Effective Field Theories

of Dense (and Very Dense) Matter
Thomas Schaefer
North Carolina State University

QCD Phase Diagram

Plan

1. Phases of QCD
2. Fermi/Bose liquids
3. Quark Matter
4. Neutron Matter

Quantumchromodynamics

Elementary fields:
Quarks
Gluons
$\left(q_{\alpha}\right)_{f}^{a} \begin{cases}\text { color } & a=1, \ldots, 3 \\ \text { spin } & \quad \alpha=1,2 \\ \text { flavor } & f=u, d, s, c, b, t\end{cases}$

$$
A_{\mu}^{a}\left\{\begin{array}{l}
\text { color } \quad a=1, \ldots, 8 \\
\operatorname{spin} \epsilon_{\mu}^{ \pm}
\end{array}\right.
$$

Dynamics: non-abelian gauge theory

$$
\begin{gathered}
\mathcal{L}=\bar{q}_{f}\left(i \not D-m_{f}\right) q_{f}-\frac{1}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a} \\
G_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \\
i \not D q=\gamma^{\mu}\left(i \partial_{\mu}+g A_{\mu}^{a} t^{a}\right) q
\end{gathered}
$$

"Seeing" Quarks and Gluons

Asymptotic Freedom

Classical field $A_{0}^{c l} \sim g / r$. Modification due to quantum fluctuations:

$$
A_{\mu}=A_{\mu}^{c l}+\delta A_{\mu} \quad g \rightarrow g(\mu) \quad \beta(g)=\frac{\partial g}{\partial \log (\mu)}
$$

dielectric $\epsilon>1 \quad$ paramagnetic $\mu>1 \quad$ dielectric $\epsilon>1$

$$
\begin{gathered}
\mu \epsilon=1 \Rightarrow \epsilon<1 \\
\beta(g)=\frac{g^{3}}{(4 \pi)^{2}}\left\{\left[\frac{1}{3}-4\right] N_{c}+\frac{2}{3} N_{f}\right\}
\end{gathered}
$$

Running Coupling Constant

About Units

QCD Lite* is a parameter free theory
The lagrangian has a coupling constant, g, but no scale.
After renormalization g becomes scale dependent

$$
g \text { is traded for a scale parameter } \Lambda
$$

Λ is the only scale, the QCD "standard kilogram"

$$
\Lambda_{Q C D} \simeq 200 \mathrm{MeV} \simeq 1 \mathrm{fm}^{-1}
$$

*QCD Lite is QCD in the limit $m_{q} \rightarrow 0, m_{Q} \rightarrow \infty$

Phases of Gauge Theories

Phases of Matter

phase	order param	broken symmetry	rigidity phenomenon	Goldstone boson
crystal	ρ_{k}	translations	rigid	phonon
magnet	\vec{M}	rotations	magnetization	magnon
superfluid	$\langle\Phi\rangle$	particle number	supercurrent	phonon
supercond.	$\langle\psi \psi\rangle$	gauge symmetry	supercurrent	none (Higgs)

Gauge Symmetry

Local gauge symmetry $U(x) \in S U(3)_{c}$

$$
\begin{array}{rll}
\psi & \rightarrow U \psi & D_{\mu} \psi \rightarrow U D_{\mu} \psi \\
A_{\mu} & \rightarrow U A_{\mu} U^{\dagger}+i U \partial_{\mu} U^{\dagger} & F_{\mu \nu} \rightarrow U F_{\mu \nu} U^{\dagger}
\end{array}
$$

Local gauge "symmetries" cannot be broken (Elitzur's theorem)
Gauge "symmetries" can be realized in different modes

