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Introduction

I learned about Fermi liquid theory (FLT) from Gerry. I was under the

impression that the theory amounted to the operation

m → m∗

I only later realized that Gerry had a very sophisticated understanding

of FLT (see his many-body lectures).

One of Gerry’s legacies is his insistence that the nuclear many body

problem should be understood in terms of quasi-particles and effective

interactions.

Some of the best work along these lines was done in Stony Brook (and

Darmstadt) since the late 90s, based on Vlow k and the renormalization

group.



Many improvements could have been made, es-

pecially in Chapter XIII on effective forces in

nuclei, but time is short, and I shall make them

in later editions, when I am too old to ski. Of

course, nobody will be interested in the subject

by then.

Unified Theory of Nuclear Models and Forces

3rd edition, 1970.



Fermi liquid theory a la Landau

In a cold Fermi system the low energy excitations are spin 1/2

quasi-particles. Define a distribution function fp = f0

p + δfp. Then

E = E0 +

∫

δE
δfp

δfp +
1

2

∫ ∫

δ2E
δfpδfp′

δfpδfp′ + . . .

Ep =
δE
δfp

tpp′ =
δ2E

δfpδfp′

The distribution function satisfies a Boltzmann equation
(

∂t + vp · ∇r + Fp · ∇p

)

fp(r, t) = C[fp]

with vp = ∇pEp and Fp = −∇rEp.



Fermi liquid theory a la Polchinski-Shankar

Free non-relativistic quasi-particles near Fermi surface

S =

∫

dt

∫

d3p

(2π)3
ψ(p)† (i∂t − (ǫ(p) − ǫF ))ψ(p)

Expand momenta around Fermi momentum ~p = ~k +~l

ǫ(p) − ǫF = ~vF (k) ·~l +O(l2)

Study scaling behavior ~l → s~l. Scaling dimensions

[k] = 0, [l] = 1, [∂t] = 1, [d3p] = 1, [ψ] = −1

2

Interaction

Sint =

∫

dt

[

4
∏

i=1

∫

d3pi

(2π)3

]

ψ†(p4)ψ
†(p3)ψ(p2)ψ(p1)δ

3(ptot)U(pi)



Marginal Interactions
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BCS Landau

BCS : U(−p̂3, p̂3,−p̂1, p̂1) = V (p̂1 · p̂3) =
∑

l

VlPl(p̂1 · p̂3),

LFL : U(p̂4, p̂3, p̂2, p̂1)|p̂1·p̂2=p̂3·p̂4
= F (p̂1 · p̂2, φ12,34)



Fermi surface RG in nuclear physics

Achim and Bengt: Evolve Vlow k towards Fermi surface
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Fermi liquid parameter tpp′ = [Fl +Gl(σ · σ′)]Pl(cos θ)
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Non-FLT in QCD: High Density Effective Theory

QCD lagrangian

L = ψ̄ (iD/ + µγ0 −m)ψ − 1

4
Ga

µνG
a
µν

Quasi-particles (holes)

E± = −µ±
√

~p2 +m2 ≃ −µ± |~p|
�����������������������
�����������������������
�����������������������
�����������������������

p p

particlesholes
Λ

ε

F

Effective field theory on v-patches

ψv± = e−iµv·x

(

1 ± ~α · ~v
2

)

ψ

p = l+lv+µv

v’



Effective Theory for l < m

L = ψ†
v

(

iv ·D − D2

⊥

2µ

)

ψv + L4f − 1

4
Ga

µνG
a
µν + LHDL

LHDL = −m
2

2

∑

v

Ga
µα

vαvβ

(v ·D)2
Gb

µβ

Transverse gauge boson propagator

Dij(k) =
δij − k̂ik̂j

k2

0
− ~k2 + iπ

2
m2 k0

|~k|

,

Scaling of gluon momenta

|~k| ∼ k
1/3

0
m2/3 ≫ k0 gluons are very spacelike



Non-Fermi Liquid Effective Theory

Gluons very spacelike |~k| ≫ |k0|. Quark kinematics?

k0 ≃ k|| +
k2

⊥

2µ

k⊥ ≫ k|| ≫ k0

k|| ∼
k2
⊥

2µ

Scaling relations

k⊥ ∼ m2/3k
1/3

0
, k|| ∼ m4/3k

2/3

0
/µ

Propagators

Sαβ =
−iδαβ

p|| +
p2

⊥

2µ − iǫsgn(p0)
Dij =

−iδij
k2

⊥ − iπ
2
m2 k0

k⊥

,



Non-Fermi Liquid Expansion

Scale momenta (k0, k||, k⊥) → (sk0, s
2/3k||, s

1/3k⊥)

