The "Big" Picture

Thomas Schaefer

North Carolina State University

"Big" Questions

What is QCD?What is a Phase of QCD?What is a Plasma?What is a (perfect) Liquid?What is a wQGP/sQGP?

Dynamics: Generalized Maxwell (Yang-Mills) + Dirac theory

$$\begin{split} \mathcal{L} &= \bar{q}_{f}(i\not\!\!D - m_{f})q_{f} - \frac{1}{4}G^{a}_{\mu\nu}G^{a}_{\mu\nu} \\ G^{a}_{\mu\nu} &= \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu} \\ &i\not\!\!D q = \gamma^{\mu}\left(i\partial_{\mu} + gA^{a}_{\mu}t^{a}\right)q \end{split}$$

"Seeing" Quarks and Gluons

Made on 28-Aug-1996 13:39:06 by DREVERMANN with DALI_D7. Filename: DC015768_005906_960828_1338.PS_21_3J

Asymptotic Freedom

Classical field A_{μ}^{cl} . Modification due to quantum fluctuations:

$$A_{\mu} = A_{\mu}^{cl} + \delta A_{\mu} \qquad \frac{1}{g^2} F_{cl}^2 \to \left(\frac{1}{g^2} + c \log\left(\frac{k^2}{\mu^2}\right)\right) F_{cl}^2$$

$$A_{\mu}^{cl}(k) \qquad \delta A_{\mu}(p) \qquad \delta A_{\mu} \qquad \delta A_{\mu}$$

dielectric $\epsilon>1$ paramagnetic $\mu>1$ dielectric $\epsilon>1$ $\mu\epsilon=1 \ \Rightarrow \ \epsilon<1$

$$\beta(g) = \frac{\partial g}{\partial \log(\mu)} = \frac{g^3}{(4\pi)^2} \left\{ \left[\frac{1}{3} - 4\right] N_c + \frac{2}{3} N_f \right\} < 0$$

Running Coupling Constant

What is a Phase of QCD? Phases of Gauge Theories

$$V(r) \sim -\frac{e^2}{r}$$
 $V(r) \sim -\frac{e^{-mr}}{r}$ $V(r) \sim kr$

Standard Model: $U(1) \times SU(2) \times SU(3)$

What is a Phase of QCD? Phases of Gauge Theories

$$V(r) \sim -\frac{e^2}{r}$$
 $V(r) \sim -\frac{e^{-mr}}{r}$ $V(r) \sim kr$

QCD: High T phase High μ phase

Low T, μ phase

Phases of Matter: Symmetries

phase	order param	broken symmetry	rigidity phenomenon	Goldstone boson
crystal	$ ho_k$	translations	rigid	phonon
magnet	$ec{M}$	rotations	hysteresis	magnon
superfluid	$\langle \Phi angle$	particle number	supercurrent	phonon
supercond.	$\langle \psi \psi angle$	gauge symmetry	supercurrent	none (Higgs)
χ sb	$\langle ar{\psi}\psi angle$	chiral symmetry	axial current	pion

Define left and right handed fields

Chiral Symmetry Breaking

Chiral symmetry is spontaneously broken

 $\langle \bar{\psi}_L^f \psi_R^g + \bar{\psi}_L^f \psi_R^g \rangle \simeq -(230 \,\mathrm{MeV})^3 \,\delta^{fg}$

 $SU(3)_L \times SU(3)_R \to SU(3)_V \qquad (G \to H)$

Consequences: dynamical mass generation $m_Q = 300 \,\mathrm{MeV} \gg m_q$

 $m_N = 890 \,\text{MeV} + 45 \,\text{MeV}$ (QCD, 95%) + (Higgs, 5%)

Goldstone Bosons: Consider broken generator Q_5^a

 $[H, Q_5^a] = 0 \qquad Q_5^a |0\rangle = |\pi^a\rangle \qquad H|\pi^a\rangle = HQ_5^a |0\rangle = Q_5^a H|0\rangle = 0$

Phase Diagram: Minimal Version

critical endpoint (E) persists even if $m \neq 0$

Transitions without change of symmetry: Liquid-Gas

Phase diagram of water

Characteristics of a liquid Pair correlation function 1.4 1.2 1 0.8 liquid 0.6 0.4 0.2 gas 10 12 14 4 8 Good fluid: low viscosity v_x y $F_x = \eta A \frac{\partial v_x}{\partial u}$

Transitions without change of symmetry: Gas-Plasma

Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved or spontaneously broken symmetry variables.

