From Trapped Atoms To Liberated Quarks

Thomas Schaefer

North Carolina State University

BNL and RHIC

Heavy Ion Collision

Star TPC

Elliptic Flow

Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy b

Elliptic Flow II

Requires "perfect" fluidity ($\eta/s < 0.1$?) (s)QGP saturates (conjectured) universal bound $\eta/s = 1/(4\pi)$?

Designer Fluids

Atomic gas with two spin states: " \uparrow " and " \downarrow "

Feshbach resonance $a(B) = a_0 \left(1 + \frac{\Delta}{B - B_0}\right)$ "Unitarity" limit $a \to \infty$ $\sigma = \frac{4\pi}{k^2}$

Elliptic Flow

Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy

Perfect Liquids

sQGP (T=180 MeV)

Trapped Atoms (T=1 neV)

Neutron Matter (T=1 MeV)

Universality

What do these systems have in common? dilute: $r\rho^{1/3} \ll 1$ strongly correlated: $a\rho^{1/3} \gg 1$

Equation of State

Critical Temperature

Transport: Shear Viscosity, ...

Stressed Pairing

I. Equation of State

Universal Equation of State

Consider limiting case ("Bertsch" problem)

$$(k_F a) \to \infty$$
 $(k_F r) \to 0$

Universal equation of state

$$\frac{E}{A} = \xi \left(\frac{E}{A}\right)_0 = \xi \frac{3}{5} \left(\frac{k_F^2}{2M}\right)$$

How to find ξ ?

Numerical Simulations Experiments with trapped fermions Analytic Approaches

Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons

$$\mathcal{L}_{\text{eff}} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2 + \frac{C_2}{16} \left[(\psi \psi)^{\dagger} (\psi \overleftarrow{\nabla}^2 \psi) + h.c. \right] + \dots$$
$$(a, r, \dots) \Rightarrow (C_0, C_2, \dots)$$

Partition Function (Hubbard-Stratonovich field s, Fermion matrix Q)

$$Z = \int Ds \exp\left[-S'\right], \qquad S' = -\log(\det(Q)) + V(s)$$

 $C_0 < 0$ (attractive): $det(Q) \ge 0$

Continuum Limit

Fix coupling constant at finite lattice spacing

$$\frac{M}{4\pi a} = \frac{1}{C_0} + \frac{1}{2} \sum_{\vec{p}} \frac{1}{E_{\vec{p}}}$$

Take lattice spacing b, b_{τ} to zero

$$\mu b_{\tau} \to 0$$
 $n^{1/3}b \to 0$ $n^{1/3}a = const$

Physical density fixed, lattice filling $\rightarrow 0$

Consider universal (unitary) limit

 $n^{1/3}a \to \infty$

Lattice Results

Canonical T = 0 calculation: $\xi = 0.25(3)$ (D. Lee)

Not extrapolated to zero lattice spacing

Green Function Monte Carlo

Other lattice results: $\xi = 0.4$ (Burovski et al., Bulgac et al.) Experiment: $\xi = 0.27^{+0.12}_{-0.09}$ [1], 0.51 ± 0.04 [2], 0.74 ± 0.07 [3]

[1] Bartenstein et al., [2] Kinast et al., [3] Gehm et al.

Upper and lower critical dimension

Zero energy bound state for arbitrary d

$$\psi''(r) + \frac{d-1}{r}\psi'(r) = 0 \quad (r > r_0)$$

<u>d=2:</u> Arbitrarily weak attractive <u>d=4:</u> Bound state wave function potential has a bound state $\psi \sim 1/r^{d-2}$. Pairs do not overlap

$$\xi(d\!=\!2) = 1 \qquad \qquad \xi(d\!=\!4) = 0$$

Conclude $\xi(d=3) \sim 1/2?$

Try expansion around d = 4 or d = 2?

Nussinov & Nussinov (2004)

Epsilon Expansion

EFT version: Compute scattering amplitude ($d = 4 - \epsilon$)

$$T = \frac{1}{\Gamma\left(1 - \frac{d}{2}\right)} \left(\frac{m}{4\pi}\right)^{-d/2} \left(-p_0 + \frac{\epsilon_p}{2}\right)^{1 - d/2} \simeq \frac{8\pi^2 \epsilon}{m^2} \frac{i}{p_0 + \frac{\epsilon_p}{2} + i\delta}$$
$$g^2 \equiv \frac{8\pi^2 \epsilon}{m^2} \qquad D(p_0, p) = \frac{i}{p_0 + \frac{\epsilon_p}{2} + i\delta}$$

Weakly interacting bosons and fermions

Epsilon Expansion

Problem: Higher order corrections large (~ 100 %)!

