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Abstract
It is not known whether the three-dimensional (3D) incompressible Navier-
Stokes equations possess unique smooth (continuously differentiable) so-
lutions at high Reynolds numbers. This problem is quite important for
basic science, practical applications, and numerical computations. This re-
view presents a selective survey of the current state of the mathematical
theory, focusing on the technical source of difficulties encountered with
the construction of smooth solutions. It also highlights physical phenomena
behind the mathematical challenges.
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1. INTRODUCTION

The three-dimensional (3D) Navier-Stokes equations for a single-component, incompressible
Newtonian fluid in three dimensions compose a system of four partial differential equations relat-
ing the three components of a velocity vector field �u = îu+ ĵv+ k̂w (adopting conventional vector
notation) and a pressure field p , each of which is a function of the spatial variable �x = î x + ĵ y + k̂z
and the time t:

�̇u + �u · �∇ �u + �∇ p = ν� �u (1)

and

�∇ · �u = 0, (2)

where the fluid’s kinematic viscosity ν is the single material parameter in the problem. The mo-
mentum equation (Equation 1) is Newton’s second law of motion, balancing the acceleration of a
fluid element ( �̇u + �u · �∇ �u) and the total force per unit mass density (−�∇ p + ν� �u) imposed on it by
neighboring elements. The continuity equation (Equation 2) expresses conservation of mass for
the constant density fluid; the pressure p is the physical pressure divided by this constant density.
Equation 1 should be solved forward in time, starting from an initial divergence-free velocity
field �u0(�x) in a subset of R3 with appropriate boundary conditions, with the pressure evolving in
time to maintain the incompressibility constraint (Equation 2). That is, the pressure is determined
instantaneously by the velocity field as a solution of the Poisson equation −�p = ∇ · ( �u · ∇ �u).

This mathematical description is presumed to apply to any simple isotropic fluid with an
instantaneous linear relation between stress- and strain-rate describing motions at low Mach
number (i.e., for relative flow speeds far below the speed of sound in the fluid). We also presume that
these equations pertain to both laminar and fully developed turbulent flows, and they are widely
applied throughout engineering and the natural sciences. With the addition of other effects (e.g.,
external forces and rotation, coupling to temperature and composition fields, and interactions with
gravitational and electromagnetic fields or moving boundaries), these equations—or extended or
reduced systems based on them—are routinely used to model systems across a tremendous range
of length and time scales from microfluidics and biophysics to meteorology, oceanography, and
astrophysics.

Given the fundamental nature of the Navier-Stokes equations and their importance for appli-
cations, the necessity of a firm mathematical foundation is evident. For models to be predictive
and physically robust starting from reasonable initial conditions in reasonable domains, (a) the
equations of motion should possess solutions, (b) the solutions should be unique, and (c) the solu-
tions should depend continuously, in some appropriate sense, on the initial data. For analytically
intractable solutions to be computationally accessible, they must display sufficient regularity (con-
tinuous differentiability) that reasonable numerical schemes can converge. We also desire solution
regularity to ensure that the Navier-Stokes equations are physically self-consistent as a hydrody-
namic model. Because they are derived to describe motions averaged over volumes far larger than
the fluid’s atomic constituents, irregularities such as singularities in derivatives signal a violation of
that separation of scales, indicating predictions for arbitrarily small (in the hydrodynamic sense)
regimes in which physical effects that are not present in the Navier-Stokes model come into play.

The situation now, in the first decade of the twenty-first century, is far from satisfactory.
Although there has been considerable progress since this subject was last reviewed in this jour-
nal (Ladyzhenskaya 1975), a number of fundamental questions about solutions of the Navier-
Stokes equations remain, and several constitute grand challenges for the mathematics community.
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Indeed, a one-million-dollar prize is offered for the resolution of some of the most basic problems
(Fefferman 2000).

This review intends to provide the mathematically minded applied science and engineering
community with an informal and relatively self-contained description of the current state of knowl-
edge and a selective survey of mathematical problems regarding the existence, uniqueness, and
regularity of solutions. Although every attempt has been made to make the discussion accessible
to a broad audience, the subject is by its very nature technical, so some analysis is necessary. In the
end, however, many of the essential problems can be explicated with basic ideas from the theory
of ordinary differential equations, Fourier series, rudimentary functional analysis, and elementary
analytical estimates such as the Hölder and Cauchy-Schwarz inequalities (Doering & Gibbon
1995). Complete presentations of the modern mathematical theory can be found in a number of
monographs (Constantin & Foias 1988, Galdi 2000, Temam 1995).

For definiteness, we focus on the free-decay problem for the incompressible Navier-Stokes
equations (Equations 1 and 2) on a cubic periodic domain, �x ∈ � = [0, L]3. This eliminates
complications that could be introduced by boundary layers at rigid interfaces, by external forces,
or by events or actions at large distances. Then, besides the viscosity ν and the domain scale L,
the only other input is the initial velocity field �u0(�x).

In this periodic setting, the velocity vector fields have the simple Fourier representation

�u(�x, t) =
∑

�k
û �k(t)e i �k· �x, (3)

where the wave numbers are �k = 2π

L (î l + ĵ n + k̂m) for integers l, n, and m and

û �k(t) = 1
L3

∫
�

�u(�x, t)e−i �k· �x d 3x. (4)

The Navier-Stokes equations (Equations 1 and 2) then compose an infinite set of coupled ordinary
differential equations for the Fourier coefficients û �k(t): For �k �= 0,

d
dt

û �k(t) = −ν| �k|2û �k(t) − i

(
1 −

�k ⊗ �k
| �k|2

)
·

∑
�k′+ �k ′′= �k

û �k′ (t) · �k ′′û �k ′′ (t) (5)

and

�k · û �k(t) = 0. (6)

The zero-mode Fourier coefficient û�0, the mean flow in the cell, is constant in time. This is just
a statement of the bulk conservation of momentum; without loss of generality we take û�0(0) =
û�0(t) = 0. The system of ordinary differential equations in Equation 5 should be solved forward
in time starting from û �k(0), the Fourier coefficients of the initial data �u0(�x). The absence of the
pressure in this formulation reflects that it is an auxiliary local variable introduced to maintain the
nonlocal incompressibility constraint.

One desired feature of solutions, namely conservation of energy, is suggested by both formu-
lations via formal calculation. Taking the dot product of �u(�x, t) with Equation 1, integrating over
the volume, and integrating by parts noting that there are no boundary contributions—assuming
that the functions are smooth enough to carry out these operations—we find

d
dt

1
2

‖ �u(·, t)‖2
2 = −ν‖ �∇ �u(·, t)‖2

2. (7)
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Here we introduce the L2(�) norm

‖ f (·)‖2 =
√∫

�

| f (�x)|2 d 3x =
√

L3
∑

�k

∣∣∣ f̂ �k
∣∣∣2

(8)

and use the notation | �∇ �u| = | �∇ ⊗ �u| = √ui, j ui, j (in Einstein’s convention) for the local tensor
norm. The analogous calculation proceeds in the Fourier representation by summing the dot
products of the complex conjugate of û �k(t) with Equation 5 and noting the collapse of the sum of
cubic terms—assuming that the sums converge in the first place. Then

d
dt

1
2

∑
�k

∣∣û �k(t)2
∣∣ = −ν

∑
�k

| �k|2|û �k(t)2|. (9)

The L2(�) norm squared of the velocity field is just twice the bulk kinetic energy per unit mass
density, so Equations 7 and 9 simply state that the initial budget of kinetic energy is continually
and irreversibly dissipated into heat by viscosity at a rate proportional to the instantaneous value
of the L2(�) norm squared of velocity gradients.

