The "Big" Picture

Thomas Schaefer
North Carolina State University

"Big" Questions

What is QCD?
What is a Phase of QCD?
What is a Plasma?
What is a (perfect) Liquid?
What is a wQGP/sQGP?

What is QCD (Quantum Chromo Dynamics)?

Elementary fields: Quarks
$\left(q_{\alpha}\right)_{f}^{a}\left\{\begin{array}{ll}\text { color } & a=1, \ldots, 3 \\ \text { spin } & \alpha=1,2 \\ \text { flavor } & f=u, d, s, c, b, t\end{array} \quad A_{\mu}^{a} \quad\left\{\begin{array}{l}\text { color } a=1, \ldots, 8 \\ \operatorname{spin} \\ \epsilon_{\mu}^{ \pm}\end{array}\right.\right.$

Dynamics: Generalized Maxwell (Yang-Mills) + Dirac theory

$$
\begin{gathered}
\mathcal{L}=\bar{q}_{f}\left(i \not D-m_{f}\right) q_{f}-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a} \\
G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \\
i \not D q=\gamma^{\mu}\left(i \partial_{\mu}+g A_{\mu}^{a} t^{a}\right) q
\end{gathered}
$$

"Seeing" Quarks and Gluons

LaTvauw

Asymptotic Freedom

Classical field $A_{\mu}^{c l}$. Modification due to quantum fluctuations:

$$
A_{\mu}=A_{\mu}^{c l}+\delta A_{\mu} \quad \frac{1}{g^{2}} F_{c l}^{2} \rightarrow\left(\frac{1}{g^{2}}+c \log \left(\frac{k^{2}}{\mu^{2}}\right)\right) F_{c l}^{2}
$$

dielectric $\epsilon>1$ paramagnetic $\mu>1$ dielectric $\epsilon>1$

$$
\begin{gathered}
\mu \epsilon=1 \Rightarrow \epsilon<1 \\
\beta(g)=\frac{\partial g}{\partial \log (\mu)}=\frac{g^{3}}{(4 \pi)^{2}}\left\{\left[\frac{1}{3}-4\right] N_{c}+\frac{2}{3} N_{f}\right\}<0
\end{gathered}
$$

Running Coupling Constant

What is a Phase of QCD? Phases of Gauge Theories

What is a Phase of QCD? Phases of Gauge Theories

Coulomb

$$
V(r) \sim-\frac{e^{2}}{r}
$$

QCD: High T phase

Higgs

$V(r) \sim-\frac{e^{-m r}}{r}$

High μ phase

Confinement

$V(r) \sim k r$

Low T, μ phase

Phases of Matter: Symmetries

phase	order param	broken symmetry	rigidity phenomenon	Goldstone boson
crystal	ρ_{k}	translations	rigid	phonon
magnet	\vec{M}	rotations	hysteresis	magnon
superfluid	$\langle\Phi\rangle$	particle number	supercurrent	phonon
supercond.	$\langle\psi \psi\rangle$	gauge symmetry	supercurrent	none (Higgs)
χ sb	$\langle\bar{\psi} \psi\rangle$	chiral symmetry	axial current	pion

Chiral Symmetry

Define left and right handed fields

$$
\psi_{L, R}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi
$$

Fermionic lagrangian, $M=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$

$$
\mathcal{L}=\bar{\psi}_{L}(i \not D) \psi_{L}+\bar{\psi}_{R}(i \not D) \psi_{R}
$$

$$
+\bar{\psi}_{L} M \psi_{R}+\bar{\psi}_{R} M \psi_{L}
$$

$M=0$: Chiral symmetry $(L, R) \in S U(3)_{L} \times S U(3)_{R}$

$$
\psi_{L} \rightarrow L \psi_{L}, \quad \psi_{R} \rightarrow R \psi_{R}
$$

Chiral Symmetry Breaking

Chiral symmetry is spontaneously broken

$$
\begin{gathered}
\left\langle\bar{\psi}_{L}^{f} \psi_{R}^{g}+\bar{\psi}_{L}^{f} \psi_{R}^{g}\right\rangle \simeq-(230 \mathrm{MeV})^{3} \delta^{f g} \\
S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{V} \quad(G \rightarrow H)
\end{gathered}
$$

Consequences: dynamical mass generation $m_{Q}=300 \mathrm{MeV} \gg m_{q}$

$$
m_{N}=890 \mathrm{MeV}+45 \mathrm{MeV} \quad(\mathrm{QCD}, 95 \%)+(\text { Higgs, } 5 \%)
$$

Goldstone Bosons: Consider broken generator Q_{5}^{a}

$$
\left[H, Q_{5}^{a}\right]=0 \quad Q_{5}^{a}|0\rangle=\left|\pi^{a}\right\rangle \quad H\left|\pi^{a}\right\rangle=H Q_{5}^{a}|0\rangle=Q_{5}^{a} H|0\rangle=0
$$

Phase Diagram: Minimal Version

critical endpoint (E) persists even if $m \neq 0$

Transitions without change of symmetry: Liquid-Gas

Phase diagram of water

Characteristics of a liquid
Pair correlation function

Good fluid: low viscosity

Transitions without change of symmetry: Gas-Plasma

Phase diagram of hydrogen

Plasma Effects

Debye screening

$$
\omega_{p l}=\frac{4 \pi e^{2} n}{m}
$$

Fluids: Gases, Liquids, Plasmas, ...

Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved or spontaneously broken symmetry variables.

$$
\tau \sim \tau_{\text {micro }}
$$

Historically: Water

$$
(\rho, \epsilon, \vec{\pi})
$$

Example: Simple Fluid

Conservation laws: mass, energy, momentum

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\vec{\nabla}(\rho \vec{v})=0 \\
\frac{\partial \epsilon}{\partial t}+\vec{\nabla} \vec{\jmath}^{\epsilon}=0 \\
\frac{\partial}{\partial t}\left(\rho v_{i}\right)+\frac{\partial}{\partial x_{j}} \Pi_{i j}=0
\end{gathered}
$$

[Euler/Navier-Stokes equation]
Constitutive relations: Energy momentum tensor

$$
\begin{gathered}
\Pi_{i j}=P \delta_{i j}+\rho v_{i} v_{j}+\eta\left(\partial_{i} v_{j}+\partial_{j} v_{i}-\frac{2}{3} \delta_{i j} \partial_{k} v_{k}\right)+\ldots \\
\text { reactive } \quad \text { dissipative }
\end{gathered}
$$

Weakly Coupled Fluids: Kinetics

Weakly coupled fluid \equiv Collection of Quasi-Particles

$$
l_{m f p} \gg l_{p p} \text { and } E \gg \Gamma
$$

Introduce distribution function $f_{p}(x, t)$

$$
N=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{p}} f_{p} \quad T_{i j}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p_{i} p_{j}}{2 E_{p}} f_{p}
$$

Transport from Kinetics

Boltzmann equation

$$
\frac{\partial f_{p}}{\partial t}+\vec{v} \cdot \vec{\nabla}_{x} f_{p}+\vec{F} \cdot \vec{\nabla}_{p} f_{p}=C\left[f_{p}\right]
$$

Collision term $C\left[f_{p}\right]=C_{\text {gain }}-C_{\text {loss }}$

Linearized theory (Chapman-Enskog): $f_{p}=f_{p}^{0}\left(1+\chi_{p} / T\right)$
suitable for transport coefficients
shear viscosity $\chi_{p}=g_{p} p_{x} p_{y} \partial_{x} v_{y}$

Effective Theories for Fluids (Here: Weak Coupling QCD)

$$
\begin{aligned}
& \mathcal{L}=\bar{q}_{f}\left(i \not D-m_{f}\right) q_{f}-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a} \\
& \frac{\partial f_{p}}{\partial t}+\vec{v} \cdot \vec{\nabla}_{x} f_{p}=C\left[f_{p}\right] \quad(\omega<T) \\
& \frac{\partial}{\partial t}\left(\rho v_{i}\right)+\frac{\partial}{\partial x_{j}} \Pi_{i j}=0 \quad\left(\omega<g^{4} T\right)
\end{aligned}
$$

And now for something completely different ...

STRING THEORY SUMMARIZED:

I JUST HAD AN AWESOME IDEA.
SUPPOSE ALL MATTER AND ENERGY
IS MADE OF TINY, VIBRATING "STRINGS."

> OKAY. WHAT WOULD THAT IMPLY? I DUNNO.

Gauge Theory at Strong Coupling: Holographic Duals

The AdS/CFT duality relates
large N_{c} (Conformal) gauge theory in 4 dimensions correlation fcts of gauge invariant operators
$\left\langle\exp \int d x \phi_{0} \mathcal{O}\right\rangle=$
$Z_{\text {string }}\left[\phi(\partial A d S)=\phi_{0}\right]$
string theory on 5 dimensional
Anti-de Sitter space $\times S_{5}$
boundary correlation fcts of AdS fields

The correspondence is simplest at strong coupling $g^{2} N_{c}$
strongly coupled gauge theory $\Leftrightarrow \quad$ classical string theory

Holographic Duals at Finite Temperature

Thermal (conformal) field theory $\equiv A d S_{5}$ black hole
CFT temperature Hawking temperature of black hole Hawking-Bekenstein entropy \sim area of event horizon

Holographic Duals: Transport Properties

Thermal (conformal) field theory $\equiv A d S_{5}$ black hole

CFT entropy

shear viscosity

Strong coupling limit

$$
\frac{\eta}{s}=\frac{\hbar}{4 \pi k_{B}}
$$

Son and Starinets

Hawking-Bekenstein entropy
\sim area of event horizon
Graviton absorption cross section
\sim area of event horizon

Strong coupling limit universal? Provides lower bound for all theories?

Effective Theories (Strong coupling)

$$
\mathcal{L}=\bar{\lambda}(i \sigma \cdot D) \lambda-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+\ldots \Leftrightarrow S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{-g} \mathcal{R}+\ldots
$$

$$
\frac{\partial}{\partial t}\left(\rho v_{i}\right)+\frac{\partial}{\partial x_{j}} \Pi_{i j}=0 \quad(\omega<T)
$$

Kinetics vs No-Kinetics

Spectral function $\rho(\omega)=\operatorname{Im} G_{R}(\omega, 0)$ associated with $T_{x y}$

weak coupling QCD

strong coupling AdS/CFT
transport peak vs no transport peak

Summary (Theory)

Lattice QCD: single chiral and deconfinement crossover transition

$$
T_{c} \sim 185 \mathrm{MeV}, \epsilon_{c r} \sim 1.5 \mathrm{GeV} / \mathrm{fm}^{3}
$$

Weakly coupled Quark Gluon Plasma
Quark and gluon quasi-particles, $\gamma \ll \omega$
Thermodynamics: Stefan-Boltzmann gas
Transport: long equilibration times, $\eta / s \simeq 1 / \alpha_{s}^{2} \gg 1$
Strongly coupled plasma
No quasi-particles, no kinetics, only hydrodynamics
Thermodynamics: Stefan-Boltzmann law
Transport: fast equilibration, $\eta / s \simeq 1 /(4 \pi)<1$