 $\tau \sim \tau_{micro}$

$$au \sim \lambda^{-1}$$

Historically: Water $(\rho, \epsilon, \vec{\pi})$

Example: Simple Fluid

Conservation laws: mass, energy, momentum

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) &= 0\\ \frac{\partial \epsilon}{\partial t} + \vec{\nabla} \vec{j}^{\,\epsilon} &= 0\\ \frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} &= 0 \end{aligned}$$
[Euler/Navier-Stokes equation]

Constitutive relations: Energy momentum tensor

$$\Pi_{ij} = P\delta_{ij} + \rho v_i v_j + \eta \left(\partial_i v_j + \partial_j v_i - \frac{2}{3}\delta_{ij}\partial_k v_k\right) + \dots$$

reactive

dissipative

Weakly Coupled Fluids: Kinetics

Weakly coupled fluid \equiv Collection of Quasi-Particles

 $l_{mfp} \gg l_{pp}$ and $E \gg \Gamma$

Introduce distribution function $f_p(x,t)$

$$N = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} f_p \qquad T_{ij} = \int \frac{d^3p}{(2\pi)^3} \frac{p_i p_j}{2E_p} f_p$$

Transport from Kinetics

Boltzmann equation

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p + \vec{F} \cdot \vec{\nabla}_p f_p = C[f_p]$$

Linearized theory (Chapman-Enskog): $f_p = f_p^0(1 + \chi_p/T)$

suitable for transport coefficients shear viscosity $\chi_p = g_p p_x p_y \partial_x v_y$

Effective Theories for Fluids (Here: Weak Coupling QCD)

$$\mathcal{L} = \bar{q}_f (iD - m_f)q_f - \frac{1}{4}G^a_{\mu\nu}G^a_{\mu\nu}$$

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p = C[f_p] \qquad (\omega < T)$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \qquad (\omega < g^4 T)$$

And now for something completely different ...

Gauge Theory at Strong Coupling: Holographic Duals

 \Leftrightarrow

 \Leftrightarrow

The AdS/CFT duality relates large N_c (Conformal) gauge theory in 4 dimensions correlation fcts of gauge invariant operators

string theory on 5 dimensional Anti-de Sitter space $\times S_5$ boundary correlation fcts of AdS fields

 $\langle \exp \int dx \ \phi_0 \mathcal{O} \rangle =$

 $Z_{string}[\phi(\partial AdS) = \phi_0]$

The correspondence is simplest at strong coupling $g^2 N_c$ strongly coupled gauge theory \Leftrightarrow classical string theory

Holographic Duals at Finite Temperature

$$s(\lambda \to \infty) = \frac{\pi^2}{2} N_c^2 T^3 = \frac{3}{4} s(\lambda = 0)$$

Gubser and Klebanov

Holographic Duals: Transport Properties

Thermal (conformal) field theory $\equiv AdS_5$ black hole

Hawking-Bekenstein entropy CFT entropy \Leftrightarrow \sim area of event horizon Graviton absorption cross section shear viscosity \Leftrightarrow \sim area of event horizon $\frac{\eta}{s}$ Strong coupling limit $\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$ PSfrag replacements ħ Son and Starinets $4\pi k_B$ $g^2 N_c$ 0

Strong coupling limit universal? Provides lower bound for all theories?

Effective Theories (Strong coupling)

$$\mathcal{L} = \bar{\lambda}(i\sigma \cdot D)\lambda - \frac{1}{4}G^a_{\mu\nu}G^a_{\mu\nu} + \dots \iff S = \frac{1}{2\kappa_5^2}\int d^5x\sqrt{-g}\mathcal{R} + \dots$$

$$\frac{\partial}{\partial t}(\rho v_i) + \frac{\partial}{\partial x_j} \Pi_{ij} = 0 \ (\omega < T)$$

Kinetics vs No-Kinetics

Spectral function $\rho(\omega) = \text{Im}G_R(\omega, 0)$ associated with T_{xy}

transport peak vs no transport peak

Lattice QCD: single chiral and deconfinement crossover transition

 $T_c \sim 185 \text{ MeV}, \ \epsilon_{cr} \sim 1.5 \, \mathrm{GeV/fm}^3$

Weakly coupled Quark Gluon Plasma

Quark and gluon quasi-particles, $\gamma \ll \omega$ Thermodynamics: Stefan-Boltzmann gas Transport: long equilibration times, $\eta/s \simeq 1/\alpha_s^2 \gg 1$

Strongly coupled plasma

No quasi-particles, no kinetics, only hydrodynamics Thermodynamics: Stefan-Boltzmann law Transport: fast equilibration, $\eta/s \simeq 1/(4\pi) < 1$