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Lattice results: Crossover transition
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Curvature of crossover transition small, no hint of sharpening.

Large µ regime inaccessible (sign problem).

Bazavov et al. [1812.08235], Borsanyi et al. [2002.02821].



Central Experimental Result: Hydrodynamic Flow

Heavy ion collisions at RHIC are described by a very simple theory:

παντα ρει (everything flows)

B. Schenke C. Gale et al.

Hydro converts initial state geometry, including fluctuations,

to flow. Attenuation coefficient is small, η/s ' 0.08~/kB ,

indicating that the plasma is strongly coupled.



LHC: Flow in Small Systems

Even the smallest droplets of QGP fluid produced in (high

multiplicity) pp and pA collisions exhibit collective flow.
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Small viscosity η/s ' 0.08~/kB implies short mean

free path and rapid hydrodynamization.
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I. Relativistic Fluid Dynamics

Conservation of energy, momentun, and baryon number (extend to BSQ?)

∂µT
µν = 0

∂µj
µ = 0

Constitutive relations: Tµν = Tµν(0) + Tµν(1) + . . .

Tµν(0) = (ε+ P )uµuν + Pgµν

Tµν(1) = −η∆µα∆να

(
∂αuβ + ∂βuα −

2

3
gαβ∂ · u

)
− ζ∆µν∂ · u

Equation of state: P = P (ε, n)

Many technical details: Stability, causality, initial conditions, freezeout



Heavy ion collision: Geometry
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Bjorken expansion

Experimental observation: At high energy (∆y →∞) rapidity distributions

of produced particles (in both pp and AA) are “flat”

dN

dy
' const

Physics depends on proper time τ =
√
t2 − z2, not on y

All comoving (v = z/t) observers are equivalent

Analogous to Hubble expansion



Bjorken expansion

z

t

projectile target

pre−equilibrium

hadrons

QGP

η =const
τ =const

τ =
√
t2 − z2 η =

1

2
log

(
t+ z

t− z

)



Bjorken expansion: Hydrodynamics

Boost invariant expansion

uµ = γ(1, 0, 0, vz) = (t/τ, 0, 0, z/τ)

solves Euler equation (no longitudinal acceleration)

∂µ(suµ) = 0 ⇒ d

dτ
[τs(τ)] = 0

Solution for ideal Bj hydrodynamics

s(τ) =
s0τ0
τ

T =
const

τ1/3

Exact boost invariance, no transverse expansion, no dissipation, . . .



Viscous corrections

Longitudinal expansion: Bj expansion solves Navier-Stokes equation

entropy equation 1

s

ds

dτ
= −1

τ

(
1−

4
3η + ζ

sTτ

)
Viscous corrections small if

4

3

η

s
+
ζ

s
� (Tτ)

early Tτ ∼ τ2/3 η/s ∼ const η/s < τ0T0

late Tτ ∼ const η ∼ T/σ τ2/σ < 1

Hydro valid for τ ∈ [τ0, τfr ]



Viscous corrections to Tij (radial expansion)

Tzz = P − 4

3

η

τ
Txx = Tyy = P +

2

3

η

τ

increases radial flow (central collision)

decreases elliptic flow (peripheral collision)

Modification of distribution function (Γs = ( 4
3η + ζ)/(sT ))

δf =
3

8

Γs
T 2
f0(1 + f0)pαpβ∇〈αuβ〉

Correction to spectrum grows with p2
⊥

δ(dN)

dN0
=

Γs
4τf

(p⊥
T

)2



Viscous effects at RHIC: First Attempts

p0
dN

d3p

∣∣∣∣
pz=0

= v0(p⊥) (1 + 2v2(p⊥) cos(2φ) + . . .)

Romatschke (2007), Teaney (2003)



Viscous effects: Bayesian analysis

Combined analysis of LHC and RHIC data

JetScape collaboration arXiv:2011.01430.



II. Hydrodynamics in small systems

Pb+Pb LHC p+Pb LHC

Ideas: 1) Attractors/Resurgence

2) Hydro+

3) Phenomenology

Plots from Niemi, Denicol arXiv:1404.7327.



1. Hydrodynamic Attractors
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Attractor in a dynamical system: Asymptotic solution independent of initial

conditions.

Romatschke arXiv:1704.08699.



