interest is the
behavior of dilute solutions of 3He in 4He. At low temperatures
the diffusion constant is determined by scattering of phonons
and D ∼ 1/T 7 [25, 129]. At high temperatures diffusion is
governed by scattering between atoms and D ∼ T 1+s with
s = 1

2 + 2
ν−1 for a 1/rν potential [118]. We conclude that the

temperature dependence of the diffusion constant is identical to
that of the shear viscosity. In the case of the unitary Fermi gas
one can make use of the fact that the number of spin up and spin
down fermions is separately conserved, and study the diffusion
of minority spin down particles in a background of majority
spin up fermions [130]. This process contains important
information about the interaction between the different spin
states, but it is not directly related to the viscosity of the spin
balanced gas.

The diffusion constant for heavy quarks in a QGP can be
determined by computing the mean square momentum transfer
per unit time, see section 3.2. For approximately thermal heavy
quarks the diffusion constant is dominated by heavy quark
scattering on light quarks and gluons, qQ → qQ and gQ →
gQ. As in the case of shear viscosity the most important
Feynman diagrams involve t-channel gluon exchanges. Since
the heavy quark is slow the dominant interaction is electric
gluon exchange and the cross section is regularized by Debye
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screening. The leading order result is [131, 132]

D= 36π

CFg4T

[
Nc

(
log

(
2T

mD

)
+c

)
+

Nf

2

(
log

(
4T

mD

)
+c

)]−1

,

(138)

where CF = (N2
c − 1)/(2Nc) and c = 0.5 − γE + ζ ′(2)/ζ(2).

We note that the diffusion constant has the same parametric
dependence on the coupling as the shear viscosity. The
relaxation time η−1

D scales as MQ/(T 2g4 log(g), which is
larger by a factor MQ/T compared with the hydrodynamic
relaxation time η/(sT ) ∼ 1/(T g4 log(g)). This is confirmed
by numerical estimates, which give η−1

D � 6.7/T � 7 fm
for charm quarks at T = 200 MeV [132]. For comparison, the
hydrodynamic relaxation time is η/(sT ) � 1 fm (for η/s � 1).

3.6.3. Thermal conductivity. Thermal transport in superfluid
helium is a complicated process. In a superfluid heat transport
can take place by a process similar to internal convection where
the superfluid moves relative to the normal fluid. Only the
normal fluid carries entropy and as a result heat is carried along
with the normal component. The convective contribution to
heat flow is controlled by the shear viscosity of the normal
fluid. Within the normal fluid heat is carried by phonons and
rotons. Khalatnikov showed that there is no heat transport in a
gas of phonons with exactly linear dispersion relation [25]. The
thermal conductivity of the normal fluid is dominated by rotons
and phonon–roton scattering. This situation is somewhat
similar to heat transport in a solid. At very low temperatures,
heat transport is ballistic and the entropy is carried by a net
flow of phonons along the temperature gradient. At higher
temperatures non-linearities in the phonon dispersion relation
and the ‘umklapp’ process play a role.

The situation at high temperatures is much simpler. Heat
flow is a diffusive process, and the thermal conductivity is
determined by scattering between atoms. A simple mean free
path estimate analogous to equation (2) is

κ = 1
3ncpplmfp, (139)

where cp is the specific heat at constant pressure. This estimate
suggests that the ratio of the shear and thermal diffusion
constants, the Prandtl number

Pr = ηcp

κ
, (140)

is close to one. At large T the thermal conductivity of helium
scales as T s with s = 1

2 + 2
ν−1 , as in the case of shear viscosity.

The Prandtl number is approximately constant, Pr � 2.5.
Most studies of the thermal conductivity of a QGP have

focused on the regime of very high baryon density. In the limit
µ � T , where µ is the quark chemical potential, the thermal
conductivity scales as κ ∼ µ2/α2

s [133]. In the opposite limit
T � µ there is an old relaxation time estimate κ ∼ T 4/(α2

s µ
2)

[9]. Note that while κ diverges as µ → 0, the dissipative
contribution to the baryon current, equation (81), is finite.

4. Holography

In kinetic theory conserved charges are carried by well-
defined quasi-particles. The time between collisions is long
compared with the quantum mechanical scale, h̄/T , and
quantum mechanical interference between scattering events
is not important. In the strong coupling limit quantum
mechanical effects are large and quasi-particles lose their
identity. A powerful new tool to study transport phenomena
in this regime is the AdS/CFT correspondence [20, 134, 135].

The AdS/CFT correspondence is referred to as a
holographic duality—it relates string theory on a certain higher
dimensional manifold to four-dimensional gauge theory on the
boundary of this space. The correspondence is simplest if the
field theory is strongly coupled. In this limit the string theory
reduces to a classical gravitational theory. The holographic
correspondence then implies that a four-dimensional field
theory is capable of encoding gravity in five dimensions. The
idea of a correspondence between field theories and higher
dimensional gravity originated from developments within
string theory, but there are precursors to the correspondence
that come from the physics of black holes. It has been known
for some time that black holes carry entropy, and that the
entropy is proportional to the area, and not the volume of the
black hole. It was also known that the evolution of black holes
respects the second law of thermodynamics, and that it can be
described by treating the event horizon as a physical membrane
with well-defined transport properties like electric conductivity
and shear viscosity [136].

The best studied example of the AdS/CFT correspondence
is the equivalence between N = 4 Super Yang–Mills theory
(see section 2.5) and string theory on AdS5 × S5. For our
purposes the dynamics only involves AdS5. This is a five-
dimensional space, which in AdS/CFT terminology is called
the bulk. The dual field theory exists on the boundary of
this space, which is a 3+1-dimensional Minkowski space.
The gauge gravity duality works as follows: classical gravity
equations of motion are solved in the 4+1-dimensional curved
geometry of AdS5. Fluctuations of gravitational fields in the
bulk induce charges on the 3 + 1-dimensional boundary. The
dynamics of 3+1-dimensional boundary theory is the strongly
coupled CFT which we wish to study. Transport properties
of the boundary theory can be determined by perturbing the
boundary charges with an external field which then propagates
into the bulk. The response of the induced charges to the
applied field determines the transport coefficients. For each
conserved charge of the field theory there is a corresponding
field in the gravitational theory. The field corresponding
to the stress tensor T µν is the graviton hµν , and the field
corresponding to the conserved R charge current J

µ

R is the
five-dimensional Maxwell field Aµ.

The AdS/CFT setup is analogous to a parallel plate
capacitor. Electromagnetic fields in the bulk, the space
between the plates, induce surface charges on the boundary.
Fluctuations of the bulk field create fluctuations of the surface
charges, and correlation functions of the surface charges can be
related to normal modes of the bulk field. What is remarkable
about the AdS/CFT correspondence is that the gravitational
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theory in the bulk defines a local field theory on the boundary,
and that there are classical gravitational field configurations
that correspond to field theories at a finite temperature. These
configurations can be used to study dissipative phenomena in
the boundary field theory.

The gravitational field configuration relevant to field
theories at a finite temperature is an AdS5 black hole. In the
black hole geometry the gravitational field is non-zero as we
approach the boundary of the 4 + 1-dimensional space. This
gravitational field is balanced by a non-zero stress tensor in
the boundary field theory—the gravitational setup corresponds
to the dynamics of a field theory with a non-zero density
matrix. The event horizon of the back hole spans three spatial
dimensions in the bulk and radiates at the Hawking temperature
TH. The black hole fills AdS5 with a bath of gravitational
radiation, and the temperature of the heat bath is identified with
the temperature of the boundary field theory. The dynamics of
graviton propagation in the black hole background determines
stress tensor correlators at a finite temperature in the boundary
field theory. These correlators determine the shear viscosity
according to Kubo formulae.

There is a vast amount of literature on the AdS/CFT
correspondence. A detailed review with extensive references
is [137], and more pedagogical reviews can be found in
[138–140]. Reviews with an emphasis on transport phenomena
are [28, 29]. Here we will concentrate on a few selected issues
that are relevant to this review. First, we will explain the
calculation of the shear viscosity and the spectral weights
of strongly coupled fluids. Then we will comment on the
conjectured viscosity bound and the calculation of other
transport properties. Finally, we will review the derivation of
higher order fluid dynamics using holography, and summarize
some recent attempts to extend the correspondence to non-
relativistic theories.

4.1. The equation of state from holography

AdS5 × S5 is the product of five-dimensional Anti-deSitter
Space (AdS) and a five-sphere. Anti-deSitter space is a
simple solution of the source free Einstein equation with a
negative cosmological constant. Note that, on large scales, our
universe is approximately a four-dimensional deSitter space.
The geometry of AdS5 × S5 is described by the metric

ds2 = r2

L2

(−dt2 + dx2
)

+
L2

r2
dr2 + L2d�2

5. (141)

Here, d�2
5 is the metric of the five-sphere and (t, x, r) are the

coordinates on AdS5. The coordinate r is referred to as
the ‘radial’ AdS5 coordinate. The limiting value r → ∞
is the ‘boundary’ of AdS5. A fixed r slice of AdS5 is a 3 + 1-
dimensional flat Minkowski space, but the five-dimensional
space is curved, with a constant negative curvature. L is
the corresponding curvature radius. We require that L is
large compared with the string length �s which guarantees
the validity of the classical approximation. In the AdS/CFT
correspondence L is related to the coupling constant of the
N = 4 gauge theory, λ ≡ g2

YMNc, through the relation
(L/�s)

4 = λ. The classical approximation to the gravitational

theory is reliable if the field theory is strongly coupled. The
classical fields can be expanded in S5 spherical harmonics. At
strong coupling higher harmonics are separated by a large gap,
and we will ignore S5 from now on.

