From Trapped Atoms
 To Liberated Quarks

Thomas Schaefer

North Carolina State University

Perfect Liquids

Neutron Matter ($\mathrm{T}=1 \mathrm{MeV}$)

$$
\text { sQGP }(\mathrm{T}=180 \mathrm{MeV})
$$

Trapped Atoms ($\mathrm{T}=5 \mathrm{peV}$)

Universality

What do these systems have in common?

$$
\text { dilute: } r \rho^{1 / 3} \ll 1
$$

strongly correlated: $a \rho^{1 / 3} \gg 1$

Feshbach Resonance in ${ }^{6} \mathrm{Li}$

Neutron Matter

I. Equation of State

Universal Equation of State

Consider limiting case ("Bertsch" problem)

$$
\left(k_{F} a\right) \rightarrow \infty \quad\left(k_{F} r\right) \rightarrow 0
$$

Universal equation of state

$$
\frac{E}{A}=\xi\left(\frac{E}{A}\right)_{0}=\xi \frac{3}{5}\left(\frac{k_{F}^{2}}{2 M}\right)
$$

How to find ξ ?
Numerical Simulations
Experiments with trapped fermions
Analytic Approaches

Effective Field Theory

Effective field theory for pointlike, non-relativistic neutrons
$\mathcal{L}_{\text {eff }}=\psi^{\dagger}\left(i \partial_{0}+\frac{\nabla^{2}}{2 M}\right) \psi-\frac{C_{0}}{2}\left(\psi^{\dagger} \psi\right)^{2}+\frac{C_{2}}{16}\left[(\psi \psi)^{\dagger}\left(\psi \stackrel{\leftrightarrow}{\nabla}^{2} \psi\right)+h . c.\right]+\ldots$

$$
(a, r, \ldots) \Rightarrow\left(C_{0}, C_{2}, \ldots\right)
$$

Partition Function (Hubbard-Stratonovich field s, Fermion matrix Q)

$$
Z=\int D s \exp \left[-S^{\prime}\right], \quad S^{\prime}=-\log (\operatorname{det}(Q))+V(s)
$$

$$
C_{0}<0 \text { (attractive): } \operatorname{det}(Q) \geq 0
$$

Continuum Limit

Fix coupling constant at finite lattice spacing

$$
\frac{M}{4 \pi a}=\frac{1}{C_{0}}+\frac{1}{2} \sum_{\vec{p}} \frac{1}{E_{\vec{p}}}
$$

Take lattice spacing b, b_{τ} to zero

$$
\mu b_{\tau} \rightarrow 0 \quad n^{1 / 3} b \rightarrow 0 \quad n^{1 / 3} a=\text { const }
$$

Physical density fixed, lattice filling $\rightarrow 0$
Consider universal (unitary) limit

$$
n^{1 / 3} a \rightarrow \infty
$$

Lattice Results

Canonical $T=0$ calculation: $\xi=0.25(3)$ (D. Lee)
Not extrapolated to zero lattice spacing

Green Function Monte Carlo

Other lattice results: $\xi=0.4$ (Burovski et al., Bulgac et al.)
Experiment: $\xi=0.27_{-0.09}^{+0.12}[1], 0.51 \pm 0.04[2], 0.74 \pm 0.07[3]$
[1] Bartenstein et al., [2] Kinast et al., [3] Gehm et al.

Large d Limit

In medium scattering strongly restricted by phase space

Find limit in which ladders are leading order

$\left(C_{0} / d\right) \cdot 1 / d$

$$
\begin{gathered}
\lambda \equiv\left[\frac{\Omega_{d} C_{0} k_{F}^{d-2} M}{d(2 \pi)^{d}}\right] \\
\lambda=\operatorname{const}(d \rightarrow \infty) \\
\quad \xi=\frac{1}{2}+O(1 / d)
\end{gathered}
$$

Gauge Theory at Strong Coupling: Holographic Duals

The AdS/CFT duality relates
large N_{c} (Conformal) gauge theory in 4 dimensions correlation fcts of gauge

$$
\begin{aligned}
& \left\langle\exp \int d x \phi_{0} \mathcal{O}\right\rangle= \\
& \quad Z_{\text {string }}\left[\phi(\partial A d S)=\phi_{0}\right]
\end{aligned}
$$

string theory on 5 dimensional
Anti-de Sitter space $\times S_{5}$
boundary correlation fcts
of AdS fields