How to characterize the attractor: Resurgence

Weak coupling expansion in QM or QFT

F (g2) ∼
(
a

(0)
0 + a

(0)
1 g2 + a

(0)
2 g4 + . . .

)
+σe−S/g

2
(
a

(1)
0 + a

(1)
1 g2 + a

(1)
2 g4 + . . .

)
+σ2e−2S/g2

(
a

(2)
0 + a

(2)
1 g2 + a

(2)
2 g4 + . . .

)
+ . . .

Perturbative terms + instantons = trans-series

Ambiguities in (Borel sum) of perturbation theory canceled by ambiguities

in multi-instanton effects = “resurgence”

Kinetic theory: Perturbative sum = gradient terms

instantons = non-hydrodynamic modes

Expansion parameter w =
4πsτT

η



Resurgent kinetic theory: Bjorken expansion

Exact c01
G.E. o(1/w)
Renorm o(1/w)
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Transport coefficient of
gradient expansion (G.E.)

transmonomial corrections

The transport coefficient of G.E. is
corrected by summing transmonomials



Transasymptotic matching: All-orders viscosity
Dynamical Renormalization of Transport Coefficient

First order transport coefficient

Satisfies the transasymptotic matching
which depends on its gradient size

transmonomial &
initial constant
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Behtash, Kamata, Martinez, Shi, arxiv:1901.08632



2. Extended Hydrodynamic Theories: Maximum Entropy

Consider moment equations for

ρµ1µ2 ···µl

(n) ≡ 〈 (u · p)n p〈µ1 pµ2 · · · pµl〉〉δ,

Need closure. Idea: Use the least-biased distribution that uses all of (and

only) the information provided by hydro. This is the f that maximizes

s[f ] = −
∫
dP (u · p) f ln(f),

subject to constraints∫
dP (u · p)2

f = e, −1

3

∫
dP p〈µ〉p

〈µ〉 f = P + Π,

∫
dP p〈µpν〉 f = πµν

The maximum-entropy distribution is

fME(x, p) =
[
exp
(

Λ
(
u · p

)
− λΠ

u · pp〈α〉p
〈α〉 +

γ〈αβ〉

u · p p
〈αpβ〉

)
− a
]−1

,

where (Λ, λΠ, γαβ) are Lagrange parameters.



Maximum Entropy Fluid Dynamics: Bjorken Flow

Evolution equations

de

dτ
= −e+ PL

τ

dPL
dτ

= −PL − P
τR

+
ζ̄Lz
τ

dPT
dτ

= −PT − P
τR

+
ζ̄⊥z
τ

where ζ̄L,⊥ fixed by Max-Ent
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Compare to exact RTA kinetic theory. Very good agreement.

Chattopadhyay, Heinz, Schaefer, arxiv:2307.10769



3. Phenomenology: Knudsen Scaling?

Consider scaling with Knudsen number in Pb+ Pb and p+ Pb

Kn−1 ∼ cs
S

dN

dy
Kn−1 ∼

(
cs
dN

dy

)1/3

non-conformal fluid conformal fluid

Triangular flow v3(pT ) in pPb (red) and PbPb (blue)

pT dependence scaled by mean 〈pT 〉

Basar, Teaney, arxiv:1312.6770



Phenomenology: pT − v2 correlations?
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p+Pb qualitatively similar to very peripheral Pb+ Pb

Schenke, Shen, Teaney, arXiv:2004.00690.



III. Phase Transitions and Fluctuations

Chiral Fluctuations Baryon Fluctuations

Can we locate the chiral phase transition, or the endpoint of a first-order

QGP-hadron gas transition?



Dynamical Theory

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:

� Critical equation of state.

� Possible Goldstone modes (chiral field in QCD?)

� Stochastic fluxes, fluctuation-dissipation relations.