The metric of an AdS5 black hole is

ds2 = r2

L2

(−f (r) dt2 + dx2
)

+
L2

f (r)r2
dr2, (142)

where f (r) = 1 − (r0/r)4. The black hole horizon is a 3 + 1-
dimensional surface at r = r0. The horizon radius is related to
the Hawking temperature of the black hole by r0 h̄/L2 = πTH.
This formula is an example of a general radius–energy relation
in the AdS/CFT correspondence. A modification of the AdS
geometry at radius r corresponds to a modification of the field
theory at an energy scale rh̄/L2. It is convenient to perform a
change in variables u ≡ (r0/r)2 and write the metric as

ds2 = (πT L)2

u

(−f (u) dt2 + dx2
)

+
L2

4u2f (u)
du2, (143)

where f (u) = 1 − u2. Now the horizon is at u = 1. The
boundary limit is found by evaluating all quantities at u = ε

and then taking the boundary limit ε → 0.
As discussed in the introduction to this section, the

modified metric implies that there is an induced stress tensor
at the boundary, u = ε. This is an important point, and we
will compute the induced stress tensor in two different ways.
First, we will determine it by varying the action with respect
to the boundary metric. This is the standard method by means
of which one can determine the source of a given gravitational
field. The only unusual ingredient is the fact that the induced
stress tensor is located on the boundary. We will provide an
alternative derivation based on the analogy with the induced
surface charge in electrodynamics below.

The boundary metric gµν is related to the metric of the
five-dimensional theory Gµν by the AdS scale factor

gµν ≡ u

(πT L)2
Gµν. (144)

Here and below Greek letters denote four-dimensional indices
(xµ) = (t, x, y, z) while Roman letters denote five-
dimensional indices (xM) = (xµ, u). Near the boundary the
metric can be written as

gµν = go
µν + u2Bµν + O(u4), (145)

where go
µν is interpreted as the metric of N = 4 gauge theory.

Usually go
µν is simply ηµν . We will see that the coefficient of

u2 determines the induced stress tensor on the boundary.
The induced stress tensor is

〈
Tµν

〉 = lim
ε→0

−2√−g

δS

δgµν

∣∣∣∣
u=ε

, (146)

where
√−g = (−det gµν)

1/2. The action is a sum
of the Einstein–Hilbert action, the Gibbons–Hawking–York
boundary term and counter terms which are needed to render
the action finite in the limit u → 0,

S ≡ SEH + SGH + SCT. (147)
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The Einstein–Hilbert action is

SEH = 1

2κ2
5

∫
M

d5x
√−g (R + 2�) , (148)

where R is the Ricci scalar and � = 6/L2 is the cosmological
constant. The five-dimensional Newton constant 1/κ2

5 is
related to the number of colors in the field theory, 1/κ2

5 =
N2

c /(4π2L3). The Gibbons–Hawking–York [141, 142]
boundary action is

SGH = 1

2κ2
5

∫
∂M

d4x
√−γ 2K, (149)

where we have defined the boundary metric

γµν = Gµν

∣∣
u=ε

, (150)

and K is the trace of the extrinsic curvature7. The boundary
term guarantees that the variation of the action with respect to
the five-dimensional metric gives the Einstein equations in the
bulk provided the variation vanishes on the boundary. Without
the boundary action one also has to require that derivatives of
the variation vanish on the boundary, see [143]. Finally, the
counter term

SCT = − 6

L

∫
∂M

d4x
√

γ , (151)

is needed to render the action finite in the limit u → 0. Note
that the counter term is independent of temperature. With these
definitions, the variation relates the stress tensor to the extrinsic
curvature:

〈
Tµν

〉 = − 1

κ2
5

lim
u→0

(πT L)2

u

[
Kµν − Kγµν +

3

L
γµν

]
. (152)

Substituting the black hole metric equation (143) and using the
definition of the extrinsic curvature we have

〈
Tµν

〉 = diag(ε, p, p, p),
ε

3
= p = N2

c

8π2
(πT )4.

(153)
We find that ε = 3P , as expected for a scale invariant theory.
We can compare the coefficient of T 4 with its value in the non-
interacting theory. N = 4 SUSY QCD has 8(N2

c − 1) � 8N2
c

bosonic and fermionic degrees of freedom. The contribution
of a massless fermion to the pressure is 7/8 of that of a massless
boson, see equation (35). Equation (153) shows that the
pressure in strongly coupled N = 4 SUSY QCD is three
quarters of the Stefan–Boltzmann value.

We can also obtain equation (152) in analogy with the
induced surface charge on a capacitor plate. Consider a plate
that spans the x–y plane. The surface charge density is related
to the jump of electric field across the plate

σ =
[
Ez
]
, (154)

where [Ez] = Ez
+ − Ez

− notates the jump. The analogous
formulae in the gravitational theory are known as junction

7 More explicitly, K = Gµν∇µnν with nM an outward directed normal to the

boundary of the AdS space, nM = −
√

G55δ5M . Note that Kµν = ∇µnν =
−nu�

u
µν = nu∂uGµν .

conditions [144]. Integrating the Einstein equations across
a Gaussian pill box relates the surface stress τµ

ν to the jump in
the extrinsic curvature

τµ
ν = − 1

κ2
5

[
Kµ

ν − Kδµ
ν

]
. (155)

Thus the particular combination of extrinsic curvature plays an
analogous role in the normal electric field, i.e. a combination of
−Kµν = nu�

u
µν is the analog of n·E. If we have a semi-infinite

metal block with surface charge density σ , then the outgoing
electric field is related to the surface charge Ez = σ . By
analogy, we associate the outgoing flux of extrinsic curvature
at u = ε with the stress tensor in the gauge theory:

√−gT µ
ν = − 1

κ2
5

√
γ
(
Kµ

ν − Kδµ
ν

)
. (156)

Then taking the boundary limit u → 0, we tentatively define
the stress:

T µ
ν = − 1

κ2
5

lim
u→0

(πT L)4

u2

(
Kµ

ν − Kδµ
ν

)
. (157)

Substituting the black hole AdS metric into this expression
gives a divergent result. Nevertheless, the difference between
this stress and the stress determined with the vacuum AdS
metric equation (141) is finite:

〈
T µ

ν

〉− 〈
T µ

ν

〉
vacuum

= − 1

κ2
5

lim
u→0

(πT L)4

u2

×
(

Kµ
ν − Kδµ

ν +
3

L
δµ

ν

)
. (158)

After lowering the indices of Kµ
ν with γµν = [(πT L)2/u] ηµν ,

this equation is the same as derived previously in
equation (152).

4.2. Shear viscosity from holography

In the previous section we computed the average stress tensor
on the boundary, 〈T µν(x, t)〉, which is a one-point function
of the CFT. By Kubo’s formula, equation (100), the shear
viscosity can be related to a retarded two-point function.
We will determine this function using linear response theory.
Momentarily ignore the fifth dimension and consider turning
on a time varying gravitational field ho

xy(ω) in the usual four-
dimensional field theory. This time varying gravitational field
induces a deviation from the equilibrium stress tensor in the
same way that a time varying electric field induces a net current.
According to linear response theory, the expectation value of
the stress energy tensor is〈

Txy(ω)
〉
ho

xy

= T eq
xy (ω) + GR(ω) ho

xy(ω), (159)

where T
eq
xy = (ε + p)uxuy + pgxy = pho

xy(ω) is the
equilibrium stress tensor and GR(ω) is the equilibrium retarded
correlator defined in equation (99). Kubo’s formula dictates
the functional form of this correlator in the small frequency
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limit, GR(ω) = −iωη. Thus the average stress tensor in the
presence of a time varying gravitational field is〈

Txy(ω)
〉
ho

xy

= pho
xy − iωη ho

xy(ω). (160)

Now consider the small fluctuations of the metric field
Hxy(ω, u) around the black hole metric equation (143) of
the five-dimensional theory. The equation of motion for the
gravitational fluctuation is found by linearizing the Einstein
equations

RMN − 1
2GMN (R + 2�) = 0. (161)

After a modest amount of algebra, the Rxy equation becomes
an equation for hxy ≡ uHxy(ω, u)/(πT L)2:

h′′
xy(ω, u) − 1 + u2

uf
h′

xy(ω, u) +
ω2

(2πT )2uf 2
hxy(ω, u) = 0,

(162)
where the primes denote derivatives with respect to u. This is a
second order linear differential equation with regular singular
points in the physical domain at the horizon u = 1 and the
boundary u = 0. Solving equation (162) near the black
hole horizon u = 1, we determine that the fluctuation of the
metric is a linear combination of two solutions, hxy(ω, u) ∼
(1 − u)∓iω/4πT . These solutions describe the gravitational
wave propagating into (−) and out of (+) the black hole,
respectively. The infalling solution is the physically relevant
retarded solution. Near the boundary u → 0 (or r → ∞) the
gravitational field is also a linear combination of two solutions:

hxy(ω, u) = ho
xy(ω) (1 + · · ·) + B(ω) u2 (1 + · · ·) , (163)

where · · · denotes the terms that vanish as u → 0. The
two modes are called the non-normalizable mode and the
normalizable mode. The non-normalizable mode is constant as
r → ∞ while the normalizable mode falls as 1/r4. Inserting
the metric perturbation equation (163) into equation (152) the
average stress tensor is〈

Txy(ω)
〉 = p ho

xy(ω) + (ε + p) B(ω), (164)

with the previously defined energy density and pressure,
equation (153). We observe that the coefficient of the non-
normalizable mode, ho

xy , can be interpreted as the external
gravitational field applied to the gauge theory, while the
coefficient of the normalizable mode, B(ω), is proportional
to the induced stress tensor in the boundary theory.