Although these calculations and their implications appear elementary and obvious, they
are not known to be valid for arbitrary solutions of the 3D Navier-Stokes equations. This
predicament illustrates the significance of the shortcomings in the current mathematical state of
affairs.

In Section 2, we consider the notion of weak solutions, which are generally available, and
ponder their deficiencies. In Section 3, we discuss strong solutions that possess essentially all
the mathematical properties that could be desired on physical grounds. Starting from sufficiently
smooth initial data, strong solutions are known to exist at least for a while. The problem is that
unless the flow is sufficiently weak (i.e., unless appropriate Reynolds numbers are sufficiently
small), strong solutions are not known to exist for all times, even starting from smooth initial data
and in the absence of any external forcing. It remains unknown whether solutions of the Navier-
Stokes equations can develop singularities of some sort after just a finite time at high Reynolds
numbers. Turbulence is ubiquitous at high Reynolds number, and not unexpectedly some of these
mathematical issues are relevant for the analysis of turbulent flows. Finally, in Section 4 we consider
some of the challenges that the ultimate resolution of the regularity question presents and discuss
some aspects of high–Reynolds number (including turbulent) flows that can be studied fruitfully
within the existing mathematical framework.

2. WEAK SOLUTIONS

Weak solutions satisfy the Navier-Stokes equations in the weak sense. That is, for square integrable
(finite–kinetic energy) initial data �u0(�x), weak solutions are functions �u(�x, t) such that for any
infinitely differentiable test function q (�x, t) and divergence-free test field �v(�x, t) with compact
support in t ∈ [0, ∞),∫ ∞

0
dt

∫
�

d 3x( �u · �̇v + �u · ( �∇�v) · �u + ν �u · ��v) +
∫

�

�u0(�x) · �v(�x, 0) d 3x = 0 (10)

and ∫ ∞

0
dt

∫
�

d 3x
(

�u · �∇q
)

= 0. (11)

These are integrated versions of Equations 1 and 2 that make sense for velocity fields
�u(�x, t) that may not be smooth enough to differentiate as required to satisfy the partial
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differential equations pointwise in space and time. Leray (1934) introduced weak solutions
three-quarters of a century ago. The basic idea behind the construction of weak solutions
is to start with an appropriately regularized approximation to the Navier-Stokes equations
to which solutions may be shown to exist for all times and then consider the limits of
these approximate solutions as the regularization is removed. Leray originally modified Equa-
tion 1 by smearing part of the nonlinear term, but here we consider a regularization that
is familiar from spectral methods in numerical analysis, a Galerkin approximation to the
equations.

For positive K, we define the projection operators PK acting on square integrable functions
f (�x) according to

(PK f )(�x) =
∑

|�k| < K

f̂ �ke i �k· �x . (12)

PK simply truncates the Fourier series for f to modes with wave numbers below K. It is a bounded
linear, self-adjoint [i.e.,

∫
�

f (PK g)d 3x = ∫
�

(PK f )gd 3x] operator satisfying (PK )2 = PK and
‖PK f ‖2 ≤ ‖ f ‖2. We note that PK ( �∇ f ) = �∇(PK f ), at least in the sense of distributions if not in
L2(�). Moreover, PK → I , the identity operator, as K → ∞ in a weak operator sense: For any
L2(�) function f (�x), ‖PK f − f ‖2 → 0 as K → ∞.

The Galerkin approximation �uK (�x, t) is defined as the solution of the regularized Navier-Stokes
equations

�̇uK + PK

(
�uK · �∇ �uK

)
+ �∇ p K = ν� �uK (13)

and

�∇ · �uK = 0 (14)

starting from the initial data �uK (�x, 0) = (PK �u0)(�x). Unique, bounded, smooth solutions to
Equations 13 and 14 starting from PK �u0 exist for all times because in the Fourier represen-
tation the infinite system Equation 5 is approximated by a finite system of nonlinear ordi-
nary differential equations for the N ≈ 4π L3 K 3/3 complex-valued Fourier coefficients of
�uK :

d
dt

ûK
�k

(t) = −ν| �k|2ûK
�k

(t) − i

(
1 −

�k ⊗ �k
| �k|2

)
·

∑
�k′+ �k ′′= �k

ûK
�k′ (t) · �kûK

�k
(t) (15)

for | �k| < K with �k · ûK
�k

(t) = 0 and ûK
�k

(t) ≡ 0 for | �k| ≥ K . The right-hand side of Equation 15 is a
locally Lipshitz continuous function of the variables in the system phase space CN , so local-in-time
solutions can be constructed by classical Picard iteration. We can extend these local solutions to
global-in-time solutions because of the a priori bound,∑

�k

∣∣ûK
�k (t)

∣∣2 ≤
∑

�k

∣∣û �k(0)
∣∣2 = 1

L3
‖ �u0‖2

2. (16)

This estimate follows from the energy equation for the Galerkin system,

d
dt

1
2

∑
�k

|ûK
�k (t)|2 = −ν

∑
�k

| �k|2 ∣∣ûK
�k (t)

∣∣2
, (17)

that shows that the L2(�) norm of the solution is always decreasing and hence bounded by its
initial value, which is in turn bounded by the L2(�) norm of �u0 uniformly in the approximation
parameter K. The uniqueness of solutions to the finite system for the Fourier coefficients then
follows as usual from the classical theory of ordinary differential equations.
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Unlike the same exercise applied to the unregularized system, there is nothing delicate about
deriving Equation 17 from Equation 15 because all the sums are finite there. Similarly, there is no
subtlety in deriving the energy equation

d
dt

1
2

∥∥ �uK (·, t)
∥∥2

2 = −ν

∥∥∥ �∇ �uK (·, t)
∥∥∥2

2
(18)

from the regularized partial differential equations in Equations 13 and 14 because the Galerkin
approximation �uK (�x, t) is infinitely differentiable in all its variables. The energy equation satisfied
by the regularized system ultimately informs us that the approximate solutions exist and are unique
and perfectly regular for all times.

