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Abstract
This review gives an overview of effective field theory (EFT) as applied at
finite density, with a focus on nuclear many-body systems. Uniform systems
with short-range interactions illustrate the ingredients and virtues of many-
body EFT; we also survey the varied frontiers of EFT for finite nuclei and
nuclear matter.
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1. INTRODUCTION

Calculating the properties of atomic nuclei and nuclear matter starting from microscopic inter-
nucleon forces is one of the oldest unsolved challenges of nuclear physics. Renewed interest in
this problem has been fueled by experiments at rare isotope facilities, which are opening the door
to new domains of unstable nuclides that are not all accessible in the lab, and by descriptions of
astrophysical phenomena such as supernovae and neutron stars, which require controlled extrap-
olations of the equation of state of nuclear matter in density, temperature, and proton fraction (1).
Despite decades of work and technological advances, however, there remain severe computational
barriers and only limited control of uncertainties in conventional nuclear many-body calculations
of all but the lightest nuclei. The difficulties are exacerbated by the need to supplement accurate
phenomenological two-nucleon potentials with poorly understood many-body forces to achieve a
quantitative (and in many cases qualitative) description of nuclei. Finally, conventional approaches
are at best loosely connected to quantum chromodynamics (QCD), the underlying theory of the
strong interaction.

Effective field theory (EFT) provides new tools to address these challenges. The goal of EFT
applied to finite-density nuclear systems is to place nuclear many-body physics on a firm foundation
so that it can be (a) systematically improved with associated theoretical error bars, (b) extended
reliably to regimes where there are limited or no data, and (c) connected to QCD as well as to
few-body experiments. In this review, we aim to describe how EFT can accomplish these goals in
many-body systems and to survey the frontiers of EFT-based calculations of many-body nuclei
and nuclear matter.

Any EFT builds on a basic physics principle that underlies every low-energy effective model or
theory. A high-energy, short-wavelength probe reveals details down to scales comparable to the
wavelength. Thus, electron scattering at sufficiently high energy reveals the quark substructure
of protons and neutrons in a nucleus. At lower energies, however, details are not resolved, and
one can replace short-distance structure with something simpler, as in a multipole expansion of a
complicated charge or current distribution. This means that it is not necessary to calculate with
full QCD to do accurate strong interaction physics at low energies; one can replace quarks and
gluons by neutrons and protons (and maybe pions, nucleon resonances, etc.). EFT provides a
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systematic, model-independent way to carry out this program starting with a local Lagrangian
framework.

An EFT is formulated by specifying appropriate low-energy degrees of freedom and then
constructing the Lagrangian as a complete set of terms that embodies the symmetries of the
underlying theory. (Note that the general Lagrangian will typically be overcomplete, but redundant
terms can be removed by redefining the fields appropriately.) There is no unique EFT for nuclear
physics. In different applications the relevant degrees of freedom might be neutrons and protons
only; neutrons, protons, and pions; or neutrons, protons, pions, and �s or quasi-nucleons. The
form of the EFT can be chosen to readily expose universal behavior; for instance, dilute neutron
matter has features in common with phenomena seen in cold atom experiments.

In applying an EFT Lagrangian, one must confront in a controlled way the impact of excluded
short-distance physics. Quantum mechanics implies that sensitivity to short-distance physics is
always present in a low-energy theory, but that it is made manifest in an EFT through depen-
dence on a cutoff or other regulator instead of being hidden in phenomenological form factors.
Removing this dependence necessitates a well-defined regularization and renormalization scheme
as part of the EFT specification. This necessity becomes a virtue as residual regulator depen-
dence can be used to assess truncation errors and many-body approximations. Furthermore, the
freedom in regulating coupled with the freedom in making unitary transformations can be ex-
ploited by renormalization group (RG) methods to greatly simplify few- and many-body nuclear
calculations.

For an EFT calculation to be improvable order by order, one needs a scheme to organize
the infinite possible terms in the Lagrangian based on an expansion parameter (or parameters).
Such a scheme is called a power counting. Power counting tells us what terms (or Feynman
diagrams) to include at each order and lets us estimate the theoretical truncation error. The radius
of convergence associated with the expansion means that the EFT predicts its own downfall, in
contrast to phenomenological models. EFT expansion parameters most commonly arise as a ratio
of disparate physical scales rather than as a small coupling constant (e.g., as in Coulomb systems);
a many-body example is the ratio of the range of the interaction to the interparticle spacing in
a dilute system. The power counting for this example is particularly simple when the scattering
length is roughly the same size as the interaction range (called natural) but changes dramatically
if the scattering length is much larger (called unnatural). We explore both scenarios below.

Chiral EFT is a faithful low-energy realization of QCD whose power counting takes advantage
of the spontaneously broken chiral symmetry that gives rise to the almost massless (on hadronic
scales) pion. It has the potential to bridge the gap between QCD and nuclei, letting us explore
how nuclear properties depend on QCD parameters (e.g., how the binding energies of nuclei
would change if the light quark masses were different or if the QCD scale parameter were time
dependent) and opening a connection to ab initio QCD lattice calculations. Chiral EFT power
counting explains the empirical hierarchy of many-body forces in nuclear physics, fixes their
natural sizes, and gives an organizing principle for their construction. Other compelling features
are the systematic inclusion of relativistic corrections and prescriptions for consistent currents
needed to predict experimental observables.

A comprehensive treatment of EFT and finite-density nuclear systems would require several
extended reviews covering EFT in general, EFT applied to internucleon interactions, and field
theory at finite density. Fortunately, recent articles in this journal provide much of the background
for the interested reader; these include an introduction to EFT by Burgess (2), an overview of chiral
perturbation theory by Bernard & Meißner (3), and a review of EFT for few-nucleon systems by
Bedaque & van Kolck (4) (see also References 5 and 6). We focus here on illustrating how the
basic principles of EFT can be realized at finite density and on surveying various applications to
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nuclear matter and finite nuclei. Our treatment is schematic in most cases and we refer the reader
to the literature for details.

In Section 2, we consider uniform systems with short-range interactions. The dilute Fermi gas
with repulsive interactions serves as a prototype for EFT at finite density, whereas new features and
techniques arise when we study physics near the Fermi surface. Many-body systems with unnatural
scattering lengths, which manifest various forms of universal physics, are attacked by a variety of
nonperturbative EFT techniques. Actual applications of EFT to nuclear many-body systems are
in their infancy and there are multiple frontiers; we describe a range of examples in Section 3.
These include the use of chiral EFT interactions as input to conventional many-body wave func-
tion methods applicable to light nuclei and a pioneering attempt to apply EFT to the methods
themselves. Lattice calculations provide a complementary nonperturbative approach. Perturba-
tive chiral EFT calculations for nuclei may be possible, however, if the power counting differs at
nuclear densities. This may be justified by RG transformations that soften the chiral interactions.
Finally we discuss density functional theory (DFT), which is computationally tractable for all
nuclides and is naturally cast in EFT form using effective actions. In Section 4 we conclude with
a summary of the current status of EFT for nuclear systems, ongoing developments, important
open questions, and a brief discussion of omitted topics.

2. EFFECTIVE FIELD THEORY FOR UNIFORM SYSTEMS

In this section, we illustrate the ideas of EFT at finite density for uniform systems with short-range
interactions.

2.1. Prototype Many-Body Effective Field Theory

We start with the simplest possible application, a dilute Fermi system with repulsive, spin-
independent interactions of range R. A concrete example is “hard-sphere” repulsion at radius
R, which can be viewed as a caricature of the short-range part of the nuclear force. In perturba-
tion theory all matrix elements of this potential are infinite; whereas a more realistic potential
would not be so extreme, textbook treatments of this many-body problem all start with non-
perturbative summations and then expansions at low density (7). In contrast, the EFT approach
directly exploits the essential physics result that low-momentum nucleons do not resolve the hard
core.