Coulomb
Higgs
3 (massive)
d.o.f:
2 (massless)
confined

Distinction between Higgs and confinement phase not always sharp

Chiral Symmetry

Define left and right handed fields

$$
\psi_{L, R}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi
$$

Fermionic lagrangian, $M=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$

$$
\mathcal{L}=\bar{\psi}_{L}(i \not D) \psi_{L}+\bar{\psi}_{R}(i \not D) \psi_{R}
$$

$$
+\bar{\psi}_{L} M \psi_{R}+\bar{\psi}_{R} M \psi_{L}
$$

$M=0$: Chiral symmetry $(L, R) \in S U(3)_{L} \times S U(3)_{R}$

$$
\psi_{L} \rightarrow L \psi_{L}, \quad \psi_{R} \rightarrow R \psi_{R}
$$

Chiral Symmetry Breaking

Chiral symmetry implies massless, degenerate fermions

$$
m_{N}^{(1 / 2)^{+}}=935 \mathrm{MeV} \quad m_{N^{*}}^{(1 / 2)^{-}}=1535 \mathrm{MeV}
$$

Chiral symmetry is spontaneously broken

$$
\begin{gathered}
\left\langle\bar{\psi}_{L}^{f} \psi_{R}^{g}+\bar{\psi}_{L}^{f} \psi_{R}^{g}\right\rangle \simeq-(230 \mathrm{MeV})^{3} \delta^{f g} \\
S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{V} \quad(G \rightarrow H)
\end{gathered}
$$

Consequences: dynamical mass generation $m_{Q}=300 \mathrm{MeV} \gg m_{q}$

$$
m_{N}=890 \mathrm{MeV}+45 \mathrm{MeV} \quad(\mathrm{QCD}, 95 \%)+(\text { Higgs }, 5 \%)
$$

Goldstone Bosons: Consider broken generator Q_{5}^{a}

$$
\left[H, Q_{5}^{a}\right]=0 \quad Q_{5}^{a}|0\rangle=\left|\pi^{a}\right\rangle \quad H\left|\pi^{a}\right\rangle=H Q_{5}^{a}|0\rangle=Q_{5}^{a} H|0\rangle=0
$$

Low energy effective theory for the Goldstone modes
Step 1: Parameterize $G / H=$ pseudoscalar GB's

$$
U(x): \quad U \rightarrow L U R^{\dagger} \quad(L, R) \in S U(3)_{L} \times S U(3)_{R}
$$

Vacuum $U^{f g}=\delta^{f g}$. Massless fluctuations (G / H)

$$
U(x)=\exp \left(i \phi^{a} \lambda^{a} / f_{\pi}\right) \quad \phi^{a}=\left(\pi^{ \pm}, \pi^{0}, K^{ \pm}, K^{0}, \bar{K}^{0}, \eta\right)
$$

Step 2: Write most general G invariant effective lagrangian

$$
\mathcal{L}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left[\partial_{\mu} U \partial^{\mu} U^{\dagger}\right]+\ldots
$$

Non-linear sigma model

Expand lagrangian ($S U(2)$ sector)

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi^{a}\right)^{2}+\frac{1}{6 f_{\pi}^{2}}\left[\left(\phi^{a} \partial_{\mu} \phi^{a}\right)^{2}-\left(\phi^{a}\right)^{2}\left(\partial_{\mu} \phi^{b}\right)^{2}\right]+O\left(\frac{\partial^{4}}{f_{\pi}^{4}}\right)
$$

Step 3: Low energy expansion

$$
T_{\pi \pi} \sim O\left(k^{2} / f_{\pi}^{2}\right)+
$$

$O\left(k^{4} / f_{\pi}^{4}\right)$
$+\quad .$.
Relation to f_{π} : Couple weak gauge fields

$$
\begin{gathered}
\partial_{\mu} U \rightarrow\left(\partial_{\mu}+i g W_{\mu}^{ \pm} \tau^{\mp}\right) U \\
\mathcal{L}=g f_{\pi} W_{\mu}^{ \pm} \partial^{\mu} \pi^{\mp}
\end{gathered}
$$

π

Quark Masses

Non-zero quark masses: $\mathcal{L}=\bar{\psi}_{L} M \psi_{R}+\bar{\psi}_{R} M^{\dagger} \psi_{R}$

$$
M \rightarrow L M R^{\dagger} \quad \text { spurion field } M
$$

Chiral lagrangian at leading order in M

$$
\mathcal{L}=B \operatorname{Tr}[M U]+\text { h.c. }
$$

Mass matrix $M=\operatorname{diag}\left(m_{u}, m_{d} m_{s}\right)$. Minimize effective potential

$$
U_{v a c}=1, \quad E_{v a c}=-B \operatorname{Tr}[M] \quad\langle\bar{\psi} \psi\rangle=-B
$$