At this stage, the strategy is to send K → ∞ and hope for convergence of the approximations
�uK (�x, t) to a limit �u(�x, t) that solves the unregularized Navier-Stokes equations. This is where the
difficulties begin to appear. To establish convergence (in an appropriate sense), we must know that
(suitable) norms of differences between approximations, ‖ �uK − �uK ′ ‖, vanish as K , K ′ → ∞. To
deduce this information from the regularized Navier-Stokes equations, we must know that the
approximations are uniformly regular in an appropriate sense as K , K ′ → ∞. Below we present
an example that illustrates the kind of calculations involved (without claim of optimal analysis)
and demonstrates the conundrum.

Suppose we try to rigorously establish convergence of the sequence of Galerkin approximations
{ �uK , K > 0} to a continuous function from [0, T] to L2(�) uniformly for some positive time T < ∞.
We could accomplish this by showing that the approximations constitute a Cauchy sequence in
the space of continuous functions from the time interval [0, T] to L2(�), i.e., by proving that

limK ,K ′→∞supt∈[0,T ]‖ �uK (·, t) − �uK ′
(·, t)‖2 = 0. (19)

For definiteness, we let K ′ > K and define the difference δ �u = �uK ′ − �uK , whose time evolution
of the L2(�) norm is computed from the difference of the regularized equations for �uK ′ and �uK .
Elementary integrations and estimates (the Hölder and Cauchy-Schwarz inequalities) yield

d
dt

1
2
‖δ �u(·, t)‖2

2 = −ν‖ �∇δ �u‖2
2 −

∫
�

�uK · �∇ �uK · (PK ′ − PK ) δ �ud 3x −
∫

�

δ �u · �∇ �uK · δ �u d 3x

≤ −ν‖ �∇δ �u‖2
2 + ‖(PK ′ − PK ) δ �u‖2‖ �∇ �uK ‖∞‖ �uK ‖2 + ‖δ �u‖2

2‖ �∇ �uK ‖∞, (20)

which introduces the L∞(�) norm ‖ f ‖∞ = sup�x∈� | f (�x)|. Now we note

‖(PK ′ − PK ) δ �u‖2
2 =

∑
K <| �k|≤K ′

∣∣δû �k
∣∣2 ≤

∑
K <| �k|<∞

| �k|2
K 2

∣∣δû �k
∣∣2 ≤ 1

K 2
‖ �∇δ �u‖2

2, (21)

so the first two terms on the second line of Equation 20 may be bounded (using 2ab ≤ a2 + b2) as

−ν‖ �∇δ �u‖2
2 + ‖(PK ′ − PK ) δ �u‖2‖ �∇ �uK ‖∞‖ �uK ‖2 ≤ −ν‖ �∇δ �u‖2

2 + 1
K

‖ �∇δ �u‖2‖ �∇ �uK ‖∞‖ �uK ‖2

≤ −ν‖ �∇δ �u(·, t)‖2
2 + ν‖ �∇δ �u(·, t)‖2

2 + 1
4νK 2

‖ �∇ �uK (·, t)‖2
∞‖ �uK (·, t)‖2

2

= 1
4νK 2

‖ �∇ �uK (·, t)‖2
∞‖ �uK (·, t)‖2

2. (22)

The L2(�) norms of all �uK are bounded by the L2(�) norm of �u0, so

d
dt

1
2
‖δ �u(·, t)‖2

2 ≤ ‖�∇ �uK (·, t)‖∞‖δ �u(·, t)‖2
2 + 1

4νK 2
‖ �∇ �uK (·, t)‖2

∞‖ �u0‖2
2. (23)
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Gronwall’s inequality1 then implies

‖δ �u(·, t)‖2
2 ≤ ‖δ �u(·, 0)‖2

2 e2
∫ t

0 ‖�∇ �uK (·,s )‖∞ds + ‖�u0‖2
2

2νK 2

∫ t

0
‖ �∇ �uK (·, s )‖2

∞e2
∫ t

s ‖�∇ �uK (·,r)‖∞dr ds. (24)

Now if we knew that there were a finite number R so that∫ T

0
‖ �∇ �uK (·, s )‖2

∞ds < R < ∞ (25)

uniformly in K (regardless of R’s dependence on T, L, ν, and ‖ �u0‖2), then we could conclude that

sup
t∈[0,T]

‖δ �u(·, t)‖2
2 ≤ ‖δ �u(·, 0)‖2

2 e2
√

RT + ‖�u0‖2
2

2νK 2
Re2

√
RT. (26)

Moreover, because

‖δ �u(·, 0)‖2
2 =

∑
K <| �k|≤K ′

∣∣û �k(0)
∣∣2 → 0 as K → ∞, (27)

we could then assert thatsupt∈[0,T] ‖δ �u(·, t)‖2
2 → 0 as K (and K ′ > K ) → ∞.

The key to establishing convergence in this particular approach is the existence of a uniform
(in K ) bound on the time integral of the L∞(�) norm squared of the Galerkin approximations’
gradients in Equation 25. If such an a priori estimate were known, then one could proceed to (a) ask
if the limit of the approximations satisfied the unregularized Navier-Stokes equations, (b) enquire
as to further regularity of the limit, and (c) investigate the uniqueness of the solution so obtained.
Indeed, if a unique smooth solution exists, then the Galerkin approximations converge to it, and
in principle for particular cases this can be rigorously confirmed computationally (Chernyshenko
et al. 2007).

However, no such uniform bound is known. In fact, we know relatively little along these lines.
From the energy (Equation 18) for the Galerkin approximations, we can only deduce that for any
positive times 0 ≤ t0 < t < ∞,

1
2

∥∥ �uK (·, t)
∥∥2

2 + ν

∫ t

t0

∥∥∥ �∇ �uK (·, s )
∥∥∥2

2
ds = 1

2
∥∥ �uK (·, t0)

∥∥2
2 ≤ 1

2
‖ �u0‖2

2 . (28)

This confirms both that the energy in the approximations is bounded uniformly in K (by the initial
energy) at every instant and that time integrals of the L2(�) norm squared of the approximations’
gradients are bounded uniformly in K by the initial energy divided by the viscosity, e.g.,∫ T

0

∥∥∥ �∇ �uK (·, s )
∥∥∥2

2
ds ≤ ‖ �u0‖2

2

2ν
〈∞. (29)

However, this is far weaker control than that required by Equation 25 for the convergence argu-
ment above.

These uniform energy bounds are insufficient to establish strong (norm) convergence, but
they are sufficient to establish the convergence of subsequences of the Galerkin approximations to
weak solutions; this was Leray’s fundamental insight (Hopf 1951, Leray 1934, Serrin 1963). The
energy estimate and other a priori uniform bounds establish that the Galerkin approximations are

1Gronwall’s inequality states that the differential inequality d f (t)/dt ≤ g(t) f (t) + h(t) implies a pointwise-in-time bound
f (t) ≤ f (0)e

∫ t
0 g(s )ds + ∫ t

0 h(s )e
∫ t
s g(r)dr ds. The proof follows by multiplying the differential inequality by a positive integrating

factor to deduce d
dt ( f (t)e− ∫ t

0 g(s )ds) ≤ h(t)e− ∫ t
0 g(s )ds and integrating from 0 to t ≥ 0.
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contained in a compact (weak topology) set assuring the weak convergence2 of a subsequence to
a vector field that satisfies the weak form of the Navier-Stokes equations in Equations 10 and 11.