With either approach, the end result for free-space, two-particle scattering at low ener-
gies (λ = 2π/k � 1/R) is the effective range expansion; e.g., the s-wave phase shift δ0(k)
satisfies:

k cot δ0(k)
k→0→ − 1

a0
+ 1

2
r0k2 + . . . , 1.

where a0 is the scattering length and r0 is the effective range. The system is said to have a natural
scattering length if it is the same order as the range of the interaction (e.g., a0 = R and r0 = 2R/3
for hard spheres). Below we consider the case of unnatural scattering length, with a0 � R, which
is relevant for dilute neutron matter and cold atom systems. For a natural system, the dilute
expansion of the energy density for a uniform system starts as (s-wave only here)

E = ρ
k2

F

2M

[
3
5

+ (ν − 1)
{

2
3π

(kFa0) + 4
35π2

(11 − 2 ln 2)(kFa0)2 + 1
10π

(kFr0)(kFa0)2
}

+ · · ·
]

,

2.
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where kF is the Fermi momentum, ν is the spin degeneracy, and ρ = νk3
F/6π2. This result arises

very cleanly from an EFT treatment (8).
Consider the ingredients for any EFT along with the specifics for this example:

1. Use the most general L with low-energy degrees of freedom consistent with global and local
symmetries of the underlying theory. Here we have nucleons only with Galilean invariance
and discrete symmetries. A general interaction is then a sum of δ functions and derivatives
of δ functions with two-body interactions (four fields), three-body interactions (six fields),
and so on. Therefore, Left is

Left = ψ †
[

i
∂

∂t
+ ∇2

2M

]
ψ − C0

2
(ψ †ψ)2 + C2

16
[(ψψ)†(ψ

↔
∇ 2ψ) + h.c.] − D0

6
(ψ †ψ)3 + . . . ,

3.

where . . . indicates terms with more derivatives and more fields. (We have eliminated higher-
order time derivatives using the equations of motion; see Reference 8.) The ψs have ν

components and spin-indices are implicit (and contracted between ψ † and ψ).
2. Declare a regularization and renormalization scheme. One choice is to smear out the δ func-

tions (e.g., as Gaussians in momentum space) to introduce a cutoff; renormalization would
remove cutoff dependence. However, for a natural a0, using dimensional regularization and
minimal subtraction (rather than a cutoff) is particularly convenient and efficient.

3. Establish a well-defined power counting, which means identifying small expansion param-
eters, typically using a ratio of scales. In free space k/
 with 
 ∼ 1/R is the clear choice,
and then kF/
 is the corresponding parameter in the medium. Dimensional analysis, with
some additional insight to give us the 4πs, implies (2i denotes the number of gradients)

C2i ∼ 4π

M
R2i+1, D2i ∼ 4π

M
R2i+4, 4.

which will enable us to make quantitative power-counting estimates.

Feynman diagrams and rules for the EFT follow from conventional formalism for free-space
and many-body perturbation theory (see, e.g., References 7 and 9). The constants C2i are deter-
mined by matching to the free-space scattering amplitude f0(k) in perturbation theory:

f0(k) = 4π

M
(
a0 − ia2

0k − a3
0k2 + a2

0r0k2 + · · ·) . 5.

The leading potential V (0)
EFT(x) = C0δ(x) or 〈k|V (0)

eft |k′〉 = C0, where k, k′ are relative momenta.
Matching to f0(k) fixes C0 = 4πa0/M at leading order (LO), which then determines the leading
finite-density contribution (Hartree-Fock) in Equation 2 after sums over the Fermi sea:

→ C0 ⇒ → ELO = C0

2
ν(ν − 1)

(
kF∑
k

1

)2

∝ a0k6
F. 6.

Similar matching yields C2 in terms of a0 and r0 and the corresponding Hartree-Fock contribution
for the effective range.

At the next order is 〈k|V (0)
eft G0V (0)

eft |k′〉, which includes a linearly divergent loop integral:

→ C0 M
∫ 
c d 3q

(2π )3

1
k2 − q 2 + iε

C0 = C2
0 M

(

c

2π2
− ik

4π
+ O

(
k2


c

))
. 7.

We can redefine (renormalize) C0 to absorb the linear dependence on the cutoff 
c , but we will ob-
tain higher powers of k from every diagram. A more efficient scheme is dimensional regularization

www.annualreviews.org • EFT and Finite-Density Systems 5
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with minimal subtraction (DR/MS), which implies that only one power of k survives:∫
d Dq
(2π )3

1
k2 − q 2 + iε

D →3→ − ik
4π

. 8.

Thus we obtain the second term in Equation 5 automatically with no change in C0. At higher
orders there is exactly one power of k per diagram and natural coefficients (i.e., consistent with
Equation 4), so we can estimate truncation errors from simple dimensional analysis.

The contribution to the energy density has two terms, one of which vanishes identically. In the
other, we again obtain a linear divergence,

⇒ → ENLO ∝
∫ ∞

kF

d 3q
(2π )3

C2
0

k2 − q 2
, 9.

but the same renormalization fixes it,∫ ∞

kF

1
k2 − q 2

=
∫ ∞

0

1
k2 − q 2

−
∫ kF

0

1
k2 − q 2

D →3→ −
∫ kF

0

1
k2 − q 2

, 10.

and particles become holes through the renormalization. Pauli blocking does not change the free-
space UV (short-distance) renormalization as the density is a long-distance effect; after fixing free
space, the in-medium renormalization is determined. We find ENLO ∝ a2

0k7
F.

The diagrammatic power counting with DR/MS is very simple, with each loop adding a power
of k in free space. At finite density, a diagram with V n

2i n–body vertices and 2i gradients scales as
(kF)β with

β = 5 +
∞∑

n=2

∞∑
i=0

(3n + 2i − 5)V n
2i . 11.

This reproduces, for example, the LO [β = 5+ (3 · 2+2 · 0−5) · 1 = 6] and next-to-leading order
(NLO) [β = 5 + (3 · 2 + 2 · 0 − 5) · 2 = 7] dependencies. The power counting is exceptionally
clean, with a separation of vertex factors ∝ a0, r0, . . . and a dimensionless geometric integral
multiplying kβ

F , with each diagram contributing to exactly one order in the expansion. There is
a systematic hierarchy, as adding derivatives or higher-body interactions increases the power of
kF. The ratio of successive terms is ∼ kF R (see, e.g., Equation 2), so we can estimate excluded
contributions.

The energy density (2) looks like a power series in kF, but at higher order there are logarithmic
divergences from 3–3 scattering, which indicate new sensitivity to short-distance behavior. A
cutoff 
c serves as a resolution scale; as we increase 
c , we see more of the short-distance details.
Observables (such as scattering amplitudes) must not vary with 
c , so changes must be absorbed
in a coupling. But the coupling cannot be from 2–2 scattering, as we already regularized all
the divergences there. Instead, we must use the point-like three-body force, whose coupling
D0(
c ) can absorb the dependence on 
c (10). The diagrams are ∝ (C0)4 ln(k/
c ), which means
that

d
d
c

= 0 ⇒ D0(
c ) ∝ (C0)4 ln(a0
c ) 12.

fixes the coefficient D0(
c ). Dimensional regularization works similarly (8). In turn this implies
the following result for the energy density:

O
(
k9

F ln(kF)
)

: + + · · · ∝ (ν − 2)(ν − 1)k5
F(kFa0)4 ln(kFa0) 13.

6 Furnstahl · Rupak · Schäfer
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without actually carrying out the calculation! Similar analyses can identify the higher logarithmic
terms in the expansion of the energy density (8, 10). This example illustrates the inevitability of
many-body forces in low-energy theories: When the resolution or degrees of freedom are changed,
we will have many-body forces. Thus the question is not whether such forces are present, but how
large they are. For nuclear physics, their natural size implies that they cannot be neglected.

This brief tour of the EFT for a natural dilute Fermi gas includes features common to many
other applications. Even if we know that the underlying physics is a hard-sphere potential, the
EFT is easier to calculate than conventional approaches (7). Further, the EFT directly reveals the
universal nature of the many-body counterpart to the effective range expansion, which applies to
any short-range repulsive potential. Of course, this example is very simple; there are many ways
to generalize. Some are immediate: For instance, we can account for short-range spin-dependent
interactions by adding terms such as Cσ

0 (ψ †σψ) · (ψ †σψ). To consider unnatural scattering, how-
ever, we must revisit the power counting and consider alternative expansion parameters, as kFa0 is
no longer small. But first we turn from EFT for bulk properties to EFT near the Fermi surface.

2.2. Effective Field Theory Near the Fermi Surface

The theory described in the last section is completely perturbative. At any order in the kF R
expansion, only a finite number of diagrams need to be computed. There are two ways in which
this expansion can fail. One possibility is that one of the effective range parameters (typically, the
scattering length) is anomalously large, so that a certain class of diagrams must be summed to all
orders. We examine this problem in Section 2.3. A second possibility is that the density (and the
Fermi momentum) is too large and that kF R ceases to be a useful expansion parameter. In this case
it is possible to construct a different kind of EFT by focusing on quasi-particles in the vicinity of
the Fermi surface and using |k − kF|/
 as an expansion parameter. This effective theory is known
as Landau Fermi-liquid theory (11, 12). The Landau theory does not account for all properties
of the many-body system, but it does describe phenomena that are sensitive to physics near the
Fermi surface such as collective modes, pairing, and transport properties.