For an arbitrary value of B(ω) the general linear
combination of solutions near the boundary would approach
a linear combination of the infalling and outgoing solutions
near the horizon. Thus the coefficient B(ω) should be
adjusted so that only the infalling solution (1 − u2)−iω/4πT

is present near u = 1. In general, the required B(ω)

has to be determined numerically. For small ω however, a
straightforward calculation shows that to linear order in ω the
solution which is infalling at the horizon is

hxy = ho
xy(ω)(1 − u)−iω/4πT

[
1 − iω

4πT
log(1 + u) + O(ω2)

]
.

(165)

Expanding this functional form near the boundary we find
B(ω) = −iω/(4πT ). Then using ε + p = sT and comparing
the functional forms in equations (160) and (164) we conclude
that

〈
Txy(ω)

〉 = pho
xy − iωηho

xy with

η

s
= 1

4π
. (166)

Remarkably, the strong coupling limit of the shear viscosity
is small and independent of the coupling. The difference
as compared with the weak coupling result becomes even
clearer if one considers the spectral function. As described
in section 3.4 the Kubo formula relates the shear viscosity to
the zero energy limit of the stress-energy spectral function.
In weak coupling QCD the spectral function has a narrow
peak near zero energy which reflects the fact that momentum
transport is due to quasi-particles that are almost on-shell. The
height of the transport peak is governed by the kinetic theory
result for the shear viscosity. Kubo’s formula implies that
ρ(ω)/ω ∼ T 3/g4 as ω → 0. The width can be reconstructed
from the f -sum rule

T

∫ �

0

dω

ω
ρxyxy(ω) = T (ε + P)

5
, (167)

where g4T � � � g2T . Since the height of the transport
peak is T 3/g4, the width must be g4T . The high energy part
of the spectral density can be computed from the one-loop
correlation function. The result is ρ(ω) ∼ ω4. A schematic
picture of the spectral function is shown in figure 5(a).

In the strong coupling limit the width of the transport
peak becomes bigger and the height becomes smaller. In
N = 4 SUSY Yang–Mills the infinite coupling limit can
be determined as outlined above [147, 148]. Specifically, the
spectral function may be found by determining GR(ω) from the
numerical coefficient B(ω). The result is shown in figure 5(b).
Clearly, the transport peak has completely disappeared, and
there is no possibility of a quasi-particle interpretation of
momentum transport. Whether the spectral function of the
QGP near Tc looks more like figure 5(a) or (b) will have to be
settled by numerical calculations on the lattice, see section 3.4.
It is interesting to note that numerical calculations of the shear
viscosity, which require the determination of the zero energy
limit of ρ(ω)/ω, are easier in the case of strong coupling than
they are for weak coupling.

4.3. The KSS bound

The calculation of the shear viscosity has been extended to
other strongly coupled field theories with gravitational duals.
It was discovered that within a large class of theories the strong
coupling limit of η depends on the theory, but the ratio η/s does
not. This observation can be understood using Kubo’s formula
and the optical theorem. The optical theorem implies that the
imaginary part of a correlation function can be related to the
total cross section. As a consequence, the shear viscosity can
be expressed in terms of the total graviton absorption cross
section [19],

η = σabs(0)

2κ2
5

. (168)
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Figure 5. Spectral function ρxyxy(ω, k = 0) associated with the correlation function of the xy component of the energy momentum tensor.
The spectral function is normalized to entropy density s. (a) Schematic picture of the spectral density in weak coupling QCD or SUSY
Yang–Mills theory [145, 146]. (b) Spectral density in strong coupling SUSY Yang–Mills theory calculated using the AdS/CFT
correspondence, from [147].

The low energy limit of σabs is equal to the area A of the event
horizon, and the entropy density is given by the Hawking–
Bekenstein formula, s = A/(4G) where G = κ2

5 /(8π). The
ratio η/s is independent of A and κ5. More formal arguments
for the universality of η/s in the strong coupling limit of field
theories with holographic duals were given in [28, 149, 150].
Corrections to the infinite coupling limit of N = 4 SUSY
Yang–Mills theory were studied in [21, 151–153]. The result is

η

s
= 1

4π

{
1 +

15ζ(3)

λ3/2
+ · · ·

}
. (169)

The first correction is positive, as one would expect from the
fact that η/s → ∞ as λ → 0. Based on these observations,
Kovtun, Son and Starinets (KSS) conjectured that

η

s
� 1

4π
(170)

is a universal bound that applies to all fluids [10]. There is
no proof of this conjecture, and a number of authors have
attempted to construct counter examples. One possibility is a
weakly interacting non-relativistic fluid with an exponentially
large number of species or internal degrees of freedom, and
therefore a very large entropy [10, 154, 155]. These systems
are unusual because the timescale for thermal equilibration
vastly exceeds the timescale for momentum equilibration, and
because the fluid is not stable on very long timescales [156].
More recently, it was realized that theories with holographic
duals described by higher derivative gravity may violate the
KSS bound [157–160]. An explicit example was constructed
by Kats and Petrov [159]. They showed that in N = 2 SUSY
Sp(Nc) gauge theory with a certain combination of matter
fields

η

s
= 1

4π

(
1 − 1

2Nc

)
, (171)

up to corrections of O(λ−3/2). For λ3/2 � Nc � λ � 1 we
find a violation of the KSS bound in a controlled calculation.
However, there are bounds on the coefficients of higher
derivative terms, and a modified bound on η/s may yet
exist [160].

4.4. Other transport properties

There has been a large amount of work on applications of the
AdS/CFT correspondence to transport properties other than
the shear viscosity. Here we briefly summarize some results
relevant to this review. N = 4 SUSY Yang–Mills theory
has a conserved R-charge (see section 2.5), and we can study
transport in the presence of a finite R-charge density. Son
and Starinets find that the shear viscosity and entropy density
depend on the density, but the ratio η/s does not [161]. They
also determine the thermal conductivity

κ = 8π2T

µ2
η, (172)

as well as the R-charge diffusion constant. The heavy quark
diffusion constant was calculated in [162–164]. The result is

D = 2

πT

1√
λ

, (173)

which depends on the value of the coupling λ, and goes to zero
in the strong coupling limit. The functional dependence on
λ is unusual from the point of view of perturbation theory,
but typical of other AdS/CFT results. We also note that
in the strong coupling limit the ratio of the heavy quark
diffusion coefficient to the kinematic viscosity η/(sT ) goes
to zero, whereas this ratio is independent of the coupling in the
perturbative limit.

The bulk viscosity of N = 4 SUSY Yang–Mills theory
vanishes, but non-conformal deformations of the original
AdS/CFT correspondence have been studied. Buchel proposed
that in holographic models there is a lower bound on the
bulk viscosity, ζ � 2( 1

3 − c2
s )η, where cs is the speed of

sound [165]. Note that the weak coupling formula involves
the square of ( 1

3 − c2
s ). Gubser et al considered a number

of model geometries tuned to reproduce the QCD equation
of state, and find that ζ/s has a maximum near the critical
temperature where ζ/s � 0.05 [166]. Larger values of ζ/s

near Tc have been suggested based on lattice data for the QCD
trace anomaly [167].
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4.5. Hydrodynamics and holography

Up to this point we have used the AdS/CFT correspondence
to calculate the transport coefficients that appear in first order
hydrodynamics. However, AdS/CFT can be used to compute
the full correlation function, and not just the hydrodynamic
limit. An example is the spectral function shown in figure 5,
and similar calculations have been performed in other channels
as well. In this section we wish to discuss how the stress
tensor of the fluid relaxes to the Navier–Stokes form. This
process can be described by the second order terms introduced
in section 3.1.3. We will follow the method outlined in [77].

A static fluid at temperature T corresponds to a black
hole with a Hawking temperature TH = r0/(πL2). First we
switch to Eddington–Finkelstein coordinates, defining a new
time coordinate v = t +

∫ r dr L2/f r2. Then the metric is
regular at the event horizon of the black hole,

ds2 = 2 dv dr +
r2

L2

[−f (r) dv2 + r2 dx2
]
. (174)

Introducing four-dimensional coordinates xµ = (x0, x1, x2,

x3) = (v, x), a vector uµ = (1, 0) characterizing the local rest
frame and a scale parameter b characterizing the temperature
the metric becomes

ds2 = −2uµ dxµ dr +
r2

L2
[−f (br)uµuν dxµ dxν

+ r2Pµν dxµ dxν], (175)

where Pµν = uµuν + ηµν . The basic idea is to promote the
variables uµ and b to slowly varying functions of xµ. The
metric is then

ds2 =−2uµ(x)dxµdr

+
r2

L2

[−f (b(x)r)uµ(x)uν(x)dxµdxν +r2Pµν(x)dxµdxν
]

+ corrections due to gradients. (176)

Variations in uµ and b correspond to fluctuations in the local
fluid velocity and temperature. Substituting this form into the
Einstein equations, the corrections to the metric are determined
order by order in the gradients of uµ(x) and b(x). These
metric corrections lead to deviations of the boundary stress
tensor from an ideal fluid of precisely the form required by
hydrodynamics. Up to second order we can write

T µν = T
µν

0 + δ(1)T µν + δ(2)T µν + · · · , (177)

and each term has physical significance. At zeroth order

T
µν

0 = N2
c

8π2
(πT )4 (ηµν + 4uµuν) , (178)

which shows that ε = 3P and that the pressure is 3/4 of the
Stefan–Boltzmann value. At first order

δ(1)T µν = − N2
c

8π2
(πT )3σµν, (179)

where σµν is defined as in equation (80). This result shows
that η = N2

c πT 3/8. Combined with the zeroth order stress

tensor we find η/s = 1/4π , in agreement with previous results.
Finally, at second order

δ(2)T µν = ητII
[〈Dσµν〉 + 1

3σµν(∂ · u)
]

(180)

+λ1σ
〈µ
λ σ ν〉λ + λ2σ

〈µ
λ �ν〉λ + λ3�

〈µ
λ �ν〉λ,

where D = u · ∂ , and the vorticity �µν as well as the
transverse traceless tensor A〈µν〉 are defined in section 3.1.3.
The form of T

µν

(2) agrees with the general second order result
for a conformal relativistic fluid derived in [75]. The second
order coefficients are

τ� = 2 − ln 2

πT
, λ1 = 2η

πT
, λ2 = 2η ln 2

πT
, λ3 = 0.