There may be more than one weakly convergent subsequence, and among these one can find
weak solutions that also satisfy the energy inequality

1
2

‖ �u(·, t)‖2
2 + ν

∫ t

t0

∥∥∥ �∇ �u(·, s )
∥∥∥2

2
ds ≤ 1

2
‖ �u(·, t0)‖2

2 (30)

for all t and almost all t0 with 0 ≤ t0 < t < ∞. Additionally, with some modification of the weak
solution on a set of (time) measure zero, one can ensure that there are fields �u(�x, t) that are weakly
continuous functions of time with values in L2(�) that satisfy a slightly stronger form of Equation
10; namely, for any time t ∈ [0, ∞) and any infinitely differentiable divergence-free �v(�x, t),∫

�

�u(�x, t) · �v(�x, t)d 3x =
∫ t

0
dt

∫
�

d 3x( �u · ·�v + �u · ( �∇�v) · �u + ν �u · ��v)

+
∫

�

�u0(�x) · �v(�x, 0)d 3x. (31)

Velocity vector fields satisfying Equations 11, 30, and 31 are called Leray-Hopf solutions of the
Navier-Stokes equations.

The energy inequality in Equation 30 allows the possibility of singularities in the weak solutions
in which energy is lost by means other than viscous dissipation. This situation implies a concen-
tration of significant energy at arbitrarily high wave numbers. If such events arise in the course
of refining the Galerkin approximations, then the norm of the weak limit of the approximations
could be less than the limit of the norm. This leaking of energy to infinitesimal length scales is
not necessarily unexpected mathematically,3 but it is clearly a problem for the physics.

There is no assurance that weak solutions are unique, even with the same initial condition, and
the question of solutions’ uniqueness is ultimately one of regularity as well. To illustrate the issue,
let us assume that we can formally manipulate the Navier-Stokes equations. Then the L2(�) norm
of the difference δ �u = �u′ − �u between two solutions satisfies

d
dt

1
2
‖δ �u‖2

2 = −ν‖ �∇δ �u‖2
2 −

∫
�

δ �u · �∇ �u · δ �ud 3x = −ν‖ �∇δ �u‖2
2 +

∫
�

δ �u · �∇δ �u · �u d 3x

≤ − ν‖ �∇δ �u‖2
2 + ‖�∇δ �u‖2‖δ �u‖2‖ �u‖∞ ≤ ‖ �u‖2

∞
4ν

‖δ �u‖2
2. (32)

Now if
∫ T

0 ‖ �u(·, t)‖2
∞ dt = κ < ∞, Gronwall’s inequality ensures that

sup
t∈[0,T]

‖δ �u(·, t)‖2
2 ≤ ‖δ �u(·, 0)‖2

2 eκ/2ν (33)

so that �u′ = �u at t = 0 implies that �u′ = �u for all t ∈ [0, T ]. However, it is not known that arbitrary
time integrals of the square of the L∞ norm of weak solutions are bounded—or that arbitrary time
integrals of the square of the L∞ norm of the Galerkin approximations are bounded uniformly in
K—so the uniqueness of weak solutions remains an open question. The problem with uniqueness
is that there is no canonical way to continue through a singularity, should one be encountered.

2The weak limit (if it exists) of a sequence of functions fn ∈ L2(�), written w − limn→∞ fn , is the function f such that for
every function g ∈ L2(�), limn→∞

∫
�

( f (�x) − fn(�x)) g(�x)d 3x = 0.
3The canonical example of this phenomenon is the following: Let us consider the function space L2 ([0, 2π )) and the sequence
of functions fn(x) = (2π )−1/2 e inx for n = 1, 2, . . ., each having norm 1. The Fourier coefficients of any g(x) ∈ L2 ([0, 2π )) are
square summable, so limn→∞ ĝn = ∫ 2π

0 e−inx g(x)d x = 0. This proves that w − limn→∞ fn = 0. Thus ‖w − limn→∞ fn‖2 = 0
even though limn→∞ ‖ fn‖2 = 1. That is, the norm of the weak limit of a sequence may be less than the limit (inferior) of the
sequence of norms.
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One approach to these problems is to try to show that the weak solutions possess more regularity,
enough to rule out finite-time singularities. This line of study has focused on deriving specific
regularity criteria that would ensure regularity and uniqueness with the hope that eventually all
weak solutions may be shown to satisfy them. The current state of affairs (Escauriaza et al. 2003,
Giga 1986, Prodi 1959, Serrin 1962, von Wahl 1986) is that if a weak solution (or the Galerkin
approximations, uniformly in K ) satisfies(∫ T

0

(∫
�

| �u|r d 3x
)s /r

)1/s

< ∞ (34)

for 2/s + 3/r = 1 with 3 ≤ r ≤ ∞, then the solution is regular up to time T. In other words, if a
singularity develops at time T, then these integrals have to diverge for that solution. One limiting
case for these conditions is r = ∞ and s = 2,∫ T

0
‖ �u(·, t)‖2

∞ dt < ∞, (35)

a criterion that could help establish uniqueness, as discussed above. The other limiting case is r
= 3 and s = ∞,

sup
t∈[0,T]

(∫
�

| �u(·, t)|3 d 3x
)1/3

= sup
t∈[0,T]

‖ �u(·, t)‖3 < ∞, (36)

plainly displaying the gap in our knowledge: The L2(�) norms of weak solutions are known to be
finite at all times, but we need to know that the L3(�) norms remain finite to assure regularity.

Other regularity criteria may be formulated in terms of norms of the velocity gradients (Beirao
da Viega 1995). For example, if

⎛
⎝∫ T

0
(
∫

�

∣∣∣ �∇ �u
∣∣∣r ′

d 3x)
s ′

/r ′
dt

⎞
⎠

1/s ′

< ∞ (37)

with 2/s ′+3/r ′ = 2 and 3/2< r ′ ≤ ∞, then solutions would be regular up to time T. The boundary
case r = ∞ and s = 1, ∫ T

0
‖ �∇ �u(·, t)‖∞dt < ∞, (38)

is weaker than that considered in Equation 25, although with only a little more work, we can
modify that argument to require only that a bound on

∫ T
0 ‖ �∇ �uK (·, t)‖1+α

∞ dt uniform in K for any
0 < α ≤ 1 is sufficient to prove strong convergence of the Galerkin approximates. (Motivated
readers can start at Equation 21 and insert a lower power of | �k|/K into the sum.)

