Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks

Thomas Schaefer, North Carolina State University

RHIC serves the perfect fluid

Heavy Ion Collisions are very complicated (timedependent, strongly correlated quantum many body physics), but at RHIC & LHC a very simple theory appears to work.

παντα ρει (everything flows) Heraclitus of Ephesus, 535 - 475 BC

In this talk I will try to address the questions "Why?" and "How general is this phenomenon?".

Hydrodynamics

Hydrodynamics (undergraduate version): Newton's law for continuous, deformable media.

Fluids: Gases, liquids, plasmas, ...

Hydrodynamics (postmodern): Effective theory of non-equilibrium long-wavelength, low-frequency dy-namics of any many-body system.

 $\tau \gg \tau_{micro}$: Dynamics of conserved charges. Water: $(\rho, \epsilon, \vec{\pi})$

Simple non-relativistic fluid

Simple fluid: Conservation laws for mass, energy, momentum

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\vec{\nabla}(\rho \vec{v}) & \frac{\partial \epsilon}{\partial t} &= -\vec{\nabla} \vec{j}^{\epsilon} \\ \frac{\partial}{\partial t}(\rho v_i) &= -\nabla_j \Pi_{ij} \end{aligned}$$

mass × acceleration = force

Constitutive relations: Stress tensor

$$\Pi_{ij} = P\delta_{ij} + \rho v_i v_j + \eta \left(\nabla_i v_j + \nabla_j v_i - \frac{2}{3}\delta_{ij}\nabla_k v_k\right) + O(\nabla^2)$$

reactive dissipative 2nd order

Expansion
$$\Pi^0_{ij} \gg \delta \Pi^1_{ij} \gg \delta \Pi^2_{ij}$$

Regime of applicability

Expansion parameter
$$Re^{-1} = \frac{\eta(\partial v)}{\rho v^2} = \frac{\eta}{\rho L v} \ll 1$$

$$\frac{1}{Re} = \frac{\eta}{\hbar n} \times \frac{\hbar}{mvL}$$
fluid flow
property property

_1

Note: Bacteria swim in the regime $Re^{-1} \gg 1$ but $Ma^2 \cdot Re^{-1} \ll 1$.

Breakdown of fluid dynamics

Fluid dynamics is a universal theory but the breakdown of hydro, the emergence of non-hydrodynamic modes, is not.

Two extreme cases: Non-interacting particles or strongly collective, but non-hydrodynamic ($\omega_m(q \to 0) \neq 0$) modes.

Ballistic motion

Quasi-normal modes

Shear viscosity and friction

Momentum conservation at $O(\nabla v)$

$$\rho\left(\frac{\partial}{\partial t}\vec{v} + (\vec{v}\cdot\vec{\nabla})\vec{v}\right) = -\vec{\nabla}P + \eta\nabla^2\vec{v}$$

Navier-Stokes equation

Viscosity determines shear stress ("friction") in fluid flow

Kinetic theory

Kinetic theory: conserved quantities carried by quasi-particles. Quasi-particles described by distribution functions f(x, p, t).

$$\frac{\partial f_p}{\partial t} + \vec{v} \cdot \vec{\nabla}_x f_p + \vec{F} \cdot \vec{\nabla}_p f_p = -C[f_p]$$

$$C[f_p] = -C[f_p]$$

Shear viscosity corresponds to momentum diffusion

$$\eta \sim \frac{1}{3} n \, \bar{p} \, l_{mfp}$$

Shear viscosity: Low density limit

Weakly interacting gas, $l_{mfp} \sim rac{1}{n\sigma}$

$$\eta \sim \frac{1}{3} \frac{\bar{p}}{\sigma}$$

shear viscosity independent of density

Maxwell (1860): "Such a consequence of the mathematical theory is very startling and the only experiment I have met with on the subject does not seem to confirm it."

Shear viscosity: Additional properties

Non-interacting gas $(\sigma \to 0)$: $\eta \to \infty$

non-interacting and hydro limit ($T \rightarrow \infty$) limit do not commute

Strongly interacting gas:

$$\frac{\eta}{n} \sim \bar{p}l_{mfp} \ge \hbar$$

Quantum bound. But: Kinetic theory mat not be reliable!