(181)

We observe that the relaxation times are of order (πT )−1, the
shortest timescale characterizing the plasma.

4.6. Non-relativistic AdS/CFT correspondence

Given the role that the AdS/CFT correspondence has played in
improving our understanding of conformal relativistic fluids it
is natural to ask whether the correspondence can be extended
to non-relativistic scale invariant fluids like the dilute Fermi
gas at unitarity. There has recently been significant progress
in constructing holographic duals for non-relativistic field
theories [168–171].

The basic idea proposed in [168, 169] can be explained by
looking at the metric of d + 2-dimensional flat space:

ds2 = ηµν dxµ dxν = −2 dx+ dx− + dxi dxi, (182)

where we have introduced light cone coordinates (x+, x−, xi)

with X± = (x0 ± xd+1)/
√

2 and i = 1, . . . , d. Consider the
massless Klein–Gordon equation in this space. In light cone
coordinates (

−2
∂

∂x−
∂

∂x+
+

d∑
i=1

∂2

∂x2
i

)
φ(x) = 0. (183)

If the x−-direction is compactified, then the corresponding
momenta become discrete. We may write the lowest mode
as φ(x) ∼ e−imx−

ψ(x+, xi) and the equation for ψ becomes
the non-relativistic Schrödinger equation:(

2im
∂

∂x+
+ ∇2

)
ψ(x+, xi) = 0, (184)

where x+ plays the role of time. The symmetry group of this
equation is known as the Schrödinger group Schr(d). The
generators of the Schrödinger algebra include temporal and
spatial translations, rotations, Galilean boosts, non-relativistic
dilatations (which scale space and time by different factors,
x → sx and t → s2t), a special conformal transformation
(which scales t → t/(1 + λt) and x → x/(1 + λt)) and the
mass operator [172].

The goal is to extend this construction to spaces that
are asymptotically Anti-deSitter. The specific proposal in
[168, 169] is that the Schr(d) symmetry of a non-relativistic
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d + 1-dimensional CFT can be mapped onto the isometries of
the d + 3-dimensional metric

ds2 = r2
(−2 dx+ dx− − β2r2(dx+)2 + (dxi)2

)
+

dr2

r2
, (185)

which reduces to the metric of AdSd+3 for β → 0. This metric
can be realized in string theory by starting from AdS5 × X5,
where X5 is a generalized sphere called an Einstein–Sasaki
manifold, and by applying a certain series of transformations
that preserve solutions of the Einstein equations [170, 171,
173]. The resulting field theory is a 2 + 1-dimensional field
theory with infinitely many bosonic and fermionic fields, and
an unusual equation of state P ∼ T 4/µ2 [173]. This is still
quite far from the 3 + 1 unitary Fermi gas, but the theory
provides an explicit realization of a non-relativistic fluid which
satisfies η/s = 1/(4π).

The hydrodynamics of a holographic fluid with
Schrödinger symmetry was studied in more detail in [174].
An interesting observation that was made in this paper is that
the light cone reduction of a viscous relativistic stress tensor
automatically leads to a �∇T term in the non-relativistic energy
current. The thermal conductivity is completely fixed by the
shear viscosity and the equation of state,

κ = 2η
ε + P

ρT
. (186)

This result can be expressed in terms of the Prandtl number
Pr = cpη/κ , see equation (140). Using the equation of state of
a non-relativistic conformal fluid we find Pr = 1. The Prandtl
number of many gases is indeed close to one, see section 3.6.3,
but at strong coupling there is no obvious reason for the relation
Pr = 1 to hold.

5. Experimental determination of transport
properties

In this section we will review experimental determinations of
transport properties of liquid helium, cold atomic gases and
the QGP. We will focus on shear viscosity, since it is the main
focus of this review, and since it is the only transport property
for which good data are available for all three systems.

Liquid helium can be produced in bulk, and transport
properties can be measured using methods that were developed
for classical fluids. Cold atomic gases are produced in
optical or magneto-optical traps. These traps typically contain
105–106 atoms. Hydrodynamic behavior is observed when the
trapping potential is modified, or if the local density or energy
density is modified using laser beams. The QGP can only be
created for brief periods in collisions of ultra-relativistic heavy
ions. The system typically contains on the order of 103–104

quarks and gluons, and lasts for about 10 fm/c (3 × 10−23 s).
Hydrodynamic behavior may take place during the expansion
of the system and is reflected in the momentum spectra of
particles in the final state.
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Figure 6. Viscosity of 4He at atmospheric pressure as a function of
temperature. Data taken from Woods and Hollis-Hallett (green
squares) [175] and Heikkila and Hollis-Hallett (red circles) [176].
This figure was adapted from [8]. The solid line shows the theory of
Landau and Khalatnikov, see equation (125). The viscosity
minimum corresponds to η/n � 0.5 and η/s � 1.9.

5.1. Liquid helium

There are a number of techniques for measuring the viscosity
of fluids. Three popular instruments are the following:

(i) Capillary viscometers are based on Poiseuille flow.
Poiseuille’s formula states that the flow through a pipe
is inversely proportional to the shear viscosity, and
proportional to the pressure drop as well as the fourth
power of the diameter.

(ii) Rotation viscometers measure the torque on a rotating
cylinder or disk. The torque per unit length exerted by a
pair of coaxial infinitely long cylinders is proportional to
the shear viscosity and the difference between the angular
velocities, and proportional to the ratio R1R2/(R

2
1 − R2

2),
where R1,2 are the two radii.

(iii) Vibration viscometers determine the damping of an
oscillating sphere or plate. These devices have many
advantages but the data are more difficult to interpret,
because the damping depends not only on the viscosity,
but also on the density of the fluid.

Initial measurements of the viscosity of superfluid liquid
helium lead to an apparent contradiction between the results
obtained using different methods. Capillary flow viscometers
indicated vanishing viscosity below Tc [177], oscillatory
viscometers showed a drop in the shear viscosity [178]
and experiments with rotation viscometers yielded a rise in
viscosity below Tc [175]. The contradictions can be resolved
using superfluid hydrodynamics. The flow through a narrow
capillary is entirely a superflow, and not sensitive to viscosity.
Oscillation viscometers measure the product of viscosity and
normal density, which drops with temperature. Modern
measurements confirm the rise of viscosity below Tc which
is predicted by the phonon–roton theory, see figure 6. The
minimum viscosity of helium at normal pressure occurs just
below the λ point where η � 1.2 × 10−5 P. The minimum
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of η/s occurs at higher temperatures, close to the liquid–gas
phase transition. Recent measurements confirm the (weak)
divergence of the shear viscosity at the critical endpoint
of the liquid–gas phase transition predicted by dynamical
universality [179]. Experiments also find the expected (much
stronger) divergence of the heat conductivity near the lambda
point [44].

Once the shear viscosity and the heat conductivity are
determined sound attenuation experiments can be used to
measure the bulk viscosity (ζ2 in the superfluid phase) [180].
Below the λ point ζ2 � 10−4 P. Damping of second sound
determines a linear combination of ζ1 and ζ3 in the superfluid
phase [181], but the remaining linear combination is poorly
constrained.

5.2. Cold atomic gases

Dilute Bose or Fermi gases are studied using optical traps that
provide an approximately harmonic confinement potential

V (x) = m

2

∑
i

ω2
i x

2
i . (187)

The equilibrium density n0 can be determined from the
equation of hydrostatic equilibrium, ∇P0 = −n0∇V . Using
the Gibbs–Duhem relation dP = ndµ + s dT we can see that
this equation is solved by n0(x) = n(µ(x)), where n(µ) is the
equilibrium density as a function of the chemical potential and
µ(x) = µ − V (x). This result is known as the local density
(or Thomas–Fermi) approximation, introduced by Thomas
and Fermi in connection with the structure of heavy atoms.
For dilute fermions at unitarity the equation of state at zero
temperature is given by equation (27) and

n0(r ) = n0(0)

(
1 −

∑
i

x2
i

R2
i

)1/γ

, R2
i = 2µ

mω2
i

,

(188)
where µ is the chemical potential and γ = 2/3. The
chemical potential is related to the Fermi energy by the
universal parameter ξ introduced in equation (23). Transport
properties of strongly interacting dilute Fermi gases can be
extracted from a variety of experiments such as free expansion
from a deformed trap (elliptic flow) [182], damping of
collective oscillations [50, 183–186], sound propagation [187]
and expansion out of rotating traps [188]. In the following we
shall concentrate on damping of collective oscillations, as these
experiments have been most carefully analyzed [189–192].