Let us consider the case r ′ = 2 and s ′ = 4, which is the condition∫ T

0
‖ �∇ �u(·, t)‖4

2dt < ∞. (39)

Here again the gap in our control is apparent because the energy inequality for weak solutions
only ensures that ∫ T

0
‖ �∇ �u(·, t)‖2

2dt < ∞. (40)

This criterion is of particular interest physically because ε(t) = ν‖ �∇ �u(·, t)‖2
2/L3 is the instan-

taneous, bulk viscous energy-dissipation rate per unit mass in the fluid. Although ε(t) for weak
solutions is not known to be limited instantaneously, the energy inequality for weak solutions
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assures us that its average ε̄ over any nonzero time interval is bounded. To guarantee regularity,
however, Equation 39 requires that the bulk dissipation-rate variance (ε − ε̄)2 is finite, as well.
However, this is also not known to be true for general weak solutions. [In Section 3, we see
explicitly how the integral condition (Equation 39) controls instantaneous norms of solutions.]

The control of a single velocity component may be sufficient to ensure regularity (Neistupa &
Penel 1999). The most recent result in this direction (Kukavica & Zaine 2007) is that

⎛
⎜⎝∫ T

0

⎛
⎝ ∫

�

∣∣∣∣∂u
dz

∣∣∣∣
r ′′

d 3x

⎞
⎠

s ′′/r ′′

dt

⎞
⎟⎠

1/s ′′

< ∞ (41)

for 2/s ′′ + 3/r ′′ = 2 with 9/4 < r ′′ ≤ 3 ensures regularity. These are the same scalings as for
the full gradient but with more restrictions on the exponents. Of course, there is nothing special
about the z derivative of the u component, and the appropriate regularity of any derivative of any
component works as well.

In any event, none of these criteria presently makes contact with the known properties of weak
solutions, so for the most part they serve as interesting, necessary conditions for the breakdown
of smooth solutions. An alternative direction of investigation concerns the nature of the set of
points in space and time upon which weak solutions could be singular (Caffarelli et al. 1982, Lin
1998, Scheffer 1976). The goal of this approach is to characterize some geometric properties and
measure theoretic properties of such sets. This approach has established an estimate on a certain
fractal dimension of the singular set that rules out singularities on 1D lines [e.g., of the form �X(t)]
in space and time.

3. STRONG SOLUTIONS

If the initial flow field is sufficiently regular, then unique smooth solutions exist at least for a positive
time, and if the initial data are sufficiently small, then the unique smooth solution may persist
forever. Therefore, another approach to the Navier-Stokes equations is to study the sufficiency
bounds to determine the longest time a smooth solution might persist with the aim of extending
the lifetime estimates. We reiterate that it is not known whether such attempts might be futile
(i.e., whether there are smooth initial data that can develop singularities within a finite time). At
the very least, however, further understanding may be gained by investigating analytical barriers
to these goals.

With regard to this approach, the strong regularity result (Foias & Temam 1989) demonstrates
that if the gradient of the initial data is square integrable, i.e., if

‖ �∇ �u0‖2
2 = L3

∑
�k

| �k|2|û �k(0)2| < ∞, (42)

then for any α > 0 there exists a time T > 0, depending on α, ν, L, and‖ �∇ �u0‖2, such that∑
�k

| �k|2eαt| �k||û �k(t)|2 ≤ B < ∞ (43)

for 0 ≤ t ≤ T. During this interval, the Fourier coefficients of the solutions vanish exponentially
as | �k| → ∞ so that the solution �u(�x, t) and all its derivatives are bounded. We can prove this result
by establishing an estimate such as Equation 43 for the Galerkin approximations �uK (�x, t) with
bound B < ∞ and time T > 0 that are uniform in K. Such uniform smoothness is sufficient to
establish the strong convergence of the Galerkin approximations to a limit that inherits the same
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regularity. This, in turn, is sufficient to establish uniqueness up to (and even slightly beyond) time
T.

These ideas have been developed into explicit regularity statements about strong solutions in
terms of bulk properties of the flow (Doering & Titi 1995). We suppose that for some time T ≤ ∞,

ε∞ = sup
0≤t≤T

ε(t) = sup
0≤t≤T

ν‖ �∇ �u(·, t)‖2
2

L3
= sup

0≤t≤T
ν

∑
�k

| �k|2|û �k(t)|2< ∞. (44)

This quantity is the extreme value of the energy-dissipation rate per unit mass over the interval.
We define the transient time

t∗ = C
ν3

‖ �∇ �u0‖4
2

, (45)

where C is an absolute (dimensionless, computable) constant that can be chosen so that t∗ < T.
Then it may be shown that, for times t∗ ≤ t ≤ T, the Fourier coefficients of the solutions are
bounded according to

∣∣û �k(t)
∣∣2 ≤ C ′ L6ε∞

ν| �k|2 e−�| �k|, (46)

where C ′ is another absolute constant and the exponential decay length scale is

� = C ′′ ν3

ε∞L3
, (47)

where C is another absolute constant. Therefore, as long as solutions are regular (i.e., as long as
the bulk energy-dissipation rate is bounded), they are extremely regular.

The extreme value of the bulk energy-dissipation rate ε∞ plays a feature role in this formulation,
but it is worthwhile to remember that ε∞ is finite already if some other norms are bounded on the
time interval, although this fact has not helped to resolve matters. The important point in these
considerations is that this additional initial regularity leads to strong regularity and uniqueness,
lasting as long as some specific norms such as ‖ �∇ �u(·, t)‖2 are finite. [It is worthwhile to contrast the
length scale in Equation 47 with a Kolmogorov-like scale λK ∼ ( ν3

ε∞ )1/4 based on ε∞. It is typically

much smaller: �
λ4

K
L3 .]

It is not too difficult to see how initial regularity at the level of ‖ �∇ �u‖2 persists at least for a
while, so we now outline the analysis that goes into such an argument. This reckoning leads to
an explicit estimate (lower bound) for the existence time of the smooth solution and produces
sufficient smallness conditions on the initial data that guarantee the existence of global (in time)
smooth solutions. These calculations can be carried out for the Galerkin approximations, but
neither the individual steps nor the results depend on the approximation index K, so we do not
carry it.