And now for something completely different ...

This is an irreversible process, $\Delta S > 0$.

And now for something completely different ...

Ringdown can be described in terms of stretched horizon that behaves as a sheared fluid

Note: Unusual thermodynamics, e.g. ζ , C < 0.

Idea can be made precise using the "AdS/CFT correspondence"

CFT temperature \Leftrightarrow

CFT entropy

Weakly coupled string theory on AdS_5 black hole Hawking temperature of black hole Hawking-Bekenstein entropy \sim area of event horizon

 \Leftrightarrow

Holographic duals: Transport properties

Strong coupling limit universal? Provides lower bound for all theories?

Answer appears to be no; e.g. theories with higher derivative gravity duals.

Perfect Fluids: The contenders

QGP (T=180 MeV)


```
Liquid Helium
(T=0.1 meV)
```

Perfect Fluids: The contenders

 $\mathsf{QGP}\ \eta = 5\cdot 10^{11} Pa \cdot s$

Trapped Atoms $\eta = 1.7 \cdot 10^{-15} Pa \cdot s$

Liquid Helium $\eta = 1.7 \cdot 10^{-6} Pa \cdot s$

Consider ratios η/s

Perfect Fluids: Not a contender

Queensland pitch-drop experiment 1927-2011 (8 drops) $\eta = (2.3 \pm 0.5) \cdot 10^8 Pa s$

I. QCD and the Quark Gluon Plasma

$$\mathcal{L} = \bar{q}_f (i D - m_f) q_f - \frac{1}{4g^2} G^a_{\mu\nu} G^a_{\mu\nu}$$

Elliptic Flow (QGP)

$$p_0 \left. \frac{dN}{d^3p} \right|_{p_z=0} = v_0(p_\perp) \left(1 + 2v_2(p_\perp) \cos(2\phi) + \ldots \right)$$

Viscosity and Elliptic Flow

Romatschke (2007), Teaney (2003)

Many details: Dependence on initial conditions, freeze out, etc.

conservative bound
$$\frac{\eta}{s} < 0.25$$

Higher moments of flow

Hydro converts moments of initial deformation to moments of flow

Glauber predicts flat initial spectrum ($n \ge 3$). Observed flow spectrum consistent with sound attenuation

$$\delta T^{\mu\nu}(t) = \exp\left(-\frac{2}{3}\frac{\eta}{s}\frac{k^2t}{T}\right)\delta T^{\mu\nu}(0)$$

Everything flows (including p+Pb, and maybe even p+p)

Signatures of collective expansion (radial and elliptic flow) in high multiplicity p+Pb collisions.

Further evidence for short mean free path? Or suppression of non-hydrodynamic modes?

II. Dilute Fermi gas: BCS-BEC crossover

$$\mathcal{L}_{\text{eff}} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2$$

Unitarity limit

Consider simple square well potential

Unitarity limit

Now take the range to zero, keeping $\epsilon_B \simeq 0$

Feshbach resonances

Atomic gas with two spin states: " \uparrow " and " \downarrow "

Feshbach resonance

 $a(B) = a_0 \left(1 + \frac{\Delta}{B - B_0} \right)$

Fermi gas at unitarity: Field Theory

Non-relativistic fermions at low momentum

$$\mathcal{L}_{\text{eff}} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2M} \right) \psi - \frac{C_0}{2} (\psi^{\dagger} \psi)^2$$

Unitary limit: $a \to \infty$ (DR: $C_0 \to \infty$)

This limit is smooth (HS-trafo, $\Psi = (\psi_{\uparrow}, \psi_{\downarrow}^{\dagger})$

$$\mathcal{L} = \Psi^{\dagger} \left[i\partial_0 + \sigma_3 \frac{\vec{\nabla}^2}{2m} \right] \Psi + \left(\Psi^{\dagger} \sigma_+ \Psi \phi + h.c. \right) - \frac{1}{C_0} \phi^* \phi ,$$

Universal fluid dynamics

Many body system: Effective cross section $\sigma_{tr} \sim n^{-2/3}$ (or $\sigma_{tr} \sim \lambda^2$)

Systems remains hydrodynamic despite expansion

Almost ideal fluid dynamics

Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy

O'Hara et al. (2002)

Determination of $\eta(n,T)$

Measurement of $A_R(t, E_0)$ determines $\eta(n, T)$. But:

The corona is not a fluid. Can we ignore this issue?