Fermi-liquid theory was originally developed by Landau using intuitive arguments. These ar-
guments were later confirmed by Abrikosov and others using diagrammatic many-body perturba-
tion theory (13). The modern view of Fermi-liquid theory as an EFT was advocated by Shankar,
Polchinski, and others (14, 15). Consider the effective action of noninteracting, nonrelativistic
fermions near a Fermi surface,

S =
∫

dt
∫

d 3p
(2π )3

ψ †(p)
(

i
∂

∂t
− vFl p

)
ψ(p). 14.

Here we have decomposed the momenta as p = k + lp , where k is on the Fermi surface, |k| = kF,
and lp is orthogonal to the Fermi surface. The Fermi velocity is defined as vF = ∂ Ep/∂p , where
Ep is the quasi-particle energy. The power counting can be established by studying the behavior of
the operators under transformations l p → s l p that scale the momenta towards the Fermi surface.
In writing Ep = EF + vFl p + O(l2

p ), we see that as s → 0 only the Fermi velocity survives, so the
detailed form of the dispersion relation is irrelevant. Using d 3p = k2

F(dl p )(d�), we observe that
d 3p ∼ s , dt ∼ s −1, ψ ∼ s −1/2, and that S in (14) is O(s 0).

We now turn to the importance of interactions between fermions near the Fermi surface. The
most general four-fermion interaction is of the form

S4 f = 1
4

∫
dt

[
4∏

i=1

∫
d 3pi

(2π )3

]
ψ †(p4)ψ †(p3)ψ(p2)ψ(p1)δ3 (

ptot
)

U(p4, p3, p2, p1), 15.
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where ptot is the sum of the four momenta pi , and we have suppressed the spin labels on U. For
a generic set of momenta pi the δ function constrains the large components of the momenta
and scales as δ3(ptot) ∼ s 0. In this case the four-fermion interaction scales as s 1 and becomes
irrelevant near the Fermi surface. Interactions involving more fermions are even more strongly
suppressed.

An exception occurs if the large components of the momenta cancel. This happens for back-
to-back momenta, k1 = −k2, and for generalized forward scattering, k1 · k2 = k3 · k4. In these
cases one component of the δ functions constrains l, the scaling of the δ function is changed to s −1,
and the four-fermion interaction is marginal, S4 f ∼ s 0. Whether or not the four-fermion interac-
tion qualitatively changes the theory of noninteracting quasi-particles described by Equation 14
depends on quantum corrections, which can change the scaling from marginal to marginally
relevant [S4 f ∼ log(s )] or irrelevant [S4 f ∼ log(s )−1].

The one-loop corrections to the four-fermion interaction are given by

δSBC S ∼ , δSZS ∼ , δSZS ′ ∼ . 16.

There are two possible scenarios. One possibility is that the interaction in the Bardeen-Cooper-
Schrieffer (BCS) channel (k1 = −k2) is attractive in some partial wave. In this case the first diagram
in Equation 16 leads to a logarithmic growth of the interaction. We can illustrate this effect using
the s-wave four-fermion interaction defined in Equation 3. For p1 = −p2 and E1 = E2 = E, the
one-loop correction to C0 is given by

−C2
0

(
kFm
2π2

)
log

(
E0

E

)
, 17.

where E0 is a UV cutoff. This result can be interpreted as an effective energy-dependent coupling.
The coupling constant satisfies the RG equation

E
dC0

d E
= C2

0

(
kFm
2π2

)
⇒ C0(E) = C0(E0)

1 + NC0(E0) log(E0/E)
, 18.

where N = kFm/2π2 is the density of states. Equation 18 shows that if the initial coupling is
repulsive, C0(E0) > 0, then the RG evolution will drive the effective coupling to zero. If, on the
other hand, the initial coupling is attractive, C0(E0) < 0, then the effective coupling will grow
and reach a pole (called a Landau pole) at Ecrit ∼ E0 exp(−1/(N |C0(E0))). At the Landau pole the
effective theory defined by Equations 14 and 15 has to break down. The RG equation does not
determine what happens at this point, but we can assume that the strong attractive interaction leads
to the formation of a fermion pair condensate in the BCS channel 〈ψ(p)ψ(−p)〉. The magnitude
of the difermion condensate as well as the corresponding gap in the energy spectrum is easiest to
compute if the microscopic interaction is weak (i.e., if k f R < 1). Employing standard methods,
we derive the gap equation

1 = |C0|
2

∫
d3p

(2π )3

1√
(Ep − EF )2 + �2

. 19.

The infrared divergence in the BCS channel is regulated by the energy gap �. The gap equation
also has a logarithmic UV divergence. This divergence can be treated consistently with the relation
between C0 and a0 derived in Section 2.1 by using dimensional regularization (16, 17). The result
is

� = 8EF

e2
exp

(
− π

2kF|a0|
)

. 20.
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The term in the exponent represents the leading term in an expansion in kF|a0|. This means that in
order to determine the pre-exponent in Equation 20 we must solve the gap equation at NLO. This
correction corresponds to keeping the zero sound diagram in Equation 16. In nuclear physics this
term is known as the induced interaction (18). For zero-range potentials, the induced interaction
was first computed by Gorkov & Melik-Barkhudarov (19). It leads to a suppression of the s-wave
gap by a factor (4e)1/3  2.2.

For nuclear matter the result given in Equation 20 is not very useful, both because the scattering
length is large and because effective range corrections are not negligible. We discuss the pairing
gap in the limit a0 → ∞ in Section 2.3. Range corrections in the case of a normal scattering
length were studied in Reference 16. A rough estimate of the gap at moderate densities can be
obtained by replacing 1/(kFa) with cot[δ0(kF)], where δ0(k) is the s-wave phase shift. This estimate
gives neutron gaps on the order of 1 MeV at nuclear-matter density.

The second scenario arises if the interaction in the BCS channel is either repulsive or very
weak. In this case the forward-scattering amplitudes are important. The interaction is

U( p̂4, p̂3, p̂2, p̂1)| p̂1· p̂2= p̂3· p̂4
= F ( p̂1 · p̂2, φ12, 34), 21.

where φ12,34 is the angle of the plane spanned by p1,2 and p3,4. The function F (x, 0) is called
the Landau function and its Legendre coefficients are referred to as Landau parameters. If spin
dependence is included, there is a second set of Landau parameters commonly denoted F ′

l . The
Landau parameters remain marginal at one-loop order.

The EFT characterized by vF and Fl is called the Landau Fermi-liquid theory (11, 12). The
Landau parameters can be related to compressibility, the velocity of zero and first sound, transport
coefficients, etc. The compressibility of nuclear matter, for example, is given by

dP
dρ

= k2
F

m2

1 + F0

3 + F1
. 22.

The coefficient Fi can be extracted from experiment, but ultimately we would like to find a
systematic method for computing the Landau parameters from the underlying nucleon-nucleon
interaction. One possibility is to use the RG to integrate out modes far away from the Fermi
surface. A difficulty with this strategy is the problem of finding suitable initial conditions for
the RG flow. Schwenk et al. (20) proposed to use a free-space RG to generate a universal low-
momentum effective interaction Vlow k (which we discuss in more detail in Section 3.2). This
interaction, evolved to a scale 
 ∼ 2kF, can be used as a starting point for the determination of
the Landau parameters (20).

2.3. Unnatural Scattering Length

An important aspect of nuclear physics is the fact that the nucleon scattering lengths are anoma-
lously large. The neutron-proton scattering length in the 1S0 channel is −23.71 fm, and the binding
energy in the 3S1 (deuteron) channel is 2.2 MeV. This implies that expanding the scattering am-
plitudes in powers of the momentum (as in Equation 5) is not useful, and that powers of a0k have
to be kept to all orders. Keeping the first two terms in the effective range expansion, the scattering
amplitude can be written as

f0(k) ∼ 1
−1/a0 + r0k2/2 − ik

= 1
−1/a0 − ik

{
1 + r0/2

−1/a0 − ik
+ . . .

}
. 23.

This expansion can be reproduced by keeping the s-wave contact interaction proportional to C0 to
all orders, and treating C2i (i > 0) perturbatively as before. This procedure gives the correct result,
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but in dimensional regularization (with minimal subtraction) or cutoff regularization the power
counting of individual diagrams is not manifest. This is readily seen in dimensional regularization
where C0 → ∞ as a0 → ∞. As a consequence, individual diagrams diverge in the limit of a large
scattering length even though the sum of all diagrams is finite. Kaplan et al. proposed a modified
version of dimensional regularization (power divergence subtraction, or PDS) in which poles in
lower dimensions are subtracted and power counting is manifest (21).