We consider small oscillations around the equilibrium
density, n = n0 + δn. Since the damping is small, the
motion is approximately described by ideal hydrodynamics.
The compressibility at constant entropy is(

∂P

∂n

)
S

= (γ + 1)
P

n
. (189)

From the linearized continuity and Euler equation we get [193]

m
∂2v

∂t2
= −γ (∇ · v) (∇V ) − ∇ (v · ∇V ) , (190)

where we have dropped terms of the form ∇i∇jv that involve
higher derivatives of the velocity. This equation has simple
scaling solutions of the form vi = aixi exp(iωt) (no sum
over i). Inserting this ansatz into equation (190), we get
an equation that determines the eigenfrequencies ω. The
experiments are performed using a trapping potential with axial
symmetry, ω1 = ω2 = ω0, ω3 = λω0. In this case we find one
solution with ω2 = 2ω2

0 and two solutions with [193–195]

ω2 = ω2
0

{
γ + 1 +

γ + 2

2
λ2

±
√

(γ + 2)2

4
λ4 + (γ 2 − 3γ − 2)λ2 + (γ + 1)2

}
. (191)

In the limit of a very asymmetric trap (λ → 0) the
eigenfrequencies are ω2 = 2ω2

0 and ω2 = (10/3)ω2
0. The

mode ω2 = (10/3)ω2
0 is a radial breathing mode with a =

(a, a, 0) and the mode ω2 = 2ω2
0 corresponds to a radial

quadrupole a = (a, −a, 0).
The prediction of ideal hydrodynamics for the frequency

of the radial breathing mode agrees very well with
experimental results [183]. Damping of collective modes is
due to viscous effects. The dissipated energy is given by

Ė = −
∫

d3x

{
η(x)

2

(
∇ivj + ∇j vi − 2

3
δij∇ · v

)2

+ζ(x)
(
∇ · v

)2
+

κ(x)

T
(∇T )2

}
, (192)

where η(x), ζ(x) and κ(x) are the local shear viscosity, bulk
viscosity and thermal conductivity. In the unitarity limit the
system is scale invariant and the bulk viscosity in the normal
phase vanishes. In the superfluid phase there are three bulk
viscosities, ζ1, ζ2, ζ3, see equations (71) and (72). Scale
invariance implies ζ1 = ζ2 = 0, see section 3.6.1, and
the contribution of ζ3 vanishes if vs = vn. For isentropic
oscillations δT ∼ (δn/n)T . The solutions of equation (190)
satisfy δn(x) ∼ n0(x). This implies that there are no
temperature gradients, and that thermal conductivity does not
contribute to dissipation.

We conclude that damping is dominated by shear viscosity.
The energy dissipated by the radial scaling solutions is

Ė = − 2
3

(
a2

x + a2
y − axay

) ∫
d3x η(x), (193)

where E is a time average. The damping rate is given by the
ratio of the energy dissipated to the total energy of the collective
mode. The kinetic energy is

Ekin = m

2

∫
d3x n(x)v2 = mN

2

(
a2

x + a2
y

) 〈x2〉. (194)

In the case of a harmonic trapping potential the average 〈x2〉
can be extracted using a virial theorem, E = 2N〈V 〉 [196].
The damping rate is

− 1

2

Ė

E
= 2

3

a2
x + a2

y − axay

a2
x + a2

y

∫
d3x η(x)

mN〈x2〉 , (195)
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Figure 7. Viscosity to entropy density ratio of a cold atomic gas in
the unitarity limit, from [191]. These data points are based on the
damping data published in [185] and the thermodynamic data
in [198, 199]. The light blue band is an estimate of the systematic
uncertainty due to the breakdown of hydrodynamics near the surface
of the cloud. The dashed red and solid blue lines show the low and
high temperature limits of η/s, see equations (123) and (129). The
dashed line shows the conjectured viscosity bound η/s = 1/(4π).

where the factor 1/2 takes into account that the experiments
measure an amplitude, not energy, damping rate. We note that
the second factor on the rhs is 1/2 for the radial breathing mode
and 3/2 for the radial quadrupole mode. This dependence
provides an important check for the assumption that damping
is dominated by shear viscosity. Also note that if the shear
viscosity is proportional to the density or the entropy density
then Ė/E scales as N−1/3. Near the surface the density is
small and η(x) will approach the Boltzmann limit, which is
independent of density, see equation (129). This is a problem,
because the total volume of the system is infinite (at non-
zero temperature the density has an infinite range tail). This
difficulty is related to the breakdown of hydrodynamics near
the surface of the cloud. An elegant solution to the problem is
to include a finite relaxation time τη(r) = η/(n(r)kBT ) which
diverges in the low density limit [197].

In order to compare with the proposed viscosity bound
we will assume that the shear viscosity is proportional to the
entropy density, η(x) = αs(x). Note that in general α is a
function of T/TF and varies across the trap (TF depends on
density). This means that we will extract an average value of
α = η/s. We can write

η

s
= 3

4
ξ 1/2(3N)1/3

(
ω̄�

ω2
⊥

)(
E

ET =0

)(
N

S

)
, (196)

where �/ω⊥ is the dimensionless damping rate, ω̄ = ω
2/3
⊥ ω

1/3
z

is the mean trap frequency, (S/N) is the entropy per particle
and E/ET =0 is the equilibrium energy of the cloud in units
of the zero temperature value. Figure 7 shows η/s extracted
from the experimental results of the Duke group [185]. The
entropy per particle was also taken from experiment [199].
Similar results are obtained if the entropy is extracted from
QMC data. We observe that η/s in the vicinity of the transition
temperature is about 1/2. We also note that the extracted shear
viscosity roughly agrees with the high temperature, fermion
quasi-particle, kinetic theory result. The low temperature,
phonon dominated, result is not seen in the data, presumably

because the phonon mean free path is bigger than the system
size.

There are many caveats that one should keep in mind
regarding this analysis. First, we assume that shear viscosity is
the only source of dissipation. There is some evidence for this
assumption from comparisons of the damping rate of different
collective modes [200]. On the other hand, the dependence
of the damping rate on particle number predicted by viscous
hydrodynamics has never been demonstrated. Second,
hydrodynamics can only be applied in a relatively narrow
temperature regime T < (2 − 3)Tc. For higher temperatures
the observed frequencies cross over from hydrodynamic
behavior to a weakly collisional Boltzmann gas. This means
that the kinetic theory prediction for the shear viscosity,
equation (129), is reliable but the frequency of the collective
mode is too large for hydrodynamics to be applicable. Finally,
there is an issue that is specific to the scaling flows (vi ∼
aij xj ) considered here. Since the velocity field is linear
in the coordinates, the second derivative of the velocity
vanishes. This means that the viscous term in the Navier–
Stokes equation, ρv̇i ∼ ∇j [η(∇ivj + · · ·)], is only sensitive
to the density dependent part of the viscosity. But for a dilute
gas the viscosity is expected to be density independent, see
equation (129), so the dilute limit cannot be verified using
experiments that involve scaling flows.

There is clearly a need for additional experimental
constraints. The first indication of almost ideal hydrodynamic
behavior was the observation of elliptic flow by O’Hara et al
[182]. The experiment showed that if the trapping potential is
removed the gas expands rapidly in the transverse direction
while remaining nearly stationary in the axial. This is a
consequence of the much larger pressure gradient in the short
direction. The ideal hydrodynamics of this experiment was
worked out in [201] but the effects of viscosity have not been
carefully studied, in part because the data were taken at a single
temperature. More recently Clancy et al studied the expansion
of a gas cloud with an initial velocity field corresponding to
a scissors mode [188]. This is an interesting system, because
the initial velocity field is irrotational (∇ × v = 0) but carries
angular momentum. If the trapping potential is removed then
the transverse size will grow initially, but if the gas remains
irrotational then angular momentum conservation will force
the transverse expansion to slow down (and the rotation to
speed up) before the transverse and axial radii become equal
[202]. This phenomenon was observed in the experiment,
and an initial analysis leads to values of η/s close to 1/(4π)

[203, 204]. This result is very important, but some of the
caveats mentioned above still apply.

5.3. The QGP at RHIC

Cold quantum fluids can be studied in conditions that are very
close to equilibrium. The QGP, on the other hand, can only be
created in relativistic heavy ion collisions. In these collisions
the initial state is very far from equilibrium, and the system
size is limited by the size of the heaviest stable nuclei. The
applicability of hydrodynamics is not clear a priori. In this
section we will summarize some of the evidence that has been
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Figure 8. Geometry of a high energy heavy ion collision. The left panel shows the collision of two Lorentz contracted gold nuclei. The
beam direction is the z-axis. The right panel shows the same collision in the transverse plane. The impact parameter is along the x-axis, and
the remaining transverse direction is the y-axis.

obtained from experiments at the RHIC. These experiments
indicate that local equilibration takes place, that nearly ideal
fluid dynamics is applicable and that the shear viscosity to
entropy density ratio near Tc is within a factor of a few of the
KSS bound.

The collision energy in Au+Au collisions at RHIC is
100 GeV per nucleon, and the nuclei are Lorentz contracted
by a factor of γ � 100. The transverse radius of a Au nucleus
is approximately 6 fm/c and on the order of 7000 particles are
produced overall. The motion of the particles is relativistic,
and the duration of a heavy ion event is τ ∼ 6 fm. In order
for hydrodynamics to be applicable this time has to be large
compared with the equilibration time.

The main observables are the spectra dN/d3p of produced
particles. For momenta less than 2 GeV the spectra
roughly follow Boltzmann distributions with a characteristic
temperature close to the QCD critical temperature. The
first hint that the system is behaving collectively is the
existence of radial flow. Heavy particle spectra have
apparent temperatures that are larger than the temperatures
extracted from light particles. This can be understood
if there is a collective transverse expansion velocity v⊥
which boosts the observed transverse momenta by an amount
p⊥ ∼ mv⊥.

