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RHIC serves the perfect fluid




Experiments at RHIC and the LHC are consistent
with the idea that a thermalized plasma is pro-
duced, and that the equation of state is that of a
weakly coupled gas of quarks and gluons.

But: Transport properties of the system (primarily
viscosity and energy loss) are in dramatic disagree-
ment with expectations for a weakly coupled QGP.

The plasma must be very strongly coupled.

In this talk | will try to explain this statement,
review the current evidence, and put the results in
a broader perspective (by comparing with another
strongly coupled fluid, the dilute atomic Fermi gas
at “unitarity”).



Hydroynamics

Hydrodynamics (undergraduate version): Newton's
law for continuous, deformable media.




Fluids: Gases, liquids, plasmas, ...

Hydrodynamics (postmodern): Effective theory of
non-equilibrium long-wavelength, low-frequency dy-
namics of any many-body system.

non—conserved conservel

density /\ density
T ~ Tmicro T ~ A

T > Thiero. Dynamics of conserved charges.

Water: (p, €, )



Simple non-relativistic fluid

Simple fluid: Conservation laws for mass, energy, momentum
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Constitutive relations: Stress tensor
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Regime of applicability
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Shear viscosity and friction

Momentum conservation at O(Vv)
0, ., = = 2
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Navier-Stokes equation

Viscosity determines shear stress ( “friction™) in fluid flow
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Kinetic theory

Kinetic theory: conserved quantities carried by quasi-particles.
Quasi-particles described by distribution functions f(x,p,t).
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Shear viscosity corresponds to momentum diffusion
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Shear viscosity: Additional properties

1 1p
Weakly interacting gas, l,,pp ~ E: n ~ §§

shear viscosity independent of density

Non-interacting gas (o — 0): n — 00

non-interacting and hydro limit (7" — oo) limit do not commute

strongly interacting gas: LN Dl = I
n

but: kinetic theory not reliable!



Historical digression: Mott's minimal conductivity

(Sir) Nevill Mott predicted that the metal-insulator transition cannot

be continuous; there is a minimal conductivity.
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Historical digression: Minimal shear viscosity

Gyulassy & Danielewicz argue that the shear viscosity cannot be zero.

PHYSICAL REVIEW D VOLUME 31, NUMBER 1 1 JANUARY 1985

Dissipative phenomena in quark-gluon plasmas

P. Danielewicz* and M. Gyulassy
Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
(Received 12 April 1984, revised manuscript received 24 September 1984)

than {p)~!. Requiring Ai>(p);~! leads to the lower
bound .
nxn, | (3.3)

where n =Y n; is the total density of quanta. ‘What

seems amazing about (3.3) is that it is independent of
dynamical details. There is a finite viscosity regardless of

Is this idea correct?



And now for something completely different ...

This is an irreversible process, AS > 0.



And now for something completely different ...

O} 0

gravitational wave shears
fluid




ldea can be made precise using the “AdS/CFT correspondence”

Strongly coupled thermal Weakly coupled string theory
=
field theory on R* on AdSs black hole
Hawking t t f
CFT temperature = AWHKINS TEMPEratire ©
black hole

Hawking-Bekenstein entro
CFT entropy = WHINS | P

~ area of event horizon
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Holographic duals: Transport properties

Thermal (conformal) field theory = AdS5 black hole

Hawking-Bekenstein entro
CFT entropy =3 5 b

~ area of event horizon

. . Graviton absorption cross section
shear viscosity &

~ area of event horizon

»

Strong coupling limit
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Strong coupling limit universal? Provides lower bound for all theories?

Answer appears to be no; e.g. theories with higher derivative gravity duals.



Kinetics vs no-kinetics

low viscosity goo

gravity dual
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quasi-particles
n/s~1/ag>1




Perfect Fluids: The contenders

Liquid Helium
T=0.1 meV)

QGP (T=180 MeV

Trapped Atoms
(T=0.1 neV)



Perfect Fluids: The contenders

Liquid Helium
n=17-10"%Pa - s

QGP n=5-10"Pa - s
Consider ratios

Trapped Atoms n/s
n=17-10"%Pqg-s



Perfect Fluids: Not a contender

Queensland pitch-drop

experiment
1927-2011 (8 drops)

n=(2.3+0.5) 108 Pa s




|. QCD and the Quark Gluon Plasma
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Elementary fields:

(qa)F <

Quantumchromodynamics (QCD)

Quarks Gluons
[ color a=1,...,3 ‘
. color a=1,...,8
spin  a=1,2 Al S
spin eff
| flavor [ =wu,d,s,c,b,t \

Dynamics: Generalized Maxwell (Yang-Mills) + Dirac theory
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Running coupling constant
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From hadrons to quarks
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II. Dilute Fermi gas: BCS-BEC crossover
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Unitarity limit

Consider simple square well potential

a <0 a=0o0,€eg =20 a>0,eg >0



Unitarity limit

Now take the range to zero, keeping eg ~ 0

1

Universal scattering amplitude 7 = :
(



Feshbach resonances

Atomic gas with two spin states: “1" and “|"

<
Y
scattering length (a )

215 220 225 230

Feshbach resonance



Universal fluid dynamics

Many body system: Effective cross section oy, ~ n=2/3 (or o4y ~ A2)

Systems remains hydrodynamic despite expansion



I1I. Almost ideal fluid dynamics (cold Fermi gas)

Hydrodynamic
expansion converts
coordinate space

anisotropy

to momentum space
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O’Hara et al. (2002)



Elliptic flow: High T limit

(mT)S/Q
h2

Quantum viscosity n = 1

TS —
I
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Aspect Ratio

n = no(mT)3/2

TR:’I’]/P

Cao et al., Science (2010)
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fit: g = 0.33 £0.04

theory: ng = 321\55 = 0.26



Viscosity to entropy density ratio

consider both collective modes (low T)
and elliptic flow (high T)

10
0.8 m @%%ﬁ‘
0.6 = %
8 - i
0.4 = ii M
0.2 = '_ ___________ @
6 = 00 T T T T 1 i
N 06 07 08 098 10 11
-
—
4 = [
=
2 - iy
g5 P
w k3 i':
W
0_”
1 1 1 1 1
1 2 3 4 5
E/E,

Cao et al., Science (2010)




V. Elliptic Flow (QGP)

Hydrodynamic
expansion converts
coordinate space
anisotropy
to momentum space

anisotropy
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Elliptic flow: initial entropy scaling
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Viscosity and Elliptic Flow
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Many details: Dependence on initial conditions, freeze out, etc
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Higher moments of flow

Hydro converts moments of initial deformation to moments of flow
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Glauber predicts flat initial spectrum (n > 3). Observed flow spectrum
consistent with sound attenuation
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Nearly perfect fluidity at the LHC?

Yes, but some questions remain.
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Coincidence? Freezeout? Mean pr increase?



The bottom-line

Remarkably, the best fluids that have been observed
are the coldest and the hottest fluid ever created in the
laboratory, cold atomic gases (107°K) and the quark

gluon plasma (10'?K ) at RHIC.

Both of these fluids come close to a bound on the shear
viscosity that was first proposed based on calculations
in string theory, involving non-equilibrium evolution of
back holes in 5 (and more) dimensions.

We still do not know whether there is a fundamental

lower bound on 7.