Interest in many-body systems with a large two-particle scattering length arises not only in
nuclear physics, but also in atomic physics. It is now possible to create cold atomic gases in which
the scattering length a0 of the atoms can be adjusted experimentally using Feshbach resonances
(see Reference 22 for a review). If the density is low, the atoms can be described as pointlike
nonrelativistic particles that carry a “spin” label that characterizes the hyperfine quantum numbers
of the atoms. A Feshbach resonance arises if a molecular bound state in a closed hyperfine channel
crosses near the threshold of a lower “open” channel. Because the magnetic moments of the open
and closed states are usually different, Feshbach resonances can be tuned using an applied magnetic
field. At resonance the two-body scattering length in the open channel diverges, and the cross
section σ is limited only by unitarity; σ (k) = 4π/k2 for low momenta k. In the unitarity limit,
details about the microscopic interaction are lost, and the system displays universal properties.

A dilute gas of any fermions in the unitarity limit is a strongly coupled quantum liquid that
exhibits universality. At low density the limit kFa0 → ∞ and kFr0 → 0 is particularly interesting.
From dimensional analysis it is clear that the energy per particle at zero temperature must be
proportional to the energy per particle of a free Fermi gas at the same density:

E
A

= ξ

(
E
A

)
0

= ξ
3
5

(
k2

F

2m

)
. 24.

The constant ξ is universal, that is, independent of the details of the system. Similar universal
constants govern the magnitude of the gap in units of Fermi energy and the equation of state at
finite temperature.

Calculating these universal constants is clearly a very challenging task—many-body diagrams
containing C0 must be summed to all orders. One possible solution is to do the calculation nu-
merically, using diffusion or imaginary time path–integral Monte Carlo methods as described in
Section 3.3. It would be desirable to find systematically improvable analytical approaches. Ana-
lytical methods offer the ability to systematically include higher-order terms in the interaction
(range corrections, explicit pions, three-body forces, etc.) and to determine real-time properties
that are hard to access numerically. A few analytical methods have been considered, such as an
expansion in the number of fermion species (23, 24) or the number of spatial dimensions (which
is related to the hole-line expansion of Brueckner, Bethe, and Goldstone; see References 25 and
26). Below, we discuss a proposal to perform an expansion around d = 4 − ε spatial dimensions.
ε expansions are well known in the theory of critical phenomena. An interesting aspect of the ε

expansion in nuclear physics is that both many-body and few-body systems can be studied (27).
Nussinov & Nussinov observed that the fermion many-body system in the unitarity limit

reduces to a free Fermi gas near d = 2 spatial dimensions and to a free Bose gas near d = 4 (28).
Their argument was based on the behavior of the two-body wave function as the binding energy
goes to zero. For d = 2 it is well known that the limit of zero binding energy corresponds to
an arbitrarily weak potential. In d = 4 the two-body wave function at a0 = ∞ displays a 1/r2

behavior and the normalization is concentrated near the origin. These observations suggest that
the many-body system is equivalent to a gas of noninteracting bosons. A systematic expansion
based on the observation of Nussinov & Nussinov was studied by Nishida & Son (29). In this
section we explain their approach.
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We begin by restating the argument of Nussinov & Nussinov in the language of EFT. For the
sake of simplicity we work with dimensional regularization and minimal subtraction. In this case
a0 → ∞ corresponds to C0 → ∞. The fermion-fermion scattering amplitude is given by

f (p0, p) =
(

4π

m

)d/2 [
�

(
1 − d

2

)]−1 i

(−p0 + Ep/2 − iδ)
d
2 −1

, 25.

where δ → 0+. As a function of d the gamma function has poles at d = 2, 4, . . . and the scattering
amplitude vanishes at these points. Near d = 2 the scattering amplitude is independent of energy
and momentum. For d = 4 − ε we find

f (p0, p) = 8π2ε

m2

i
p0 − Ep/2 + iδ

+ O(ε2). 26.

We observe that at LO in ε the scattering amplitude resembles the propagator of a boson with mass
2m. The boson-fermion coupling is g2 = (8π2ε)/m2 and vanishes as ε → 0. This suggests that we
can set up a perturbative expansion involving fermions of mass m weakly coupled to bosons of mass
2m. A difermion field can be introduced using the Hubbard-Stratonovich trick. The difermion
self-coupling is proportional to 1/C0 and vanishes in the unitarity limit. The Lagrangian is

L = �†
[

i∂0 + σ3
∇2

2m

]
� + μ�†σ3� + (�†σ+�φ + h.c .), 27.

where � = (ψ↑, ψ
†
↓)T is a two-component Nambu-Gorkov field, σ i are Pauli matrices acting in

the Nambu-Gorkov space, and σ± = (σ1 ± iσ2)/2.
In the superfluid phase φ acquires an expectation value. We write

φ = φ0 + gϕ, g =
√

8π2ε

m

(
mφ0

2π

)ε/4

, 28.

where φ0 = 〈φ〉. The scale M2 = mφ0/(2π ) was introduced in order to have a correctly normalized
boson field. The scale parameter is arbitrary, but this particular choice simplifies some of the
algebra. In order to obtain a well-defined perturbative expansion we add and subtract a kinetic
term for the boson field to the Lagrangian. We include the kinetic term in the free part of the
Lagrangian

L0 = �†
[

i∂0 + σ3
∇2

2m
+ φ0(σ+ + σ−)

]
� + ϕ†

(
i∂0 + ∇2

4m

)
ϕ, 29.

and the interacting part is

LI = g
(
�†σ+�ϕ + h.c.

) + μ�†σ3� − ϕ†
(

i∂0 + ∇2

4m

)
ϕ. 30.

Note that the interacting part generates self-energy corrections to the boson propagator, which,
by virtue of Equation 26, cancels against the kinetic term of boson field. We also include the
chemical potential term in LI . This is motivated by the fact that near d = 4 the system reduces
to a noninteracting Bose gas and μ → 0. We count μ as a quantity of O(ε).

The Feynman rules are quite simple. The fermion and boson propagators are

G(p0, p) = i
p2

0 − E2
p − φ2

0

[
p0 + Ep −φ0

−φ0 p0 − Ep

]
, D(p0, p) = i

p0 − Ep/2
, 31.

and the fermion-boson vertices are igσ±. Insertions of the chemical potential are iμσ3. Both g2

and μ are corrections of order ε. There are a finite number of one-loop diagrams that generate
1/ε terms. All other diagrams are finite, and the ε expansion is well defined.
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The ground-state energy is determined by diagrams with no external legs. The first diagram
is the free fermion loop, which is O(1) in the ε expansion. We obtain

= −
∫

ddp
(2π )d

√
E2

p + φ2
0 = φ0

3

[
1 + 7 − 3(γ + log(2))

6
ε

] (
mφ0

2π

)d/2

. 32.

An insertion of μ is also O(1) because the loop diagram is divergent in d = 4. We find

= μ

∫
ddp

(2π )d

Ep√
E2

p + φ2
0

= −μ

ε

[
1 + 1 − 2(γ + log(2))

4
ε

] (
mφ0

2π

)d/2

. 33.

Graphs with extra insertions of μ follow the naive ε counting and are at least O(ε2). Nishida &
Son (29) also computed the leading two-loop contribution, which is O(ε) because of the factor of
g2 from the vertices. The result is

= −Cε

(
mφ0

2π

)d/2

, 34.

where the dashed line denotes the difermion propagator and C  0.14424.
We can now determine the minimum of the effective potential. We find φ0 = (2μ)/ε(1+C ′ε+

O(ε2)) with C ′ = 3C−1 + log(2). The value of the effective potential at φ0 determines the pressure
and n = ∂P/∂μ gives the density. From the density we can compute the Fermi momentum (n ∼ kd

F

in d dimensions), and the relationship between the Fermi energy εF = k2
F/2m and μ determines

the universal parameter ξ = μ/εF. We find

ξ = 1
2
ε3/2 + 1

16
ε5/2 log(ε) − 0.025ε5/2 + · · · = 0.475 (ε = 1), 35.

which agrees quite well with the result of fixed-node quantum Monte Carlo calculations. The
calculation was extended to O(ε7/2) by Arnold et al. (30). Unfortunately, the next term is very large
and it appears necessary to combine the expansion in 4 − ε dimensions with a 2 + ε expansion
in order to extract useful results. The ε expansion has also been applied to the calculation of the
gap (29). At NLO the result is � = 0.62εF. Somewhat surprisingly, this result is quite close to the
naive a0 → ∞ limit of the BCS result given in Equation 20, provided that the induced interaction
term is taken into account.