Expand around $U_{v a c}$: pion mass

$$
m_{\pi}^{2} f_{\pi}^{2}=\left(m_{u}+m_{d}\right)\langle\bar{\psi} \psi\rangle
$$

Chiral expansion

$$
\mathcal{L}=f_{\pi}^{4}\left(\frac{\partial U}{\Lambda_{\chi}}\right)^{m}\left(\frac{m_{\pi}}{\Lambda_{\chi}}\right)^{n} \quad \Lambda_{\chi}=4 \pi f_{\pi}
$$

Symmetries of the QCD Vacuum: Summary

Local $S U(3)$ gauge symmetry
confined: $\quad V(r) \sim k r$
Chiral $S U(3)_{L} \times S U(3)_{R}$ symmetry spontaneously broken to $S U(3)_{V}$

Axial $U(1)_{A}$ symmetry

$$
\text { anomalous : } \quad \partial_{\mu} A_{\mu}^{0}=\frac{N_{f}}{16 \pi^{2}} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}
$$

Vectorial $U(1)_{B}$ symmetry unbroken: $\quad B=\int d^{3} x \psi^{\dagger} \psi \quad$ conserved

QCD at non-zero temperature

Basic object: Partition function

$$
Z=\operatorname{Tr}\left[e^{-\beta H}\right], \quad \beta=1 / T \quad F=T \log (Z)
$$

Basic trick

$$
Z=\operatorname{Tr}\left[e^{-i(-i \beta) H}\right] \quad \quad \text { imaginary time evolution }
$$

Path integral representation

$$
\begin{gathered}
Z=\int D A_{\mu} D \psi \exp \left(-\int_{0}^{\beta} d \tau \int d^{3} x \mathcal{L}_{E}\right) \\
A_{\mu}(\vec{x}, \beta)=A_{\mu}(\vec{x}, 0) ; \psi(\vec{x}, \beta)=-\psi(\vec{x}, 0)
\end{gathered}
$$

Starting point of perturbative and lattice approaches

The High T Phase: Qualitative Argument

High T phase: Weakly interacting gas of quarks and gluons? typical momenta $p \sim 3 T$

Large angle scattering involves large momentum transfer
effective coupling is small

Small angle scattering is screened (not anti-screened!)
coupling does not become large

Quark Gluon Plasma

Lattice Results

QCD at Finite Density

Partition function

$$
Z=\operatorname{Tr}\left[e^{-\beta(H-\mu N)}\right] \quad \beta=1 / T \quad N=\int d^{3} x \psi^{\dagger} \psi
$$

Path integral representation (euclidean)

$$
Z=\int D A_{\mu} \operatorname{det}\left(i \not D+i \mu \gamma_{4}\right) e^{-S}=\int D A_{\mu} e^{i \phi}\left|\operatorname{det}\left(i \not D+i \mu \gamma_{4}\right)\right| e^{-S}
$$

Sign problem: importance sampling does not work
Also: No general theorems (a la Vafa-Witten)

Phase structure much richer

(breaking of translational, rotational, parity, isospin, ... symmetry)

Evading the Sign Problem I

QCD like theories with extra "C" symmetry

$$
\operatorname{det}(D) \operatorname{det}\left(C D C^{-1}\right)=\operatorname{det}(D) \operatorname{det}(D)^{*}=|\operatorname{det}(D)|^{2}
$$

QCD with $S U(2)_{F}$ symmetry at non-zero $\mu_{I_{3}}$
QCD with $N_{c}=2$ colors
QCD with fermions in the adjoint representation
These theories have some common features

> Charged Goldstone Bosons, Bose condensation No Higgs phase (color superconductivity)

Evading the Sign Problem II

[FK] Improved re-weighting, [FP] imaginary chemical potential [AII] Taylor expansions