More dramatic evidence for hydrodynamics is provided
by the observation of elliptic flow in non-central heavy ion
collisions. The centrality of the collision is characterized by the
impact parameter b, the transverse separation of the two nuclei.
The magnitude of b can be determined experimentally by
selecting events with a given multiplicity of produced particles.
The uncertainty in the impact parameter determination is small
except in very peripheral bins [205]. The direction of the
impact parameter can be determined on an event by event basis
using the azimuthal dependence of the spectra. Imagine that
the impact parameter direction is already known. This defines
a coordinate system where z is along the beam axis and x is
along the impact parameter direction, see figure 8. We write
(px, py, pz) = (p⊥ cos(φ), p⊥ sin(φ), pz), and the particle

distribution can be expanded in Fourier components of φ:

p0
dN

d3p

∣∣∣∣
pz=0

= v0(p⊥)(1 + 2v2(p⊥) cos(2φ)

+2v4(p⊥) cos(4φ) + · · ·). (197)

For a typical mid-central collision with b � 6 fm the v2

harmonic, called the elliptic flow coefficient, is approximately
6%. In an actual event the reaction plane can be determined
(in principle) by plotting the distribution in φ relative to an
arbitrarily chosen axis, and then requiring that the distribution
has a maximum at φ = 0. This intuitive method to
determine the reaction plane forms the basis of the event
plane method. The result can be corrected for v2 fluctuations
and additional correlations among the produced particles.
Current analyses are not based on the event plane method
but use two, four and higher particle cumulants—see [206]
and references therein for a complete review. The scaling
of these cumulants with multiplicity demonstrates that one
can reliably extract collective flow down to small system
sizes. These measurements provide a unique opportunity to
study the approach to hydrodynamic behavior in a controlled
fashion [207].

Elliptic flow represents the collective response of the
system to pressure gradients in the initial state. At finite
impact parameter the initial state has the shape of an ellipse,
with the short axis along the x-direction and the long axis along
the y-direction. This implies that pressure gradients along
the x-axis are larger than along the y-axis. Hydrodynamic
evolution converts the initial pressure gradients to velocity
gradients in the final state. Elliptic flow is a direct measure
of collectivity. In particular, if the nucleus–nucleus event were
a simple superposition of proton–proton collisions then the
particle distribution would be azimuthally symmetric.

5.3.1. The Bjorken model. The application of hydrodynam-
ics to relativistic heavy ion collisions goes back to the work of
Landau [208] and Bjorken [209]. Bjorken discovered a simple
scaling solution that provides a natural starting point for more
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elaborate solutions in the ultra-relativistic domain. Consider
two highly relativistic nuclei moving with equal but opposite
momenta in the z-direction. In the relativistic regime the nat-
ural variable to describe the motion in the z-direction is the
rapidity

y = 1

2
log

(
E + pz

E − pz

)
. (198)

At RHIC the energy of the colliding nuclei is 100 + 100 GeV
per nucleon, and the separation in rapidity is y = 10.6.
Bjorken suggested that the two highly Lorentz contracted
nuclei pass through each other and create a longitudinally
expanding fireball in which particles are produced. In the
original model the number of produced particles is independent
of rapidity, and the subsequent evolution is invariant under
boosts along the z-axis. The evolution in proper time is the
same for all comoving observers. The flow velocity is

uµ = γ (1, 0, 0, vz) = (t/τ, 0, 0, z/τ), (199)

whereγ is the boost factor and τ = √
t2 − z2 is the proper time.

The velocity field (199) solves the relativistic Euler equation
(78). In particular, there is no longitudinal acceleration. The
remaining hydrodynamic variables are determined by entropy
conservation. Equation (77) gives

d

dτ
[τs(τ )] = 0 (200)

and s(τ ) = soτo/τ . For an ideal relativistic gas s ∼ T 3

and T ∼ 1/τ 1/3. Typical parameters at RHIC are τo �
(0.6–1.6) fm and To � (300–425) MeV. The combination
τoT

3
o is constrained by the final multiplicity, but individually τo

and To are not well constrained. We note that the corresponding
initial temperature is significantly larger than the critical
temperature for the QCD phase transition.

The temperature drops as a function of τ and eventually
the system becomes too dilute for the hydrodynamic evolution
to make sense. At this point, the hydrodynamic description is
matched with kinetic theory:

T hydro
µν ≡ T kin

µν =
∫

d� pµpνf (x, p, t). (201)

For an ideal fluid the distribution function is parametrized by
the local temperature and flow velocity:

f (x, p, t) =
∑

i

di

exp(p · u/T ) ± 1
, (202)

where i labels different particle species and di are the
corresponding degeneracies. Finally, the observed particle
spectra are given by(

p0
dN

d3p

)
i

= 1

(2π)3

∫
d�µ pµfi(x, p, t), (203)

where �µ is the normal vector on the ‘freezeout’ hypersurface,
the surface on which the matching between the hydrodynamics
and kinetic descriptions is performed.

In order to quantitatively describe the observed particle
distributions several improvements of the simple Bjorken

model are necessary. First, one has to include the transverse
expansion of the system [210]. Transverse expansion becomes
important at a proper time τ ∼ R/cs, where R is the (rms) size
of the nucleus and cs is the speed of sound. At very late times
the expansion becomes three dimensional,

s(τ ) ∼ 1

τ 3
, (204)

and T ∼ 1/τ . Transverse expansion is caused by transverse
pressure gradients. These gradients are sensitive to the initial
energy density of the system. One simple model for the initial
energy density (or entropy density) in the transverse plane is
the Glauber model. In the Glauber model the entropy density is

s(x⊥, b) ∝ TA(x⊥ + b/2)
[
1 − exp (−σNN TA(x⊥ − b/2))

]
+ TA(x⊥ − b/2)

[
1 − exp (−σNN TA(x⊥ + b/2))

]
, (205)

where b is the impact parameter,

TA(x⊥) =
∫

dz ρA(x) (206)

is the thickness function and σNN(
√

s) is the nucleon–nucleon
cross section. Here, ρA(x) is the nuclear density. The idea
behind the Glauber model is that the initial entropy density is
proportional to the number of nucleons per unit area which
actually collide. Other variants exist. For instance, one can
distribute the energy density according to the number of binary
nucleon–nucleon collisions—see [211] for a comparison.
A more sophisticated theory of the initial energy density is
provided by the color glass condensate (CGC) [212, 213].
This model leads to somewhat steeper initial transverse energy
density distributions.

Gradients in the transverse pressure lead to transverse
acceleration and generate collective transverse flow. The
collective expansion leads to a blue-shift of the transverse
momentum spectra of produced particles. For an azimuthally
symmetric source with temperature T and radial flow velocity
ur(r) we get [214](

p0
dN

d3p

)
i

= 2di

(2π)2
rm⊥

∫
r dr K1

(
m⊥uτ

T

)
I1

(
p⊥ur

T

)
,

(207)

where m⊥ =
√

p2
⊥ + m2

i is the transverse ‘mass’ and
K1(z), I1(z) are generalized Bessel functions. Using the
asymptotic form of the Bessel functions one can show that
the spectrum has the form

dN

dm2
⊥

∼ exp

(
−m⊥

Teff

)
, Teff = T

√
1 + vr

1 − vr

. (208)

This effect of transverse flow on the spectra is seen in the data.
At RHIC, transverse velocities at freezeout reach 0.6c. At finite
impact parameter the initial energy density in the transverse
plane is not azimuthally symmetric. The pressure gradient
along the direction of the impact parameter is larger than the
gradient in the orthogonal direction. The resulting anisotropy
of the transverse flow can be characterized by the elliptic flow
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parameter v2 defined in equation (197). The observed elliptic
flow is remarkable because v2 is a very direct measure of
transverse pressure. The observed radial flow is proportional
to the radial pressure and the expansion time, but elliptic flow
has to be generated early, when the system is still deformed.

5.3.2. Estimates of viscous corrections. We are now in a
position to discuss the role of dissipative effects. We begin with
the effect of shear and bulk viscosity on the Bjorken solution.
The scaling flow given in equation (199) is a solution of the
relativistic Navier–Stokes equation. Viscosity only modifies
the entropy equation. We get

1

s

ds

dτ
= − 1

τ

(
1 −

4
3η + ζ

sT τ

)
. (209)

We observe that dissipation is governed by the sound
attenuation length �s, see equation (84). The applicability of
the Navier–Stokes equation requires that the viscous correction
is small [9]:

η

s
+

3

4

ζ

s
� 3

4
(T τ). (210)

For the Bjorken solution T τ ∼ τ 2/3 grows with time, and this
condition is most restrictive during the initial phase. Using
τo = 1 fm and To = 300 MeV gives η/s < 0.6. For a three-
dimensional expansion T τ is independent of time. At very late
time the fluid is composed of hadrons, or pre-formed hadronic
resonances. In that case η ∼ T/σ , where σ is a hadronic cross
section. Then, for a three-dimensional expansion, the viscous
correction η/(sT τ) grows with proper time as τ 2. This shows
that the system has to freeze out at late time.

It is instructive to study the viscous contribution to the
stress tensor in more detail. At central rapidity we have (for
ζ = 0)

Tzz = P − 4

3

η

τ
, Txx = Tyy = P +

2

3

η

τ
. (211)

This means that the shear viscosity decreases the longitudinal
pressure and increases the transverse one. In the Bjorken
scenario there is no acceleration, but if pressure gradients
are taken into account shear viscosity will tend to increase
transverse flow. A similar effect will occur at finite impact
parameter, see figure 8. The shear viscosity reduces the
pressure along the x-direction and increases the pressure in
the y-direction. As a consequence there is less acceleration in
the x-direction, and elliptic flow is suppressed. This is the basic
observation that motivates attempts to extract shear viscosity
from the observed elliptic flow.