Combine
$$d = 4 - \epsilon$$
 and $d = 2 + \overline{\epsilon}$ (and Pade)

$$\xi = (0.3 - 0.35)$$

Quark Gluon Plasma Equation of State (Lattice)

Compilation by F. Karsch (SciDAC)

Holographic Duals at Finite Temperature

Extended to transport properties by Policastro, Son and Starinets

$$\eta = \frac{\pi}{8} N_c^2 T^3$$

II. How Large Can T_c Get?

Critical Temperature: From BCS to BEC

$$T_c^{BCS} = \frac{4 \cdot 2^{1/3} e^{\gamma}}{e^{7/3} \pi} \epsilon_F \exp\left(-\frac{\pi}{|k_F a|}\right) \qquad T_c^{BEC} = 3.31 \left(\frac{n^{2/3}}{m}\right)$$
$$T_c(a \to \infty) = 0.28\epsilon_F \qquad T_c = 0.21\epsilon_F + O(a_B n^{1/3})$$

Experimental Results

Kinast et al. (2005)

Lattice results: $T_c/T_F = 0.15$ (UMass)

Quark Matter: Color Superconductivity

Weak coupling result $\frac{T_c}{T_F} = \frac{be^{\gamma}}{\pi} \exp\left(-\frac{3\pi^2}{\sqrt{2g}}\right)$ $b = 512\pi^4 g^{-5} (2/N_f)^{\frac{5}{2}} e^{-\frac{\pi^2+4}{8}}$

Maximum $T_c/T_F = 0.025$. Strong coupling?

Find $T_c/T_F \simeq 0.2$

Note: Transition to χSB Consider $N_c = 2$ QCD?

III. Transport Properties

Collective Modes

Ideal fluid hydrodynamics, equation of state $P \sim n^{5/3}$

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n\vec{v}) = 0$$

$$\frac{\partial \vec{v}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right)\vec{v} = -\frac{1}{mn}\vec{\nabla}\left(P + nV\right)$$

$$\omega = 0$$

ΙU

ર

Damping of Collective Excitations

Kinast et al. (2005)

Viscous Hydrodynamics

Energy dissipated due to viscous effects is

$$\dot{E} = -\frac{\eta}{2} \int d^3x \, \left(\partial_i v_j + \partial_j v_i - \frac{2}{3} \delta_{ij} \partial_k v_k \right)^2 - \zeta \int d^3x \, \left(\partial_i v_i \right)^2,$$

 η, ζ : shear, bulk viscosity

Shear viscosity to entropy ratio ($\zeta = 0$)

Problems: Scaling with N; T dependence below T_c

IV. Stressed Pairing

Polarized Fermions: From BEC to BCS

Response of paired state to pair breaking stress (e.g. Zeeman field)

 $\mathcal{L}_{ext} = \delta \mu \psi^{\dagger} \sigma_3 \psi$

BEC limit: Tightly bound bosons, no polarization for $\delta\mu<\Delta$

 $\delta\mu > \Delta$: Mixture of Fermi and Bose liquid, no phase separation

BCS limit: No homogeneous mixed phase

 $\delta \mu > \delta \mu_{c1}$: LOFF pairing $\Delta(x) = e^{iqx} \Delta$

Inhomogeneous pairing

Onset? Consider EFT for gapless fermions interacting with GB's

$$\mathcal{L} = \psi^{\dagger} \Big(i\partial_0 - \epsilon(-i\vec{\partial}) - (\vec{\partial}\varphi) \cdot \frac{\overleftarrow{\partial}}{2m} \Big) \psi + \frac{f_t^2}{2} \dot{\varphi}^2 - \frac{f^2}{2} (\vec{\partial}\varphi)^2$$

Free energy of state with non-zero current $v_s = \partial \varphi / m$

$$F(v_s) = \frac{1}{2} nmv_s^2 + \int \frac{d^3p}{(2\pi)^3} \epsilon_v(\vec{p}) \Theta(-\epsilon_v(\vec{p}))$$

Unstable for BCS-type dispersion relation

$$x \sim \frac{j}{\Delta} \quad h \sim \frac{\delta \mu - \delta \mu_c}{\Delta}$$

Minimal Phase Diagram

Son & Stephanov (2005)

Experimental Situation

Zwierlein et al.(MIT group)

Color Superconductivity in QCD: Response to $m_s \neq 0$

QCD with three degenerate flavors: CFL pairing

$$\langle q_i^a q_j^b \rangle = (\delta_i^a \delta_j^b - \delta_j^a \delta_i^b) \phi$$

 $\langle ud \rangle = \langle us \rangle = \langle ds \rangle$

Pair breaking stress due to $\mu_s = m_s^2/(2p_F) \neq 0$

kinematics + electric neutrality + weak equilibrium

Phase Structure of CFL Quark Matter

How does CFL ($\langle ud \rangle = \langle ds \rangle = \langle su \rangle$) pairing responds to m_s ?

Excitation energy of fermions Gapless modes appear at $\mu_s(crit)\sim 0.75\Delta$

Energy density of superfluid phases $\mu_s(K-cond) \sim m_u^{2/3} \Delta^{4/3}/\mu$ $\mu_s(GB-cur) \sim 0.75\Delta$

Figures: Kryjevski & Schäfer (2004)

Schäfer (2005)

Trapped atoms provide interesting model system

- equation of state of strongly correlated systems (neutron matter, sQGP)
- viscosity of strongly correlated systems (sQGP?)
- superfluidity at strong coupling (T_c/T_F) , response to pair breaking fields, precursor phenomena)