3. EFFECTIVE FIELD THEORY FOR FINITE NUCLEI
AND NUCLEAR MATTER

In this section, we survey the wide range of pioneering applications of EFT to nonrelativistic finite-
density nuclear systems. These frontiers are rapidly evolving and most results are immature, so
we focus on general illustrative aspects.

3.1. Pion Physics from Chiral Effective Field Theory

To apply EFT to finite nuclei and nuclear matter, we must first consider the appropriate degrees
of freedom. Applications to sufficiently low density systems such as dilute neutron matter are
possible with nucleons as the only degrees of freedom. These are called pionless EFTs. In such
an EFT, the pion is a heavy degree of freedom whose effects are mimicked by contact terms. This
EFT breaks down when external momenta are comparable to the pion mass, and pion exchange

12 Furnstahl · Rupak · Schäfer
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is resolved. This criterion does not automatically translate into a clear limit on the applicability
of pionless EFT to finite nuclei; pionless EFT is successful for at least the ground states of the
deuteron and triton, and its limits for heavier nuclei are not yet known (4).

However, given that the Fermi momentum kF for the interior of heavy nuclei is about twice the
pion mass, one expects that the pion would have to be treated as a long-range degree of freedom
in a free-space EFT applicable to most nuclei. Chiral EFTs for nucleons incorporate the pion
systematically as the (near) Goldstone boson of approximate and spontaneously broken chiral
symmetry, expanding about the massless pion limit. The functional dependence on the QCD
quark masses is captured in perturbation theory and the dependence on the strong coupling is
contained in universal parameters to be determined from data or direct numerical calculations
of QCD. Chiral EFT in nuclear physics originated with the seminal work of Weinberg and
van Kolck and collaborators in the early 1990s (31–37), and the field has been active ever since
(4–6).

Currently the most commonly applied chiral EFT Lagrangians have nonrelativistic nucleons
and pions as degrees of freedom based on the “heavy-baryon” formalism, which eliminates anti-
nucleons and organizes relativistic corrections (4). As usual, renormalization can be carried out
because all interactions consistent with QCD symmetries are included, which allows regulator
dependence to be absorbed. To organize the EFT in a systematic hierarchy we need a power
counting, but the optimal scheme is not yet settled. Both practical and formal questions are being
argued and different schemes are under investigation (38–42). In all cases, chiral symmetry dictates
that pion interactions be accompanied by derivatives (because they are Goldstone bosons) or pow-
ers of the pion mass (Ward identity constraints from QCD), thus yielding ratios of characteristic
momenta and mπ to the scale of excluded physics, such as heavier meson exchange, as expansion
parameters. Relativistic corrections are organized in powers of momenta over the nucleon mass.

For applications to nuclear structure, an energy-independent nucleons-only potential is desir-
able (and required for many of the methods discussed below); it can be derived from the chiral
Lagrangian by a unitary transformation method that decouples the nucleons from explicit pion
fields, leaving static pion-exchange interactions and regulated contact terms (6). At present these
potentials are organized by a power counting proposed by Weinberg, then iterated with either
a Lippmann-Schwinger equation for two-body scattering or another nonperturbative method
for bound-state properties with more nucleons. A momentum-space cutoff is used for technical
reasons, which means that the advantages of dimensional regularization we saw for short-range
interactions at finite density are not available.

For Weinberg power counting there is a formula analogous to Equation 11 that identifies the
order in the EFT expansion at which a given term in the potential contributes. This formula
yields a hierarchy of terms with increasing derivatives and pion exchanges and, perhaps most
important for finite-density applications to be tractable, a hierarchy of many-body forces. At
LO, there is one pion exchange and two no-derivative contact terms. The NLO adds the first
two-pion exchange contributions, which are important for the mid-range nuclear attraction. At
present, NN interactions go to up to N3LO, which includes 24 constants for the contact terms
(not including isospin violation) that are determined by fits to NN scattering. The best fits have
a χ2/dof comparable to the best phenomenological potentials (43, 44).

Three-nucleon forces (3NF) appear first at N2LO and are shown on the left in Figure 1.
There are parameters associated with long-range two-pion exchange (four constants fit to πN
or NN scattering), mid-range one-pion exchange (one constant), and purely short-range (one
constant) parts. The extension to N3LO is in progress and involves many additional diagrams
but no additional parameters. However, there are sizable uncertainties at present in determining
the long-range 3NF parameters from πN or NN scattering, which translate into significant
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C-terms D-term E-term

Long (2π) Intermediate (π) Short-range

Figure 1
Leading three-body contributions in chiral effective field theory (EFT). Left: N2LO terms in an EFT
without �s (dashed line represents the pion). Right: NLO contribution with explicit �s (double line).
Abbreviation: NLO, next-to-leading-order.

uncertainties at finite density. The four-nucleon (4N) interaction appears first at N3LO in the form
of long-range pion exchange and is parameter free (45). The quantitative suppression of many-
nucleon forces predicted by chiral power counting is consistent with binding-energy calculations
in light nuclei (6, 46), but much remains to be tested in larger systems.

Even after we specify a power counting and the order in the expansion, there is no unique
EFT potential because one can choose different cutoffs. Calculations of observables should be
independent of the cutoff at the level of the truncation error determined by the missing orders.
By comparing calculations with varied cutoffs one can test whether the EFT is working and then
put a bound on the theoretical error. The precision EFT potentials currently available for nuclear
structure have cutoffs in a rather narrow range close to the expected breakdown scale of the EFT,
about 450–600 MeV (cf. the ρ or ω meson mass), which is consistent with the prescription of Lepage
(47, 48). In practice, lower cutoffs mean large truncation errors (i.e., the expansion parameter q/
c

gets too small), whereas larger cutoffs create implementation problems with increasingly singular
(at short distances) potentials from multiple pion exchange. Within this cutoff range there is no
penalty for iterating subleading potential terms, which violates some power countings, because
the truncation and iteration errors are the same size (4).

Recent surveys of ongoing applications of chiral potentials to scattering and to properties of few-
body nuclei can be found in References 4 and 6. Among the developments most relevant to finite
density is work to add the �(1232)-isobar resonance explicitly to the chiral EFT Lagrangian; this
research formed part of the original explorations by van Kolck et al. (35–37), but has only recently
been reconsidered for energy-independent potentials (49, 50). The � is considered important
because of its low excitation energy (the mass difference to the nucleon is about 300 MeV) and its
strong coupling to the πN system. Including � would resum important contributions and improve
the pattern of convergence. In this scheme, the leading 3NF term comes from pion exchange with
an intermediate � (Figure 1, right) and appears at NLO. As this and other developments mature,
in parallel there will be applications to finite nuclei. Indeed, because the energy-independent
potentials take the same form as phenomenological nonlocal potentials, almost all conventional
few- and many-body methods are immediately available.

3.2. Wave Function Methods

There are a wide variety of methods available to determine properties of few-body systems given
an internucleon potential. Each in some way involves solving for the approximate wave function
of the system. If we arbitrarily set the crossover from few-body to many-body nuclei at A = 8,
the choice of methods dwindles to a few: Green’s function Monte Carlo (GFMC), no-core shell
model (NCSM), and coupled cluster (CC). The GFMC approach (51, 52) has had great success
up to A = 12 (and extensions using auxiliary field methods promise to go much further), but is
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Figure 2
Excitation energies (in MeV) of selected levels in four p-shell nuclei (55) calculated using the N3LO potential of Reference 43.
Calculations with nucleon-nucleon- (NN-)only and with N3LO NN plus N2LO three-nucleon forces are compared to experiment.
Abbreviation: NLO, next-to-leading-order.

limited at present to local potentials, i.e., diagonal in coordinate representation, which excludes
current chiral EFT interactions. However, both the NCSM and CC methods are compatible with
energy-independent chiral potentials including many-body forces (53, 54).

The NCSM diagonalizes the Hamiltonian in a harmonic oscillator basis with all nucleons
active (hence no core). Lanczos methods allow the extraction of the lowest eigenvalues and
eigenvectors from spaces up to dimension 109 (and growing, given the advances in computer
hardware and software), but the matrix size grows rapidly with A and the maximum oscillator
excitation energy Nmax h̄�. For a given A, the convergence of observables with Nmax depends
strongly on the nature of the potential. Chiral EFT Hamiltonians are softer than conventional
nuclear potentials (i.e., smaller high-momentum contributions, which means less coupling to
high oscillator states), but adequate convergence with 3NF still requires too large a basis be-
yond the lightest nuclei. Therefore Lee-Suzuki transformations of the potential, which are uni-
tary order by order in a cluster expansion, are applied to decouple included and excluded os-
cillator states, greatly reducing the size of the model space needed. This procedure has many
demonstrated successes (53, 55) although there are drawbacks, such as distortions of long-
range physics, problems with extrapolations of energies, and the loss of the variational principle
(56).