The energy equation for smooth solutions and the Galerkin approximations is

d
dt

1
2

‖ �u‖2
2 = −ν‖ �∇ �u‖2

2. (48)

To derive an evolution equation for ‖ �∇ �u(·, t)‖2
2, we multiply the momentum equation by −� �u,

integrate over the volume, and integrate by parts to find

d
dt

1
2
‖ �∇ �u‖2

2 = −ν ‖� �u‖2
2 +

∫
�

�u · �∇ �u · � �u d 3x. (49)

The right-hand side of Equation 49 may be bounded as follows. First,∫
�

�u · �∇ �u · � �u d 3x ≤ ‖� �u‖∞
∥∥∥ �∇ �u

∥∥∥
2
‖� �u‖2 ≤ c

∥∥∥ �∇ �u
∥∥∥3/2

2
‖� �u‖3/2

2 . (50)
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Here we use the Hölder and Cauchy-Schwarz inequalities followed by the fact that, for mean-
zero functions in three dimensions, ‖ f ‖∞ ≤ c ‖ �∇ f ‖1/2

2 ‖� f ‖3/2
2 , where c is an absolute constant,

an inequality that may be proven by elementary means (Doering & Gibbon 1995). Thus

d
dt

1
2
‖ �∇ �u‖2

2 ≤ −ν‖� �u‖2
2 + c ‖ �∇ �u‖3/2

2 ‖� �u‖3/2
2 ≤ −1

2
ν‖� �u‖2

2 + c ′

2ν3
‖ �∇ �u‖6

2, (51)

where c ′ is another (computable) absolute constant. The last step employs the inequality
ab ≤ a p/p + bq /q when 1/p + 1/q = 1 (everything positive) using p = 4 and q = 4/3. Finally,
integration by parts and the Cauchy-Schwarz inequality imply

‖ �∇ �u‖2
2 = −

∫
�

�u · � �u d 3x ≤ ‖ �u‖2‖� �u‖2 (52)

so that

d
dt

‖ �∇ �u‖2
2 ≤ −ν

‖ �∇ �u‖4
2

‖ �u‖2
2

+ c ′

ν3
‖ �∇ �u‖6

2. (53)

Together, Equations 48 and 53 form a system of differential inequalities. In Equation 49, the
second power of ‖ �∇ �u‖2

2 with a negative sign on the right-hand side tends to keep ‖ �∇ �u‖2
2 from

growing, and from Equation 48, we see that ‖ �u‖2
2 decreases monotonically with time, so this

effect only increases with time. However, the higher (third) power of ‖ �∇ �u‖2
2 with the positive sign

overwhelms the negative term if ‖ �∇ �u‖2
2 is too large and might allow for a finite-time blowup. Once

the right-hand side of Equation 53 becomes nonpositive, however, ‖ �∇�u‖2
2 can only decrease from

that time on, and the right-hand side stays nonpositive. That is, if the initial data are such that the
right-hand side is nonpositive, then the solution stays regular forever. An elementary dynamical
systems analysis shows that we can make a slightly stronger statement: If the initial condition
satisfies

‖ �u0‖2
2‖ �∇ �u0‖2

2 <
3ν4

c ′ , (54)

then the ensuing solution maintains finite ‖ �∇ �u‖2
2 for all times, and the Navier-Stokes equations

have a unique smooth solution.
Beyond providing a sufficient condition for the existence of a global unique smooth solution to

the Navier-Stokes equations, this result also assures us that weak solutions for free-decay problems
eventually become—and thereafter stay—smooth solutions. If ‖ �u(·, t)‖2

2‖ �∇ �u(·, t)‖2
2 < 3ν4/c ′ at any

instant of time, it subsequently remains <3ν4/c ′, and the flow becomes and stays smooth. The
energy inequality (Equation 30) for weak solutions implies not only that ‖ �u(·, t)‖2

2 ≤ ‖ �u0‖2
2, but

also that

ν

∫ t

0
‖ �∇ �u(·, s )‖2

2ds ≤ 1
2
‖ �u0‖2

2. (55)

For arguments’ sake, assume that ‖ �u(·, t)‖2
2‖ �∇ �u(·, t)‖2

2 ≥ 3ν4/c ′ from t = 0 onward. Then

1
2

‖ �u0‖2
2 ≥ 3ν5

c ′

∫ t

0
‖ �u(·, s )‖−2

2 ds ≥ 3ν5t
c ′ ‖ �u0‖−2

2 , (56)

producing a contradiction at large times. We therefore conclude that weak solutions are actually
strong solutions for

t >
c ′

6ν5
‖ �u0‖4

2 . (57)

If initial data with finite ‖ �∇ �u0‖2
2 initially violate Equation 54, then there is still a nonempty

time interval in which ‖ �∇ �u(·, t)‖2
2 remains bounded so that the Navier-Stokes equations
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have a unique smooth solution. To estimate this existence time, we note that Equation 53
implies

d
dt

‖ �∇ �u‖2
2 ≤ c ′

ν3
‖ �∇ �u‖6

2, (58)

yielding

‖ �∇ �u(·, t)‖2
2 ≤ ‖�∇ �u0‖2

2√
1 − 2c ′‖ �∇ �u0‖4

2t/ν3
, (59)

while the right-hand side is finite and real. Hence the solution is smooth and unique (at least) for

0 < t <
ν3

2c ′‖ �∇ �u0‖4
2

. (60)

This lower bound on time of the regularity and uniqueness depends in the same manner on the
viscosity and the initial data as the transient time in Equation 45. This is because the analysis there
also reduces to a differential inequality of the form of Equation 58. Of course, we can quantitatively
improve this estimate for the time of existence of the unique smooth solution by utilizing all the
terms in Equation 53, but it still cannot rule out a loss of regularity after just a finite time for large
initial data.

At this point, we also demonstrate an assertion made above that a finite a priori bound on the
variance of the energy-dissipation rate ensures regularity. Indeed, let us suppose that

V(t) =
∫ t

0
‖ �∇ �u(·, s )‖4

2ds < ∞ (61)

for some period of time. Then, multiplying Equation 58 by a positive integrating factor, we see
that

d
dt

(
‖ �∇ �u(·, t)‖2

2 exp
{
− c ′

ν3

∫ t

0
‖ �∇ �u(·, s )‖4

2ds
})

≤ 0. (62)

The means that the quantity in braces decreases from its initial value, so

‖ �∇ �u(·, t)‖2
2 ≤ ‖�∇ �u0‖2

2 exp
{

c ′V(t)
ν3

}
(63)

pointwise in time as long as V(t) remains finite. This is characteristic of results in 3D Navier-Stokes
analysis: A variety of sufficient conditions for regularity can be derived, but none has produced an
a priori verifiable criterion.

Finally, Lu (2006) recently discovered that the analysis leading from Equation 49 to Equation
58 is sharp in the sense that there is a positive constant c so that for large values of ‖ �∇ �u‖2

2there
exist smooth divergence-free vector fields that satisfy

−ν ‖� �u‖2
2 +

∫
�

�u · �∇ �u · � �u d 3x = c ′′

ν3
‖ �∇ �u‖6

2. (64)

This means that the sequence of estimates leading to it cannot be improved substantially, but it
does not mean that a finite-time singularity develops necessarily. The relation in Equation 64 is
an instantaneous one, and the evolution of the velocity field by the Navier-Stokes equations may
(and in Lu’s example does) drive the flow away from saturation. Rather, this result suggests that a
substantially new approach to the analysis involving the dynamics in a deeper manner is required
to improve on the current state of affairs.
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4. DISCUSSION

The physical process responsible for the mathematical difficulties in the 3D Navier-Stokes equa-
tions is vortex stretching. The vorticity �ω = �∇ × �u is twice the local angular velocity of a fluid
element. Its bulk mean square, the enstrophy of the flow, is (for sufficiently smooth flows in
periodic domains and many others)

‖�ω(·, t)‖2
2 = ‖�∇ �u(·, t)‖2

2, (65)

one of the key quantities determining the regularity and uniqueness of solutions. If the vorticity is
sufficiently regular, then all aspects of the flow are controlled. The vorticity evolves according to

�̇ω + �u · �∇ �ω = ν� �ω + �ω · �∇ �u. (66)

The content of this equation is simply that the angular acceleration of a fluid element (proportional
to �̇ω + �u · �∇ �ω) results from diffusive exchange of angular momentum with neighboring elements,
i.e., the viscous torques applied by neighboring elements (ν� �ω), and vortex stretching ( �ω · �∇ �u).