[ψ] = 5/6 [Ai] = 5/6 [S] = [D] = 0

Scaling behavior of vertices

����s1/6 s1/2 s5/6 s

Systematic expansion in ǫ1/3 ≡ (ω/m)1/3



Non-Fermi liquid effects

Quark self energy near “Fermi surface”

Σ(p) =
g2

9π2

(

p0 log

(

25/2m

π|p0|

)

+ i
π

2
p0

)

+O
(

ǫ5/3

)

Luttinger: G−1|FS = 0 ⇒ n = Vol(FSph)

Quasi-particle velocity vanishes, IR freedom near Fermi surface

d logαv

dΛ
= +

4α2

v

9π
α =

g2vF

4π

Enhanced color superconducting gap

∆ = µ exp

(

− 3π2

√
2g

− 5 log(g) +
[

4 log(128π) − π2 + 4

8

]

+ . . .

)

Unusual transport: η ∼ µ4m2/3/(g4T 5/3) ∼ µ4/(g10/3T )



Remnants of Fermi liquid theory

Mass corrections to µ

and scattering amplitudes

�R R = �R L RM M y + : : :

�RR LL = �R
R MLM
L + : : :

Instanton vertex:

χSB in CFL phase �L R
=

�L R

〈LL〉

〈RR〉



The return of the master: FLT a la Landau

The discovery of nearly perfect fluidity in the QGP and in ultracold

gases has led to (renewed) interest in transport properties as a measure

of the quasi-particle interaction.
(

∂t + vp · ∇r + Fp · ∇p

)

fp(r, t) = C[fp]

Require consistency between transport and thermodynamics:

Ep =
δE
δfp

tpp′ =
δ2E

δfpδfp′



Example I: Bulk viscosity in a dilute Fermi gas

Conformal symmetry breaking (thermodynamics)

1 − 2E
3P

=
C

12πmaP
∼ 1

6π
nλ3

λ

a

How does this translate into ζ 6= 0? Momentum dependent m∗(p).

�

Im Σ(k) ∼ zT

√

T

ǫk
Erf

(
√

ǫk
T

)

≪ T

Re Σ(k) ∼ zT
λ

a

√

T

ǫk
FD

(
√

ǫk
T

)

Bulk viscosity

ζ =
1

24
√

2π
λ−3

(

zλ

a

)2

ζ ∼
(

1 − 2E
3P

)2

η



Example II: Kinetics of the chiral magnetic effect

Chiral fermions modify measure

n =

∫

d3p
(

1 + ~B · ~Ωp

)

np ~π =

∫

d3p
(

1 + ~B · ~Ωp

)

~pnp

E =

∫

d3p
(

1 + ~B · ~Ωp

)

ǫpnp

where Ωp = ∇p ×Ap = ±p̂/(2µ2) is the Berry curvature. Get

energy/momentum conservation

∂0E + ~∇ · ~π = ~E · ~ ∂0~π + ~∇ · Π̂ = n~E + ~× ~B

and the anomaly

∂0n+ ~∇ · ~ = ± 1

4π2

~E · ~B

Son & Yamamoto, Zahed, Basar et al.



Coda: Non-FLT engineering in AdS/CMT

Consider (deformations of) AdS/Reissner-Nordstrom black holes. Solve

for spinor eigenmodes

GR(ω, k) =
h1

ω − vF (k − kF ) + h2ω
2νkF

(2νkF
− 1) ⇒ regular/marginal/singular Fermi liquid

Study transport properties

σ(0) ∼ T−2νk σ(ω) =
σ(0)

1 − iτω
(2νK > 1)

QFT: Non-interacting FS interacting with strongly coupled CFT.

Faulkner, Polchinski, Iqbal, McGreevy.



Summary

Contrary to Gerry’s 1970 prediction, there is a renaissance of interest

in effective forces.

Much of this interest is driven by developments initiated or encouraged

by Gerry: chiral forces, soft potentials, free space and Fermi surface

RG.

Landau Fermi liquid theory is alive and well. Indeed we have come to

(re)appreciate Landau’s insight of basing the theory on kinetics rather

than effective lagrangians.

I am looking forward to the next 45 years of

nuclear theory at Stony Brook!