Recent state-of-the-art NCSM calculations of excitation energies for four p-shell nuclei are
shown in Figure 2 for a single N3LO potential with and without the N2LO 3NF (55). (The
mismatch in orders means that this calculation is not yet completely consistent from the EFT
perspective.) It is evident that the fine structure of the nuclear spectra is uniformly improved with
the three-body contribution. Of particular note is the ground state of 10B and the splittings of
spin-orbit partners throughout. The sensitivity of three-body parameters to particular observables
(e.g., 6Li quadrupole moment, the lowest 1+ states in 10B) suggests that fits of 3NF parameters
will improve with input from more than A = 3, 4 systems (55).

How can we tell if an EFT-based interaction used by a wave function method is working as
expected? One way is to do comparative calculations at different orders in the EFT with a range of
cutoffs. Because cutoff variation is absorbed by the contact interactions, which scale as powers of
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the inverse cutoff, the relative variation of the potential energies over this range should decrease
systematically according to the power of omitted contact interactions (and assuming a typical
momentum scale ≈130 MeV). Binding-energy variations will be larger because of cancellations
in nuclear systems, which amplify the role of higher orders (including many-body forces). Nogga
has shown that such estimates are consistent with calculations in 3H (57). For 4He, he concludes
that the EFT estimate of 2% for the ratio of 3NF to NN potential energies is consistent with
observed ratios of roughly 5% (57), and preliminary calculations of the 4NF contribution were
found to be as small as expected (46). All of these tests will need to be repeated for larger nuclei
as reliable calculations become possible.

RG methods applied in free space to chiral EFT interactions are a promising means of calcu-
lating larger nuclei. These methods prescribe how each matrix element of the potential (and other
operators) in a discretized momentum basis must evolve under changes in the resolution scale so
that observables remain unchanged. (Because the potential is not an observable, we are always
free to make unitary transformations.) The resolution scale is changed by lowering a cutoff in
relative momentum (Vlow k) (58), by using a flow equation for the Hamiltonian (similarity RG) (59)
or by using tailored unitary transformations (UCOM) (60). The result is a decoupling of high-
and low-momentum dependence without modification of long-distance interactions, leading to
low-momentum potentials that are more perturbative, such that convergence in harmonic oscil-
lator bases is dramatically accelerated (61). Such potentials can be applied without Lee-Suzuki
transformations in the NCSM and can maintain the variational principle. Because the transfor-
mations are unitary, the EFT truncation error is unchanged, in contrast to the RG evolution of a
chiral EFT at fixed order to low cutoff. However, the evolution of the NN potential is inevitably
accompanied by the evolution of the three- and higher-body potentials. The latter has not yet
been implemented but is instead approximated by fitting the N2LO chiral interaction at each
cutoff (62), which introduces a theoretical error.

These low-momentum potentials show great promise for the CC method, which has been
highly developed in ab initio quantum chemistry but has only recently been revived for nuclear
applications, including the development of CC theory for three-body Hamiltonians (54, 63).
CC calculations are based on a potent exponential ansatz for the ground-state wave function
|ψ〉 = e

�

T |φ〉, where |φ〉 is a simple reference state (typically a harmonic oscillator Slater deter-
minant). The operator T̂ is specified by amplitudes for a truncated sum of operators creating
one-particle–one-hole, two-particle–two-hole, etc. excitations. The amplitudes are found from
nonlinear equations whose solution scales vary gently with the size of the nucleus and model space.

As with the NCSM, convergence is accelerated with low-momentum potentials; particularly
promising is the calculation of 3NF contributions, which are the most expensive component. The
3NF potential is rewritten in terms of normal-ordered creation and destruction operators with
respect to |φ〉 (instead of the vacuum), which recasts the 3NF into an expectation value in |φ〉,
one- and two-body pieces, and the remaining 3NF part. In the hierarchy of contributions to a CC
calculation, only the last piece is expensive to calculate, but recent CC calculations of 4He found
it to be negligible (54). If this result persists for larger nuclei, calculations of A = 100 or beyond
will be feasible in the near future! The present limit for NCSM is much lower, around A = 16,
but could be extended using importance-sampling methods that select the most important basis
states (64), if such methods can be implemented in a size-extensive way.

The NCSM and CC wave function methods apply EFT (and RG) only to create the input
potential and not to solve the many-body problem. There is also the possibility of a more EFT-
like treatment, such as the pioneering work to apply EFT to the shell model by Stetcu et al. (65).
(See Reference 66 for a completely different application of EFT methods to the shell model.)
These authors formulate an EFT in the harmonic oscillator basis, where the restricted model
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space generates all interactions consistent with the underlying symmetries. The parameters are
directly determined in the model space rather than fitting in free space and transforming the
interaction. The oscillator frequency sets an infrared cutoff λ ∼ √

MN h̄� whereas the UV cutoff
is 
 ∼ √

MN(Nmax + 3/2) h̄�. Within each model space, a set of observables is used to fix the EFT
parameters, then other observables are calculated. The EFT works if cutoff dependence decreases
with decreasing λ and increasing 
; in that case one makes an extrapolation to the continuum
limit h̄� → 0 with Nmax → 0 with 
 fixed. At the end, one takes 
 → ∞. The first application
with a pionless theory up to A = 6 is encouraging and motivates generalizations to the pionful
theory and to other many-body methods (65).

3.3. Effective Field Theory on the Lattice

We have seen that chiral EFT potentials have been used successfully in connection with standard
numerical many-body approaches such as CC or the NCSM. A disadvantage of these methods is
that they rely on the existence of a potential, which is not an observable, and as a consequence
scheme and renormalization scale invariance are not manifest. A numerical few- and many-body
method that is based directly on the effective Lagrangian is the Euclidean lattice path integral
Monte Carlo method. Euclidean lattice calculations are standard in the context of QCD but, except
for some isolated attempts (67, 68), have been applied in nuclear physics only recently (69–71).

In the following paragraphs we introduce the Euclidean lattice method in the case of a simple
s-wave contact interaction L = −C0(ψ †ψ)2/2. More sophisticated interactions involving higher
partial-wave terms and explicit pions are discussed in Reference 72. The usual strategy for dealing
with the four-fermion interaction is to use a Hubbard-Stratonovich transformation. The partition
function can be written (69) as

Z =
∫

Ds Dc Dc ∗ exp[−S], 36.

where s is the Hubbard-Stratonovich field and c is a Grassmann field. S is a discretized Euclidean
action

S =
∑
n,i

[
e−μ̂αt c ∗

i (n)c i (n + 0̂) − e
√−C0αt s (n)+ C0αt

2 (1 − 6h)c ∗
i (n)c i (n)

]

− h
∑
n,ls ,i

[c ∗
i (n)c i (n + l̂s ) + c ∗

i (n)c i (n − l̂s )] + 1
2

∑
n

s 2(n). 37.

Here i labels spin and n labels lattice sites. Spatial and temporal unit vectors are denoted by l̂s

and 0̂, respectively. The temporal and spatial lattice spacings are bτ and b , and the dimensionless
chemical potential is given by μ̂ = μbτ . We define αt as the ratio of the temporal and spatial lattice
spacings and h = αt/(2m̂). The action (37) is quadratic in the fermion fields, and can be simulated
using a variety of methods such as determinant or hybrid Monte Carlo. Note that for C0 < 0 the
action is real and importance sampling is possible.

The four-fermion coupling is fixed by computing the sum of all particle-particle bubbles as in
Section 2.3, but with the elementary loop function regularized on the lattice. Schematically,

m
4πa0

= 1
C0

+ 1
2

∑
p

1
Ep

, 38.

where the sum runs over discrete momenta on the lattice and Ep is the lattice dispersion relation.
A detailed discussion of the lattice regularized scattering amplitude can be found in References 69,
74, and 75. For a given scattering length a0 the four-fermion coupling is a function of the lattice
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Figure 3
Lattice results for the energy per particle of a dilute Fermi gas from Borasoy et al. (72, 73). We show the
energy per particle in units of the same ratio for the free system as a function of the Fermi momentum. The
solid dots represent the lattice results. For comparison, we also show results from wave function–based
many-body calculations (72). Abbreviation: NLO, next-to-leading-order.

spacing. The continuum limit corresponds to taking the temporal and spatial lattice spacings bτ ,
b to zero,

bτμ → 0, bn1/3 → 0, 39.

keeping a0n1/3 fixed. Here μ is the chemical potential and n is the density. Numerical results for
the energy per particle of dilute neutron matter are shown in Figure 3. We observe that the results
agree quite well with traditional many-body calculations. We also note that even when higher-
order corrections are taken into account, the equation of state exhibits approximate universal
behavior, with an effective ξ  (0.5−0.6). For applications of the lattice method to finite nuclei,
see Reference 76.