No. Hubble flow & low density viscosity $\eta \sim T^{3/2}$ lead to paradoxical fluid dynamics. $\dot{Q} = \int \sigma \cdot \delta \Pi = \infty$

Possible Solutions

Combine hydrodynamics & Boltzmann equation. Not straightforward. Hydrodynamics + non-hydro degrees of freedom (\mathcal{E}_a ; a = x, y, z)

$$\frac{\partial \mathcal{E}_a}{\partial t} + \vec{\nabla} \cdot \vec{j}_a^{\epsilon} = -\frac{\Delta P_a}{2\tau} \qquad \Delta P_a = P_a - P$$
$$\frac{\partial \mathcal{E}}{\partial t} + \vec{\nabla} \cdot \vec{j}^{\epsilon} = 0 \qquad \mathcal{E} = \sum_a \mathcal{E}_a$$

 τ small: Fast relaxation to Navier-Stokes with $\tau=\eta/P$

 τ large: Additional conservation laws. Ballistic expansion.

Anisotropic fluid dynamics analysis

 $A_R = \sigma_x / \sigma_y$ as function of total energy. Data: Joseph et al (2016). $E/(NE_F) \sim 0.6$ is the superfluid transition.

Grey, Blue, Green: LO, NLO, NNLO fit.

$$\eta = \eta_0 (mT)^{3/2} \left\{ 1 + \eta_2 n\lambda^3 + \eta_3 (n\lambda^3)^2 + \ldots \right\}$$

Reconstructed η/n

Red band: This work. Right figure zooms in on $T_C/s\,\sim\,0.17T_F$.

Black points: Same data, simplified theory. Dashed line: T-matrix theory (Enss et al.). Green band: QMC (Bulgac et al.)

$$\eta(T \gg T_c) = (0.28 \pm 0.02)(mT)^{3/2} \qquad \eta_0(th) = \frac{15}{32\sqrt{\pi}} = 0.269$$
$$\eta/n|_{T_c} = 0.41 \pm 0.15 \qquad \eta/s|_{T_c} = 0.56 \pm 0.20$$

The bottom-line

Remarkably, the best fluids that have been observed are the *coldest* and the *hottest* fluid ever created in the laboratory, cold atomic gases (10^{-6}K) and the quark gluon plasma (10^{12}K) at RHIC.

Both of these fluids come close to a bound on the shear viscosity that was first proposed based on calculations in string theory, involving non-equilibrium evolution of back holes in 5 (and more) dimensions.

Quantum limited viscosity and relaxation time explain applicability of fluid dynamics in very small, very short lived systems. Nature of non-hydrodynamic modes remains to be explored.

Outlook: Critical Fluctuations

Historical digressions

Historical digression: Mott's minimal conductivity

(Sir) Nevill Mott predicted that the metal-insulator transition cannot be continuous; there is a minimal conductivity.

Conduction in Non-crystalline Systems IX. The Minimum Metallic Conductivity

> By N. F. MOTT Cavendish Laboratory, Cambridge

> > [Received 27 July 1972]

 $\frac{\sigma}{n^{1/3}} \ge \frac{1}{(3\pi^2)^{2/3}} \frac{e^2}{\hbar}$

This idea is not correct, the metal-insulator transition can be continuous.

Historical digression: Minimal shear viscosity

Danielewicz & Gyulassy argue that the shear viscosity cannot be zero.

PHYSICAL REVIEW D

VOLUME 31, NUMBER 1

1 JANUARY 1985

Dissipative phenomena in quark-gluon plasmas

P. Danielewicz* and M. Gyulassy

Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 12 April 1984; revised manuscript received 24 September 1984)

than $\langle p \rangle^{-1}$. Requiring $\lambda_i \geq \langle p \rangle_i^{-1}$ leads to the lower bound

$$\eta \geq \frac{1}{3}n \quad , \tag{3.3}$$

where $n = \sum n_i$ is the total density of quanta. What seems amazing about (3.3) is that it is independent of dynamical details. There is a finite viscosity regardless of

Is this idea correct?