Viscosity modifies the stress tensor, and via the matching
condition (201) this modification changes the distribution
functions of produced particles. In [215] a simple quadratic
ansatz for the leading correction δf to the distribution function
was proposed:

δf = 3

8

�s

T 2
f0(1 + f0)pαpβ∇〈αuβ〉, (212)

where ∇〈αuβ〉 is a symmetric traceless tensor, see
equation (86). This form summarizes the results of more

involved kinetic calculations [17]. The modified distribution
function leads to a modification of the single particle spectrum.
For a simple Bjorken expansion and at large p⊥ we find

δ(dN)

dN0
= �s

4τf

(p⊥
T

)2
, (213)

where τf is the freezeout time. We observe that the dissipative
correction to the spectrum is controlled by the same parameter
�s/τ that appeared in equation (209). We also note that the
viscous term grows with p⊥. At RHIC transverse momentum
spectra are in agreement with hydrodynamic predictions out to
transverse momenta several times larger than the temperature.
In equation (213) this is partially compensated by the fact
that τf/τo is a large number, but typically the requirement
δ(dN)/(dN0) < 1 provides a more stringent bound on η/s

than equation (210). We can also include transverse expansion
and study the leading dissipative correction to v2 [215]. The
viscous correction tends to reduce v2 and grows with p⊥.
At p⊥ = 1 GeV an estimate similar to equation (213) gives
(δv2)/v2 ∼ 1 for �s/τf ∼ 0.2. Using τf ∼ 5 fm and
Tf = 160 MeV, this translates into η/s � 0.6.

5.3.3. Hydrodynamic simulations. There have been a
number of recent numerical studies devoted to extracting the
shear viscosity of the quark gluon plasma [216–220]. Here, we
will follow the work of Dusling and Teaney [216], and refer the
reader to the recent review by Heinz [30] for a more detailed
comparison between different strategies for implementing
relativistic viscous hydrodynamics for heavy ion collisions at
RHIC. In order to respect causality in viscous hydrodynamics
we have to use a second order formalism. This means that
the strains δT µν are promoted to dynamical fields which
relax on a collisional timescale to the Navier–Stokes form
rather than being specified instantaneously by the constitutive
relations. Such relaxation processes are second order in the
hydrodynamic expansion, see section 3.1.3. Dusling and
Teaney considered a 2+1-dimensional boost invariant flow and
used a second order fluid model studied by Öttinger [221]. This
model is formulated along the lines of equation (88), and the
dynamical strains are parametrized by an additional field c̊µν :

δT µν = −P(ε)α c̊µν. (214)

The relaxation equation for c̊µν is written in terms of a tensor
cµν . This tensor satisfies the constraint

cµνu
ν = uµ, (215)

and is decomposed as

cµν = −uµuν + c̊µν + cµν, (216)

cµν = 1
3

(
c λ
λ − 1

) (
ηµν + uµuν

)
. (217)

The field cµν obeys the relaxation equation

uλ(∂λcµν − ∂µcλν − ∂νcµλ) = − 1

τ0
cµν − 1

τ2
c̊µν. (218)

The constraint equation (215) is preserved under time
evolution. In the limit that the relaxation times τ0 and τ2 are
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Figure 9. Plot of the energy density per unit rapidity eτ (left) and of the transverse velocity (right) at times of τ = 1, 3, 6, 9 fm/c, for
η/s = 0.2 (solid red line) and for ideal hydrodynamics (dotted blue line), from [216].

small the evolution equation leads to the following solution for
cµν in the local rest frame:

cij = τ2
(
∂iuj + ∂jui − 2

3δij ∂ku
k
)

+ 2
3 τ0δ

ij ∂ku
k. (219)

Comparing with the Navier–Stokes equation, we see that

η = τ2Pα, ζ = 2
3τ0Pα. (220)

Dusling and Teaney used these relations (with α = 0.7) to fix
(τ0, τ2) in terms of η and ζ , and studied the sensitivity to the
parameter α. They considered a simple conformal equation of
state P = ε/3, and set ζ = 0.

An advantage of Öttinger’s approach is that equation (218)
is relatively simple to solve. One just evolves the spatial
components of cij and then uses the constraints (215) to solve
for the time components c00 and c0i . As hydrodynamics is
universal, any fluid model can be recast in terms of the first
and second order formalism described in section 3.1.3. For the
Öttinger fluid model, expanding out the equations of motion
to second order leads to the relation

πµν = −ησµν − τ2

[
〈Dπµν〉 +

4

3
πµν(∂ · u)

]

+
τ2

η
π

〈µ
λ πν〉λ + τ2π

〈µ
λ �ν〉λ − 2

3
τ2πµν(∂ · u). (221)

The last term in this expression differs from the general
result in equation (221), which indicates that at second order
in gradients this model contains terms that break conformal
symmetry.

The hydrodynamic equations were solved for several fixed
values of the shear viscosity to entropy density ratio η/s. At the
initial time τo = 1 fm the entropy per participant is adjusted
and closely corresponds to the results of full hydrodynamic
simulations [222–224]. The maximum initial temperature is
To = 420 MeV at an impact parameter b = 0. The initial
components of the stress tensor are set to the Navier–Stokes
values.

Numerical results are shown in figure 9. The effect of
viscosity is twofold. The longitudinal pressure is initially

reduced and the viscous case does less longitudinal P dV

work as in the simple Bjorken expansion. This means that
at early times the energy per rapidity decreases more slowly
in the viscous case. The reduction of longitudinal pressure is
accompanied by a larger transverse pressure. This causes the
transverse velocity to grow more rapidly. The larger transverse
velocity causes the energy density to deplete faster at late times
in the viscous case. The net result is that a finite viscosity,
even as large as η/s = 0.2, does not integrate to give major
deviations from the ideal equations of motion.

Freezeout occurs when the viscous terms become large
compared with the ideal terms. Roughly, the system begins to
break apart when

η

P
∂ · u ∼ 1. (222)

This combination of parameters can be motivated from kinetic
theory. The pressure is of order P ∼ ε〈v2

th〉 where 〈v2
th〉

is the typical quasi particle velocity and ε is the energy
density. The viscosity is of order η ∼ ε〈v2

th〉τR where
τR is the relaxation time. Thus the freezeout condition is
η

P
(∂ · u) ∼ τR(∂ · u) ∼ 1. Ideally there should be an overlap

region where both viscous hydrodynamics and kinetic theory
are valid. In this region hydrodynamics can be systematically
coupled to a kinetic description in order to correctly model the
breakup. In simulations of heavy ion collisions the size of the
overlap region is small, and the breakdown of hydrodynamics
is typically modeled via a freezeout surface. In practice the
freezeout surface was chosen to satisfy (η/P ) ∂ · u = 0.5,
where the precise number on the right hand side is simply
an educated guess based on examining the output of second
order hydrodynamic simulations. Typical freezeout surfaces
which satisfy this criterion are shown in figure 10. We note
that hydrodynamics breaks down both at late and also at early
times. The latter is most clearly seen from the η/s = 0.4
curve. If η/s is very small then freezeout will occur at very
late proper time. In the following, we shall therefore use a
simpler criterion χ ≡ 1

T
(∂ · u) = const which is independent

of η/s. Taking χ = 3 roughly corresponds to the η/s = 0.2
freezeout surface in figure 10.

33



Rep. Prog. Phys. 72 (2009) 126001 T Schäfer and D Teaney

Figure 10. Location of freezeout surfaces for central Au–Au
collisions. The surfaces are determined by the condition
η

p
(∂ · u) = 0.6, slightly larger than the value 0.5 discussed in the

text. Different surfaces correspond to different values of η/s. The
shading corresponds to the freezeout temperature. The thin solid
black curve shows the contour set by η

p
(∂ · u) = 0.225 for

comparison.

Finally, we can compute the spectra of produced particles.
We follow the procedure outlined above, see equation (212),
and write the distribution function as f = f0 + δf with

δf = 1

2(ε + P)T 2
f0(1 + f0) pµpνδTµν. (223)

The spectrum is determined by integrating the distribution
function over the freezeout surface as in equation (203), and
the elliptic flow parameter v2 is computed from the definition
in equation (197). A comparison with the data obtained by the
STAR collaboration is shown in figure 11. There are several
curves here and we will go through them one by one:

• For the two different values of η/s, 0.05 and 0.2, there are
three curves each. Our best estimates for the elliptic flow
as a function of pT are labeled f0 + δfπ and are shown by
the blue (η/s = 0.05) and orange (η/s = 0.2) lines.

• To disentangle what part of the viscous modification is
due to the distribution function δf and what part of it
is due to changes in the flow, we also compute v2(pT )

with f0 only. We see that the effect on v2 from viscous
modifications of the flow is relatively minor. This may
be the largest obstacle to reliably extracting the shear
viscosity from the heavy ion data. However, it is important
to realize that the modification to the distribution function
reflects the viscous correction to the stress tensor itself.
In hydrodynamic simulations the pT integrated v2 tracks
the asymmetry of the stress tensor [226]. In the context of
viscous hydrodynamics this is nicely illustrated in figure 8
of [219]. Nevertheless, in contrast to the atomic physics
experiments discussed in section 5.2, the observed viscous
corrections to the elliptic flow do not reflect a resummation
of secular terms in the gradient expansion.

• Finally, instead of showing the spectrum computed with
δT µν , we show v2(pT ) computed with velocity gradients
directly. For this purpose δT µν in equation (223) is
replaced by −ησµν where σµν is computed from the flow
velocities. v2(pT ) computed in this way is denoted by
f0 + δfG in the figure and corresponds to the magenta and
black curves. To first order in gradients this is an identity
and the difference between fπ and fG is a measure of
the magnitude of second order terms. For the smallest
viscosity η/s = 0.05 the differences are quite small, but
the effect is more noticeable for η/s = 0.2.