3.4. Perturbative Effective Field Theory for Nuclear Matter

The nuclear calculations discussed so far have all been nonperturbative. However, RG methods
have been used to show that the perturbativeness of internucleon interactions depends strongly
on the momentum cutoff and the density (58, 77). Lowering the resolution via an RG evolution
leaves observables and EFT truncation errors unchanged by construction (up to approximation
errors and omitted many-body contributions) but shifts contributions between the potential and
the sums over intermediate states in loop integrals. These shifts can weaken or even eliminate
sources of nonperturbative behavior such as strong short-range repulsion (e.g., from singular
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Figure 4
Nuclear matter energy per particle using renormalization-group evolved low-momentum potentials with a range of cutoffs with
three-nucleon forces fit to few-body binding energies (78).

chiral two-pion exchange) or the tensor force. At sufficient density, effective range corrections
and beyond suppress the effects of large s-wave scattering lengths (78).

Consequently, although nuclear matter is generally considered to be nonperturbative, it is
also resolution dependent. Figure 4 shows the energy per particle in nuclear matter for several
values of the RG cutoff 
 calculated in leading-order (Hartree-Fock) and second-order many-
body perturbation theory (78). (Note: The initial potential used in these figures is not a chiral
EFT NN potential. However, all NN potentials fit to scattering phase shifts flow to very similar
low-momentum potentials by this range of cutoffs, so similar results are expected.) The three-body
potential is of the N2LO form, fit at each cutoff to the binding energies of the triton and 4He. As
the RG only changes short-distance physics, the procedure for determining the 3NF is argued to
be a good approximation to the consistently evolved 3NF (62).

There are several encouraging features of perturbative many-body calculations with RG
evolved potentials. First, Hartree-Fock is a reasonable starting point for the description of nuclear
matter; this is patently false for conventional phenomenological potentials, which do not even
bind. Second, the dependence on the cutoff is greatly reduced going to second order. Further cal-
culations show that the third-order ladder diagrams make a very small contribution (78). Third,
with a fit to few-body properties, the minimum is reasonably close to the empirical saturation
point of (roughly) 16 MeV per particle with kF ≈ 1.35 fm−1 (indeed, the discrepancy is the order
of uncertainties in the three-body force). These results motivate a program to study nuclear mat-
ter with chiral EFT internucleon forces evolved to lower resolution (which should also include
studying unevolved chiral EFT potentials fit with a lower cutoff).

The increased perturbativeness in nuclear matter with increased density and lower cutoff can be
understood physically from reduced phase space due to Pauli blocking and the cutoff, combined
with the favorable momentum dependence of the low-momentum interaction (77, 78). Pauli
blocking means that particles with momenta below kF must forward scatter (Hartree-Fock) or be
excited out of the Fermi sea. The latter amplitude is limited by the weakened coupling of occupied
and unoccupied states, which in turn limits the volume of available momentum states (this is the
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phase space restriction). A consequence is that the saturation mechanism is now dominated by
the three-body force contribution (cf. the NN-only curves in the figure), rather than by the
density dependence of two-body tensor contributions. For cutoffs in the range shown, the three-
body contribution still remains natural-sized according to chiral EFT power counting (78), but
it is clearly quantitatively important. The implication is that the 4NF contribution will also be
important at the level of about 1 MeV per particle at saturation, but this conjecture has yet to be
tested.

These results suggest that an alternative EFT power counting may be appropriate at nuclear
matter densities. Kaiser and collaborators have proposed a perturbative chiral EFT approach to
nuclear matter and then to finite nuclei through an energy functional (79–81; see also 82, 84).
They consider Lagrangians both for nucleons and pions and for nucleons, pions, and �s, and
fit parameters to nuclear saturation properties. They construct a loop expansion for the nuclear
matter energy per particle, which leads to an energy expansion of the form

E(kF) =
∞∑

n=2

kn
F fn(kF/mπ , �/mπ ), [� = M� − MN ≈ 300 MeV] 40.

where each fn is determined from a finite number of in-medium Feynman diagrams. All powers
of kF/mπ and �/mπ are kept in the fns because these ratios are not small quantities (83). A semi-
quantitative description of nuclear matter is found even with just the lowest two terms without �s,
and adding �s brings uniform improvement (e.g., in the neutron matter equation of state). There
remain open questions about power counting and convergence, and there are many promising
avenues to pursue.

3.5. Density Functional Theory as an Effective Field Theory

DFT (85–87) is widely used in condensed-matter and quantum chemistry to treat large many-body
systems. It is based on the response of the ground-state energy to external perturbations of the
density, with fermion densities as the fundamental variables. This means that the computational
cost for DFT is far less than for wave function methods, and the calculations can be applied to
heavy nuclei. DFT is naturally formulated in an effective action framework (88) and is carried out
using an inversion method implemented with EFT power counting (89–91).

The simple prototype EFT for a dilute system (see Section 2) can be revisited in DFT by
placing the fermions in a trap potential vext(x) (e.g., a harmonic oscillator) and adding sources
coupled to external densities (92). Consider a single external source J(x) coupled to the density
operator ρ̂(x) ≡ ψ †(x)ψ(x) in the partition function (neglecting normalization and factors of the
temperature and volume and suppressing vext),

Z[J] = e−W [J] ∼ Tr e−β(Ĥ+Jρ̂) ∼
∫

D[ψ †]D[ψ] e− ∫
[L+Jψ†ψ], 41.

with the Lagrangian from Section 2.1. The static density ρ(x) in the presence of J(x) is

ρ(x) ≡ 〈ρ̂(x)〉J = δW [J]
δJ(x)

, 42.

which we invert to find J[ρ] and then Legendre transform from J to ρ:

�[ρ] = −W [J] +
∫

d 3xJ(x)ρ(x) with J(x) = δ�[ρ]
δρ(x)

→ δ�[ρ]
δρ(x)

∣∣∣∣
ρgs(x)

= 0. 43.

For static ρ(x), �[ρ] is proportional to the Hohenberg-Kohn energy functional, which by
Equation 43 is extremized at the ground state density ρgs(x).
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With W [J] constructed as a diagrammatic expansion, EFT power counting provides us with
a means of inverting from W [J] to �[ρ] (89, 90). It proceeds by substituting the decomposition
J(x) = J0(x) + J1(x) + J2(x) + . . . (where 1 stands for LO, 2 stands for NLO, and so on) and
corresponding expansions for W and � into Equation 43 and matching order by order with ρ

treated as order unity. Here J0 is chosen so that there are no corrections to the zeroth order
density at each order in the expansion; the interpretation is that J0 is the external potential that
yields for a noninteracting system the exact density of the interacting system. Zeroth order is the
noninteracting system with potential J0(x),

�0[ρ] = −W0[J0] +
∫

d 3x J0(x)ρ(x) ⇒ ρ(x) = δW0[J0]
δJ0(x)

, 44.

which is the so-called Kohn-Sham system with the exact density! To evaluate W0[J0], we introduce
orbitals {ψα} satisfying (with vext made explicit)[

− ∇2

2M
+ vext(x) − J0(x)

]
ψα(x) = εαψα(x), 45.

which diagonalizes W0, so that it yields a sum of εαs for the occupied states. We calculate the Wi s
and �i s up to a given order as functionals of J0 and then determine J0 for the ground state via a
self-consistency loop:

J0 → W1 → �1 → J1 → W2 → �2 → · · · ⇒ J0(x)|ρ=ρgs = δ�interacting[ρ]
δρ(x)

∣∣∣∣
ρ=ρgs

. 46.

Adding sources coupled to other currents improves the functional variationally and allows pairing
to be treated within the same framework (93, 94).

Figure 5 shows how EFT power-counting estimates predict the hierarchy of contributions to
a DFT energy functional. Shown at left are the results for the energy per particle of A = 140
fermions in a trap with short-range repulsive interactions. The a priori estimates from terms at
three different orders in the EFT expansion (the counterparts to the terms in Equation 2 plus
gradient corrections) are shown with error bars that reflect a natural range for the unknown coeffi-
cients (in this case from 1/2 to 2). These are compared to actual values, with good agreement (93).
A similar exercise using a chiral EFT–inspired power counting has been applied to phenomeno-
logical nonrelativistic (Skyrme) and covariant density functionals. Results for terms organized by
powers of the density in each term are shown on the right in Figure 5 and show that the predicted
hierarchy is realized (91, 95).