Vortex stretching can contribute to the amplification of enstrophy. At locations in the flow
where �ω · �∇ �u · �ω > 0, the angular velocity is predominantly aligned in a direction with a positive
eigenvalue of the rate of strain matrix, the symmetric part of �∇ �u. For an incompressible fluid,
this means the fluid element is stretched in the direction of �ω and compressed from at least one
other direction, and a relevant moment of inertia of the element is decreasing. By conservation of
angular momentum, the speed of rotation tends to increase. Of course, this amplification process
competes with viscous diffusion, and the mechanism can work in reverse to suppress vorticity
at other locations as well, but there is no global conservation principle that relates growth to
suppression in three dimensions. Vortex stretching is absent in the 2D Navier-Stokes equations
(where w = 0 and ∂z = 0), and in that case there are no such fundamental open questions
concerning the existence of unique smooth solutions.

The enstrophy evolution equation obtained by integrating �ω dotted into Equation 66 is

d
dt

1
2
‖�ω(·, t)‖2

2 = −ν‖ �∇ �ω‖2
2 +

∫
�

�ω · �∇ �u · �ω d 3x, (67)

which is the same as the evolution equation for ‖ �∇ �u(·, t)‖2
2. The indefinite cubic term that

prevents global (in time) control of solutions—or uniform in K global control of the Galerkin
approximations—is precisely the vortex-stretching contribution. This suggests that the detailed
study of vortex dynamics, specifically local vorticity-stretching mechanisms, could be a fruitful
avenue of investigation. Indeed, one can express conditions for the avoidance of a singularity in
terms of local vorticity alignments (Constantin & Fefferman 1993). However, it remains unknown
whether these conditions are always realized.

Similar to the situation with the energy-dissipation rate per unit mass ε(t), time averages ‖�ω‖2
2

of the enstrophy over arbitrary nonzero intervals are finite for weak solutions, but we would need
to know more to confirm that solutions are regular over the interval [e.g., that the variance of the
enstrophy (‖�ω‖2

2 − ‖�ω‖2
2)2 is finite]. This observation highlights the importance of intermittency in

Navier-Stokes dynamics (Frisch 1995, Vassilicos 2000). Intermittency refers to the phenomena of
rare but large fluctuations usually associated with turbulence. If enstrophy fluctuations are bounded
at the level of the time average of the second moment, then solutions are regular. However, infinite
variance given finite mean, which we cannot generally rule out, necessitates the presence of large
rare (in both space and time) fluctuations in vorticity that even spatial averaging cannot mollify.
Whether the intermittency is contemplated in terms of the time series for spatially integrated
quantities or for fluctuations in space at a specific time [e.g., the possibility of an infinite L3(�)
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norm for ⇀u at some instant even when we know that its L2(�) norm remains finite at each instant
of time], our inability to determine whether such events can occur is at the root of the problem.

Many rigorous analytical results, such as sufficient conditions for the existence of unique smooth
solutions to the 3D Navier-Stokes equations, can be expressed in terms of familiar quantities such
as Reynolds numbers. For the decay problem, for example, natural Reynolds numbers Re = UL/ν

and Reλ = Uλ/ν may be defined by the root-mean-square speed U = ‖�u‖2/L3/2, the domain scale
L, the Taylor microscale λ = ‖�u‖2/‖ �∇ �u‖2 (with λ ≤ L/2π for the spatially mean-zero flows
considered here), and the viscosity ν. The condition in Equation 54 that confirms the smoothness
and uniqueness of solution is that the Reynolds numbers satisfy

Re3 <

√
3
c ′ Reλ. (68)

However, Reλ < Re/2π so this requires that both Reynolds numbers be O(1) and λ >
√

3/c ′Re2 L =
O(L). If the relation in Equation 68 is violated but the initial Reynolds number Re0 < ∞ and the
initial Taylor microscale λ0 > 0 are nonzero, then solutions are unique and smooth, at least while

0 < t <
1

2c ′ × L2

ν
×

(
λ0

L

)4

× Re−4
0 . (69)

During decay from any finite-energy initial condition, the solutions eventually become and there-
after stay smooth, but according to Equation 57, we may have to wait until

t >
c ′L2

6ν
Re4

0 (70)

for Equation 68 to be satisfied.
These observations make it clear that solutions are known to be smooth and unique only for

very low Reynolds numbers, emphatically excluding regimes in which turbulence is possible. The
rigorous analysis of turbulent flows, therefore, and in particular the analysis of solutions to the
Navier-Stokes equations for Reλ, Re � 1, and/or λ � L generally require the consideration of
weak solutions. Then the uniqueness of solutions is not known, and energy may not be conserved.
Nevertheless, rigorous estimates for an assortment of physically relevant quantities are accessible,
results that apply to strong, as well as weak, solutions and to fully developed turbulent, as well as
laminar, flows (Foias et al. 2001).

Steady-state or statistically steady-state flows require energy sources, and flows can be driven
in a variety of ways. Often a fluid is forced at or by a rigid surface, which requires formulating
appropriate domain boundaries and inhomogeneous boundary conditions for the Navier-Stokes
equations. For theoretical and computational studies (especially for high Reynolds numbers and
turbulent flows), it is convenient to stay in a periodic domain, simply add a body force to the
Navier-Stokes equations, and consider solutions to the system

�̇u + �u · �∇ �u + �∇ p = ν� �u + �f (71)

and

�∇ · �u = 0, (72)

where �f (�x, t) is an externally applied force (per unit mass density) that we may assume (without
loss of generality) is spatially mean zero and divergence-free at all times.

For finite-energy initial data and sufficiently regular forcing, for example,

sup
t≥0

∑
�k �=0

| f̂ �k(t)|2
| �k|2 < ∞, (73)
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there are global weak solutions satisfying an energy inequality of the form

1
2
‖ �u(·, t)‖2

2 + ν

∫ t

t0
‖ �∇ �u(·, s )‖2

2ds ≤ 1
2
‖ �u(·, t0)‖2

2 +
∫ t

t0

∫
�

�u(·, s ) · �f (x, s )d 3x ds (74)

for all t and almost all t0 with 0 ≤ t0 < t < ∞. These weak solutions for forced flows also have
finite kinetic energy at all times and finite time-averaged energy-dissipation rates (and enstrophies).
Similarly, if the initial data and the forcing are sufficiently smooth, then there are unique strong
solutions satisfying conservation of energy in the differential form

d
dt

1
2
‖ �u(·, t)‖2

2 = −ν‖ �∇ �u(·, t)‖2
2 +

∫
�

�u(·, t) · �f (·, t) d 3x, (75)

at least for a finite time after which we cannot rule out the appearance of singularities. Moreover,
if the initial data and the forcing are both sufficiently smooth and sufficiently small, then there are
unique smooth solutions for all times. Not unexpectedly, rigorous requirements ensuring global
regularity are generally not satisfied in situations capable of producing or sustaining turbulence.