We conclude that for small values of η/s � 0.2 the
gradient expansion is working. There are, however, a number
of issues that have to be considered in order to extract reliable
values for η/s:

• The constraints on η/s are sensitive to the initial values
for the transverse energy density. In particular, using
color glass initial conditions produces higher transverse
pressure gradients, and allows for values of η/s about
twice as large as Glauber model initial conditions [219].

• Near the edge of the nucleus the gradient expansion breaks
down completely. It is important to quantify the extent to
which the effects of the edge propagate into the interior
and invalidate the hydrodynamic description. One way
to do this is by comparing the results of hydrodynamic
simulations with kinetic theory. For strongly coupled
plasmas kinetic theory is not an appropriate description of
the microscopic interactions. However, hydrodynamics
is independent of the microscopic details. Thus
extrapolating kinetic theory into the strongly coupled
domain is a good way to construct a model which
gracefully transitions from a hydrodynamic description
in the interior to a kinetic description near the edge.
There are several important developments in this direction
[220, 227, 228].

• Viscous effects in the hadronic phase are very important
[222, 213]. These effects can be taken into account
by coupling the hydrodynamic evolution to a hadronic
cascade.

• Effects due to bulk viscosity may reduce both radial and
elliptic flow [229, 230]. Bulk viscosity is likely to be much
smaller than shear viscosity in the plasma phase, but it is
expected to grow near the phase transition. The magnitude
of this growth is not clear.

Some of these effects are yet to be carefully studied.
However, even if one conservatively assumes that all
uncertainties tend to increase the bound on η/s, one still has
to conclude that for a shear viscosity of η/s > 0.4 it will
be impossible to reproduce the observed flow. The question
now is whether it will be possible to describe the large set of
available data on energy, impact parameter, rapidity, transverse
momentum and species dependence of flow using viscous
hydro, and whether it is possible to extract a reliable value,
with controlled error bars, for η/s of the QGP.
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Figure 11. Left: v2(pT ) for massless Bose particles for simulations using η/s = 0, 0.05, 0.2 at an impact parameter of b = 6.5 fm. Right:
four-particle cumulant data as measured in Au–Au collisions at

√
s = 200 GeV for a centrality selection of 16–24% [225].

6. Summary and outlook

6.1. Summary

In this review we summarized theoretical and experimental
information on the behavior of nearly perfect fluids. We
characterized the ‘perfectness’ in terms of the shear viscosity
of the fluid. Shear viscosity is special because

• shear viscosity is the ‘minimal’ transport property of
a fluid. Thermal transport, diffusion or conductivities
require the presence of conserved charges, and bulk
viscosity vanishes in the case of scale invariant fluids.
The ‘perfectness’ of any fluid can be characterized by
the dimensionless ratio η/s. If factors of h̄ and kB

are reinstated, the dimensionless measure of fluidity is
[η/h̄]/[s/kB].

• a small shear viscosity is uniquely associated with strong
interactions. Other transport coefficients may vanish even
if the interaction strength remains weak. For example,
bulk viscosity vanishes if the theory is conformal, and the
diffusion constant goes to zero at the localization phase
transition, but the shear viscosity of a weakly coupled
fluid is always large.

Note that the reverse of the last statement is not true: the
viscosity can be large, even if the interaction is strong. One
possible scenario is that the interaction is so strong that it leads
to the breakdown of a continuous symmetry, and the emergence
of a new set of weakly coupled quasi-particles. Note that
the N = 4 super-conformal fluid is special in this regard:
there is no symmetry breaking in the strong coupling limit.
Another example is the liquid–gas phase transition. There are
no weakly coupled quasi-particles, but the viscosity diverges
because of critical fluctuations.

We summarized the main theoretical approaches to
transport coefficients: kinetic theory, holography and non-
perturbative approaches based on the Kubo formula.

• Kinetic theory applies whenever the fluid can be described
in terms of quasi-particles. For many fluids this is the
case in both the high and the low temperature limit.

Typically, at high temperatures the quasi-particles are
the ‘fundamental’ degrees of freedom (quarks, gluons,
atoms) whereas the low temperature degrees of freedom
are composite (phonons, rotons, pions). In the regime
in which kinetic theory applies the ratio η/s is always
parametrically large. This leads to a characteristic
‘concave’ temperature dependence of η/s. Kinetic
theory is useful in constraining the location of the
viscosity minimum (usually, near the crossover between
the high and low temperature regimes). Also, despite the
weak coupling restriction, kinetic theory is quantitatively
accurate for many quantum fluids in the whole temperature
range covered by experiment.

• Holography is a new method for studying the transport
behavior of quantum fluids. It is most useful in the
strong coupling limit of certain model field theories (like
N = 4 super-CFT), but the range of field theories that
have known holographic duals has grown significantly
over the years. More importantly, holographic dualities
have led to important new insights into the transport
properties of strongly coupled fluids. This includes
the proposed universal bound on η/s, consistent higher
order hydrodynamic theories, computations of the spectral
function associated with the shear and other transport
modes, etc. Holography has also been used to study
specific solutions to the hydrodynamic equations, such
as the wake of a moving heavy quark or the approach
to equilibrium after the collision of two highly Lorentz
contracted sources.

• The Kubo formula connects non-perturbative cal-
culations of equilibrium correlation functions with
non-equilibrium transport coefficients. Possible non-
perturbative approaches include Euclidean lattice, large-N,
exact renormalization group and Dyson–Schwinger calcu-
lations. Significant progress has been made in computing
the shear viscosity of the QGP on the lattice. The results
are close to the proposed bound. Future calculations will
answer the question of whether transport phenomena in
the QCD plasma can be understood in terms of quasi-
particles.
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Finally, we summarized the experimental situation for the
three most strongly coupled fluids that can be prepared in the
laboratory.

• Liquid helium has been studied for many years and its
shear viscosity is well determined. The minimum value
of η/s is about 0.8 and is attained near the endpoint of the
liquid–gas phase transition. The ratio η/n has a minimum
closer to the lambda transition. Even though η/s < 1 the
transport properties of liquid helium can be quantitatively
understood using kinetic theory.

• Strongly interacting cold atomic Fermi gases were first
created in the laboratory in 1999. These systems are
interesting because the interaction between the atoms can
be controlled, and a large set of hydrodynamic flows
(collective oscillations, elliptic flow, rotating systems) can
be studied. Current experiments involve 105–106 atoms,
and the range of temperatures and interaction strengths
over which hydrodynamic behavior can be observed is
not large. There are also some difficulties in extracting
the viscosity that are related to the nature of the flow
profiles that have been studied. A conservative estimate
is η/s < 0.5.

• The QGP has been studied in heavy ion collisions at a
number of facilities: AGS (Brookhaven), SPS (CERN),
RHIC (Brookhaven). Almost ideal hydrodynamic
behavior was observed for the first time in 200 GeV per
nucleon (in the center of mass) Au on Au collisions at
RHIC. These experiments are difficult to analyze—the
initial state is very far from equilibrium and not completely
understood, final state interactions are important and
the size and lifetime of the system are not very
large. Important progress has nevertheless been made in
extracting constraints on the transport properties of the
QGP. A conservative bound is η/s < 0.4, but the value
of η/s that provides the best fit to the data is smaller,
η/s ∼ 0.1.

6.2. Outlook

Much work remains to be done in order to advance theoretical
methods for predicting the transport properties of strongly
coupled quantum fluids, to improve the determination of
transport coefficients of these fluids and to discover new nearly
perfect fluids.

However, in addition to that, we also want to understand
what nearly perfect fluids are like, in particular whether they
can be understood using quasi-particles and the tools of kinetic
theory. There are several avenues for addressing this question:

• QMC calculations can be used to determine the spectral
function of the energy momentum tensor. If energy and
momentum are carried by quasi-particles then the spectral
function has a peak at low energy. If, on the other hand, the
fluid is AdS/CFT-like then there are no quasi-particles and
no peak in the spectral functions. Current calculations in
lattice QCD seem to prefer the AdS/CFT picture [97, 103],
but the issue is far from settled.

• Detailed simulations of kinetic equations can be used to
study the crossover from kinetic behavior (the Knudsen
limit) to hydrodynamic behavior, see [220, 227, 231, 228]
for work in the context of QCD and [115, 197] for studies
of the dilute Fermi gas at unitarity. The main question is
whether it is possible to extend a self-consistent kinetic
theory into the domain η/s < 1, and whether one
can describe not only flow properties but also all other
transport properties like diffusion and energy loss. Self-
consistency requires that the lifetime of the quasi-particles
is long compared with the characteristic thermal time,
τ ∼ 1/T . A simultaneous description of momentum
diffusion, charge diffusion and energy loss is important
because in kinetic theory there is a close connection
between these observables. In AdS/CFT-like fluids the
relation between different transport processes is non-
trivial. For example, at infinite coupling shear viscosity
is finite while the heavy quark diffusion coefficient is
zero. The current experimental situation in QCD is not
entirely clear, with both AdS/CFT based [232] and kinetic
approaches [233] demonstrating some success.

• Phenomenological studies address the quasi-particle
structure of nearly perfect fluids by studying fluctuations
and correlations of conserved charges other than energy
and momentum. In liquid helium quasi-particles were
studied using neutron scattering, and in the dilute Fermi
gas one can study the quasi-particle structure using radio-
frequency spectra, see [234, 235]. In the QGP there is
some evidence for quasi-particles from charge fluctuations
[236] and from the success of the recombination model in
reproducing the flow of identified particles at intermediate
momenta [237].
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