The apparent success of many-body perturbation theory for nuclear matter using low-
momentum potentials RG-evolved from chiral EFT input enables the construction of a nuclear
DFT functional in the effective action formalism that is compatible with nonrelativistic Skyrme
energy functional technology (96, 97). A large-scale five-year project to develop a universal nuclear
energy density functional (UNEDF) that will cover the entire table of nuclides (98) is under way.
The goal is to generate systematically improved energy functionals based on chiral EFT/RG in-
put potentials, including theoretical error estimates so that extrapolation to the driplines is under
control.

The density matrix expansion (DME) of Negele & Vautherin (99, 100) has been extended to
three-body force contributions and applied in momentum space to provide the first-generation
functional (91, 101). This construction is facilitated by analytic expressions for the long-range pion
contributions derived by Kaiser et al. (80, 81). The functional has the form of a generalized Skyrme
functional with density-dependent coefficients, including all allowed terms up to two derivatives,
which means it can be directly incorporated into existing computer codes. Cutoff dependence
can be used as a diagnostic tool for assessing missing elements of the interaction, the many-body
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Figure 5
Estimates for energy functionals for a dilute fermion in a harmonic trap (a) and three phenomenological energy functionals for nuclei (b).

approximations, and the performance of the energy functional. It is possible to benchmark against
NCSM and CC calculations for light- and medium-mass nuclei by calculating the energy with an
additional external field, i.e., putting the nuclei in theoretically adjustable traps.

4. SUMMARY AND OUTLOOK

EFT is a well-established technique with demonstrated success in all branches of physics. Applica-
tions of EFT to finite-density systems have many precursors going back decades, but implemen-
tations are relatively recent. Many-body systems with short-range interactions are an ideal testing
ground for many-body EFT because of the universal nature of the systems and the connection to
experiment through cold atom physics.

Far less developed is the application of EFT methods to nuclear many-body systems. The im-
mediate impact of EFT on nuclear many-body calculations is through the systematic organization
of effective Hamiltonians for low-energy QCD using chiral EFT. Of particular importance is the
role of many-body forces. We emphasize that although these Hamiltonians have been successful
in describing scattering and properties of light nuclei, they are largely untested at the densities
that are relevant for most nuclei and nuclear matter. Fortunately, computational tools such as the
NCSM, CC, and lattice methods, RG techniques, and DFT will funnel advances in chiral EFT
to new predictions, so that true tests are forthcoming. More direct applications of EFT methods
to many-body calculations are in their infancy, but there are clear incentives to pursue them.

This has necessarily been a shallow survey, but the breadth of activity should be clear. Key
developments are expected in the next few years. These include improvements to the chiral EFT
potentials such as full N3LO three-body interactions and the corresponding N3LO Hamiltonian
with � degrees of freedom and the subsequent testing of power counting in light- to medium-mass
systems. In addition, the consistent evolution of many-body forces with RG methods will open
the door to the full range of nuclei and nuclear matter.

Beyond the calculational tools, EFT provides a new perspective for nuclear many-body cal-
culations. Whereas traditionally one sought a universal Hamiltonian for all problem and energy
length scales, EFT exploits the infinite number of low-energy potentials: Rather than finding the
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“best” potential, we use a convenient or efficient one or work directly from a Lagrangian. For a
long time it was hoped that two-body data would be sufficient for nuclear systems; many-body
forces were treated as a last resort, to be considered as an add-on. In EFT it is inevitable that
many-body forces and data are needed and that they are directly tied to the two-body interaction.
Whereas researchers used to avoid divergences and hide them in form factors, with EFT they now
confront and exploit them (e.g., using cutoff dependence as a tool). Finally, instead of choosing
diagrams to sum by “art,” power counting determines what to sum and establishes theoretical
truncation errors.

Many relevant and interesting topics were not treated here because of space limitations. Two
major (related) areas largely unaddressed are (a) the response to external probes and (b) nuclear
reactions. Another area is EFT at high temperature for many-body systems with large scattering
length, which has been formulated using the virial expansion (102, 103) (see References 104
and 105 for recent applications of the virial expansion to hot dilute nuclear matter). The EFT
formulation of the finite temperature nuclear many-body system with long-range pion interaction
is a frontier. Other nuclear systems wherein EFT can play a particular role are hypernuclei (57)
and halo nuclei (106). Work to apply EFT methods to covariant hadronic field theories strives
to understand the successes of relativistic mean-field phenomenology (107). Finally, there is the
challenge of making the connection to lattice QCD (108) (as opposed to EFT on the lattice).
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70. Lee D, Schäfer T. Phys. Rev. C 73:015202 (2006)
71. Seki R, van Kolck U. Phys. Rev. C 73:044006 (2006)
72. Borasoy B, et al. arXiv:0712.2990 (2007)
73. Borasoy B, Epelbaum E, Krebs H, Lee D, Meissner U-G. nucl-th/0712.2993 (2007)
74. Chen JW, Kaplan DB. Phys. Rev. Lett. 92:257002 (2004)
75. Beane SR, Bedaque PF, Parreno A, Savage MJ. Phys. Lett. B 585:106 (2004)
76. Borasoy B, et al. Eur. Phys. J. A 31:105 (2007)
77. Bogner SK, Furnstahl RJ, Ramanan S, Schwenk A. Nucl. Phys. A 773:203 (2006)
78. Bogner SK, Schwenk A, Furnstahl RJ, Nogga A. Nucl. Phys. A 763:59 (2005)
79. Kaiser N, Fritsch S, Weise W. Nucl. Phys. A 697:255 (2002)
80. Kaiser N, Fritsch S, Weise W. Nucl. Phys. A 724:47 (2003)
81. Fritsch S, Kaiser N, Weise W. Nucl. Phys. A 750:259 (2005)
82. Lutz M, Friman B, Appel C. Phys. Lett. B 474:7 (2000)
83. Kaiser N, Muhlbauer M, Weise W. Eur. Phys. J. A 31:53 (2007)
84. Saviankou P, Krewald S, Epelbaum E, Meissner U-G. nucl-th/0802.3782 (2008)
85. Dreizler RM, Gross E. Density Functional Theory. Berlin: Springer-Verlag (1990)
86. Argaman N, Makov G. Am. J. Phys. 68:69 (2000)
87. Fiolhais C, Nogueira F, Marques M, eds. A Primer in Density Functional Theory. Berlin: Springer-Verlag

(2003)
88. Polonyi J, Sailer K. Phys. Rev. B 66:155113 (2002)
89. Fukuda R, Kotani T, Suzuki Y, Yokojima S. Prog. Theor. Phys. 92:833 (1994)
90. Valiev M, Fernando GW. Phys. Lett. A 227:265 (1997)
91. Furnstahl RJ. nucl-th/0702040 (2007)
92. Puglia SJ, Bhattacharyya A, Furnstahl RJ. Nucl. Phys. A 723:145 (2003)
93. Bhattacharyya A, Furnstahl RJ. Nucl. Phys. A 747:268 (2005)
94. Furnstahl RJ, Hammer HW, Puglia SJ. Ann. Phys. 322:2703 (2007)
95. Furnstahl RJ. J. Phys. G 31:S1357 (2005)
96. Dobaczewski J, Nazarewicz W, Reinhard PG. Nucl. Phys. A 693:361 (2001)
97. Bender M, Heenen PH, Reinhard PG. Rev. Mod. Phys. 75:121 (2003)
98. Bertsch GF, Dean DJ, Nazarewicz W. SciDAC Rev. 6:42 (2007)
99. Negele JW, Vautherin D. Phys. Rev. C 5:1472 (1972)

100. Negele JW, Vautherin D. Phys. Rev. C 11:1031 (1975)
101. Bogner SK, Furnstahl RJ, Platter L. Manuscript in preparation (2008)
102. Bedaque PF, Rupak G. Phys. Rev. B 67:174513 (2003)
103. Rupak G. Phys. Rev. Lett. 98:090403 (2007)
104. Horowitz CJ, Schwenk A. Nucl. Phys. A 776:55 (2006)
105. Horowitz CJ, Schwenk A. Phys. Lett. B 638:153 (2006)
106. Bertulani CA, Hammer HW, Van Kolck U. Nucl. Phys. A 712:37 (2002)
107. Furnstahl RJ. Lect. Notes Phys. 641:1 (2004)
108. Savage MJ. nucl-th/0611038 (2006)

www.annualreviews.org • EFT and Finite-Density Systems 25

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
00

8.
58

:1
-2

5.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 D

r.
 T

ho
m

as
 S

ch
ae

fe
r 

on
 1

0/
21

/0
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



AR358-FM ARI 16 September 2008 11:6

Annual Review of
Nuclear and
Particle Science

Volume 58, 2008
Contents

Effective Field Theory and Finite-Density Systems
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