The correspondence is simplest at strong coupling $g^{2} N_{c}$ strongly coupled gauge theory $\Leftrightarrow \quad$ classical string theory

Gauge Theory at Strong Coupling: Finite Temperature

Thermal (conformal) field theory $\equiv A d S_{5}$ black hole

CFT temperature

$$
s=\frac{\pi^{2}}{2} N_{c}^{2} T^{3}=\frac{3}{4} s_{0}
$$

Gubser and Klebanov

Hawking temperature of black hole Hawking-Bekenstein entropy

$$
=\text { area of event horizon }
$$

Extended to transport properties by Policastro, Son and Starinets

$$
\eta=\frac{\pi}{8} N_{c}^{2} T^{3}
$$

II. How Large Can T_{c} Get?

Critical Temperature: From BCS to BEC

$$
\begin{array}{cc}
T_{c}^{B C S}= & \frac{4 \cdot 2^{1 / 3} e^{\gamma}}{e^{7 / 3} \pi} \epsilon_{F} \exp \left(-\frac{\pi}{\left|k_{F} a\right|}\right) \quad T_{c}^{B E C}=3.31\left(\frac{n^{2 / 3}}{m}\right) \\
T_{c}(a \rightarrow \infty)=0.28 \epsilon_{F} & T_{c}=0.34 \epsilon_{F}+O\left(a_{B} n^{1 / 3}\right)
\end{array}
$$

Experimental Results

Kinast et al. (2005)
Lattice results: $T_{c} / T_{F}=0.15$ (UMass)

Quark Matter: Color Superconductivity

Weak coupling result

$$
\begin{aligned}
& \frac{T_{c}}{T_{F}}=\frac{b e^{\gamma}}{\pi} \exp \left(-\frac{3 \pi^{2}}{\sqrt{2} g}\right) \\
& b=\frac{512 \pi^{4}}{g^{5}}\left(\frac{2}{N_{f}}\right)^{\frac{5}{2}} e^{-\frac{\pi^{2}+4}{8}}
\end{aligned}
$$

Maximum $T_{c} / T_{F}=0.025$. Strong coupling?

Note: Transition to $\chi S B$
Consider $N_{c}=2$ QCD?

III. Stressed Pairing

Polarized Fermions: From BEC to BCS

BEC limit: Tightly bound bosons, no polarization for $\delta \mu<\Delta$
$\delta \mu>\Delta$: Mixture of Fermi and Bose liquid, no phase separation Stable? Consider EFT for gapless fermions interacting with GB's

$$
\begin{gathered}
\mathcal{L}=\psi^{\dagger}\left(i \partial_{0}-\epsilon(-i \vec{\partial})-(\vec{\partial} \varphi) \cdot \frac{\overleftrightarrow{\partial}}{2 m}\right) \psi+\frac{f_{t}^{2}}{2} \dot{\varphi}^{2}-\frac{f^{2}}{2}(\vec{\partial} \varphi)^{2} \\
\epsilon_{v}(\vec{p})=\epsilon(\vec{p})+\vec{v}_{s} \cdot \vec{p}-\delta \mu
\end{gathered}
$$

Free energy of state with non-zero current

$$
F\left(v_{s}\right)=\frac{1}{2} n m v_{s}^{2}+\int \frac{d^{3} p}{(2 \pi)^{3}} \epsilon_{v}(\vec{p}) \Theta\left(-\epsilon_{v}(\vec{p})\right)
$$

Unstable for BCS-type dispersion relation

Schematic Phase Diagram

Son \& Stephanov (2005)

Experimental Situation

Zwierlein et al.(MIT group)

Phase Structure of CFL Quark Matter

How does CFL $(\langle u d\rangle=\langle d s\rangle=\langle s u\rangle)$ pairing responds to m_{s} ?

Excitation energy of fermions
Gapless modes appear at

$$
\mu_{s}(\text { crit }) \sim \frac{4 \Delta}{3}
$$

Energy density of superfluid phases

$$
\begin{gathered}
\mu_{s}(K-\text { cond }) \sim m_{u}^{2 / 3} \Delta^{4 / 3} / \mu \\
\mu_{s}(G B-\text { cur }) \sim 4 \Delta / 3
\end{gathered}
$$

Summary

Trapped atoms near a Feshbach resonance provide interesing model

> system for
equation of state of strongly correlated systems (neutron matter, sQGP)
viscosity of strongly correlated systems (sQGP?)
superfluidity at strong coupling (T_{c} / T_{F}, response to pair breaking fields, precursor phenomena)