To illustrate the kind of result one can obtain for weak solutions of the body-forced Navier-
Stokes equations at high or low Reynolds numbers (Doering & Foias 2002), we consider a steady
square-integrable body force, �f (�x) ∈ L2(�), with the largest scale � ≤ L (with integer L/�), i.e.,

�f (�x) =
∑

| �k|≥2π/�

f̂ �ke i �k· �x = F ��(�x/�), (76)

where F is the amplitude and divergence-free ��(�y) ∈ L2([0, 1]3) is the shape of the force. The
amplitude F is uniquely defined, for example, if we normalize �� by ‖ ��‖L2([0,1]3) = 1. Then, there
are global weak solutions, possibly nonunique, starting from finite-energy initial data. Let us
suppose a weak solution has long-time mean square velocity Ū defined by

Ū =
√

lim
T→∞

1
T

∫ T

0

‖ �u(·, t)‖2
2

L3
dt, (77)

assuming for simplicity that the T → ∞ limit exists. Then the long time-averaged power energy-
dissipation rate per unit mass (again assuming the existence of the T → ∞ limit),

ε̄ = lim
T→∞

1
T

∫ T

0

ν ‖ �u(·, t)‖2
2

L3
dt, (78)

is bounded from above by

ε̄�

Ū3
≤ C1 + C2

Re
, (79)

where Re = Ū�/ν and the coefficients C1 and C2 do not depend on the initial data or any of the
parameters ν, F, L, or � but only on finite homogeneous ratios of the body-force shape function
��. (Such prefactor dependence on details of �� is inevitable given arbitrariness in the precise
definition of the length scale employed in the nondimensionalization.) Both ε̄ and Ū are emergent
quantities [i.e., not directly set by the control parameters defining the problem (ν, F, L, �, and ��)],
so Equation 79 is a conditional result in the sense that if a particular value of Ū (or ε̄) is observed,
then ε̄ (or Ū ) must be bounded from above (or below) as indicated.

The rigorous result in Equation 79 is remarkable because this is precisely the way ε̄�/Ū3 is
expected to behave as a function of the Reynolds number. At low Reynolds numbers, ε̄ ∼ νŪ2/�2

as for Stokes flows. At high Reynolds numbers, the development of a turbulent energy cascade and
the zeroth law of turbulence suggest that a residual dissipation ε̄ ∼ Ū3/� persists in the inviscid
(v → 0) limit of statistically steady-state turbulence (Frisch 1995). The estimate in Equation 79
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is thus in accord with experience, suggesting that turbulent velocity fields tend to saturate the
functional estimates utilized in its derivation. Similar energy-dissipation rate bounds have also
been derived for time-dependent body forces (Petrov & Doering 2005), for forced flows in other
domains (Doering et al. 2003, Petrov et al. 2005), and for boundary-driven flows (Busse 1978,
Doering & Constantin 1992, Doering et al. 2000, Howard 1972, Plasting & Kerswell 2003, Wang
1997).

The parameter dependences in the estimate for ε̄ in Equation 79 apply for square integrable
body forces whose Fourier coefficients are square summable, but weak solutions exist even for
rougher force fields in which case the coefficients C1 and C2 in the theorem above diverge. This
does not mean that ε̄ is unbounded, but rather that the Reynolds number scaling may change for
flows driven by force fields that stir more directly at small scales. The analysis has been generalized
recently (Cheskidov et al. 2007) to handle force shape functions ��(�y) /∈ L2([0, 1]3) but with

∑
�ξ �=0

|�̂�ξ |2
|�ξ |2γ

= 1, (80)

where 0 < γ ≤ 1. In this situation, there are finite numbers C̃1 and C̃2 depending only on
homogeneous ratios of finite norms of ��, and not on any of the parameters ν, F, L, or �, so that

ε̄�

Ū3
≤

(
C̃1 + C̃2

Re

)2/(2−γ )

Reγ /(2−γ ) (81)

for all 0 < Re < ∞. Interestingly, this kind of estimate is consistent with some modern theoretical
and computational studies of power consumption and dissipation in flows driven by fractal forces
(Biferale et al. 2004, Mazzi & Vassilicos 2004).

One particular physical effect may regularize solutions when added to the Navier-Stokes equa-
tions: rotation. The Taylor-Proudman theorem suggests that flows in a rapidly rotating frame lose
their dependence on the direction along the axis of rotation. This effective two-dimensionalization
has a profound effect on the behavior of solutions. Because 2D flows are known to be better
behaved with regard to regularity than 3D flows, rotation can have a mollifying effect on po-
tential problems, and given sufficiently strong rotation, correspondingly stronger rigorous re-
sults can be derived. That rotation may aid in the analysis of the 3D Navier-Stokes equations
is thus not unexpected, but mathematical developments along these lines are only relatively re-
cent (Babin et al. 1997). Rotation is a central feature of geophysical fluid dynamics (Gill 1982,
Pedlosky 1987), and the rigorous mathematical theory is an active area of investigation (Chemin
et al. 2006). The rigorous mathematical analysis of geophysically motivated reduced models
based on the 3D Navier-Stokes equations is also a topic of great current interest (Cao & Titi
2007).

Compressible flows or inviscid fluid dynamics are not discussed above. Compressible flows
generically display shock waves and solutions with discontinuities, even in one dimension (Smoller
1983). Many mathematical regularity questions of concern for the incompressible Navier-Stokes
equations are thus irrelevant, but these kinds of singularities are not inconsistent with the physics
that the equations are intended to describe. Inviscid incompressible fluid motion described by
the Euler equations (i.e., Equations 1 and 2 without the ν� �u term) is another issue altogether
(Bertozzi & Majda 2002). Two-dimensional global (in time) strictly weak solutions are known to
exist, most simply in the form of point-vortex solutions. For sufficiently smooth initial data, local
(in time) smooth solutions exist in three dimensions, but without viscous dissipation they cannot be
expected to be smoother than the initial data. However, it is not known whether any smooth (e.g.,
infinitely continuously differentiable) finite-energy initial data can produce a solution that displays
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a finite-time singularity (Gibbon 2008). Although this question for the 3D incompressible Euler
equations does not have a one-million-dollar prize attached, it is as fundamental to mathematics,
physics, and fluid dynamics as the 3D Navier-Stokes problem. The resolution of one of these
puzzles likely will shed considerable light on the other.
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