Digression: Diffusion

Consider a Brownian particle

ṗ(t) = −γDp(t) + ζ(t) 〈ζ(t)ζ(t′)〉 = κδ(t− t′)

drag (dissipation) white noise (fluctuations)

For the particle to eventually thermalize

〈p2〉 = 2mT

drag and noise must be related

κ =
mT

γD

Einstein (Fluctuation-Dissipation)



Hydrodynamic equation for critical mode

Equation of motion for critical mode φ (“model H”)

∂φ

∂t
= κ∇2 δF

δφ
− g

(
~∇φ
)
· δF
δ~πT

+ ζ (g = 1)

Diffusion Advection Noise

Equation of motion for momentum density π

∂~πT

∂t
= η∇2 δF

δ~πT
+ g

(
~∇φ
)
· δF
δφ
− g

(
δF
δ~πT

· ~∇
)
~πT + ~ξ

Free energy functional: Order parameter φ, momentum density ~π = w~v

F =

∫
d3x

[
1

2w
~π2 +

1

2
(~∇φ)2 +

m2

2
φ2 + λφ4

]
D = m2κ



Fluctuation-Dissipation relation

〈ζ(x, t)ζ(x′, t′)〉 = −2κT∇2δ(x− x′)δ(t− t′)

〈ξi(x, t)ξj(x′, t′)〉 = −2ηT∇2PTij δ(x− x′)δ(t− t′)

ensures P [φ, ~π] ∼ exp(−F [φ, ~π]/T )

Tune m2 to critical point m2 = m2
c (Ising critical point)
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Linearized analysis (non-critical fluid)

Navier-Stokes equation: ∂0~π + ν∇2~π = mode couplings + noise

Linearized propagator: 〈δπTi δπTj 〉ω,k =
−νρk2PTij
−iω + νk2

ν =
η

ρ

Fluctuation correction:

Renormalized viscosity:

η = η0 + cη
TρΛ

η0
− cτ
√
ω
Tρ3/2

η
3/2
0

Hydro is a renormalizable stochastic theory

governed by “Schwinger-Keldysh” effective field theory



Linearized analysis (non-critical fluid)

Navier-Stokes equation: ∂0~π + ν∇2~π = mode couplings + noise

Linearized propagator: 〈δπTi δπTj 〉ω,k =
−νρk2PTij
−iω + νk2

ν =
η

ρ

Fluctuation correction:

Renormalized viscosity:

η = η0 + cη
TρΛ

η0
− cτ
√
ω
Tρ3/2

η
3/2
0

Non-analytic term leads to long-time tail

and breakdown of naive gradient expansion.



Numerical realization

Stochastic relaxation equation (“model A”)

∂tψ = −Γ
δF
δψ

+ ζ 〈ζ(x, t)ζ(x′, t′)〉 = ΓTδ(x− x′)δ(t− t′)

Naive discretization

ψ(t+ ∆t) = ψ(t) + (∆t)

[
−Γ

δF
δψ

+

√
ΓT

(∆t)a3
θ

]
〈θ2〉 = 1

Noise dominates as ∆t→ 0, leads to discretization ambiguities in the

equilibrium distribution.

Idea: Use Metropolis update

ψ(t+ ∆t) = ψ(t) +
√

2Γ(∆t)θ p = min(1, e−β∆F )



Numerical realization

Central observation

〈ψ(t+ ∆t, ~x)− ψ(t, ~x)〉 = −(∆t) Γ
δF
δψ

+O
(
(∆t)2

)
〈[ψ(t+ ∆t, ~x)− ψ(t, ~x)]

2〉 = 2(∆t) ΓT +O
(
(∆t)2

)
.

Metropolis realizes both diffusive and stochastic step. Also

P [ψ] ∼ exp(−βF [ψ])

Note: Still have short distance noise; need to adjust bare parameters such

as Γ,m2, λ to reproduce physical quantities.



Numerical results (critical Navier-Stokes)

Order parameter (3d) Order parameter/velocity field (2d)

Ott, Chattopadhyay, Schaefer, Skokov, arxiv:2403.10608



Critical Navier-Stokes (model H)

Renormalized viscosity Dynamic exponent τ ∼ ξz
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Outlook

Opportunity: Discover QCD critical point by observing critical

fluctuations in heavy ion collisions. Observe chiral transitions

using soft pions and multi-pion correlations.

Challenge: Propagate fluctuations of conserved charges in rel-

ativistic fluid dynamics. Describe initial state fluctuations and

final state freezeout.

Opportunity: Observe breakdown of hydrodynamics in small sys-

tems. Learn about initial state, sub-nucleonic degrees of freedom,

and non-hydrodynamic modes.

Challenge: Disentangle initial state and fluid dynamic evolution.

Many interesting lessons about fluid dynamics along the way.


