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Abstract

We review the modern view of fluid dynamics as an effective low-energy,
long-wavelength theory of many-body systems at finite temperature. We
introduce the concept of a nearly perfect fluid, defined by a ratio η/s of
shear viscosity to entropy density of order �/kB or less. Nearly perfect fluids
exhibit hydrodynamic behavior at all distances down to the microscopic
length scale of the fluid. We summarize arguments that suggest that there
is fundamental limit to fluidity, and we review the current experimental
situation of measurements of η/s in strongly coupled quantum fluids.
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παντα ρει. (Everything flows.)

The mountains flowed before the Lord.
—Prophet Deborah, Judg. 5:5

1. FLUID DYNAMICS

1.1. Fluid Dynamics as an Effective Theory

Fluid dynamics is often described as a consequence of applying Newton’s laws to a continuous
deformable medium. However, the ideas underlying fluid dynamics are much more general. Fluid
dynamics describes classical and quantum liquids, gases, and plasmas. It accounts for the low-
energy properties of magnetic materials, liquid crystals, crystalline solids, supersolids, and many
other systems. Indeed, fluid dynamics is now understood as an effective theory for the long-
distance, long-time properties of any material (1, 2). The only requirement for the applicability
of fluid dynamics is that the system relax to approximate local thermodynamic equilibrium on
the timescale of the observation. This idea is captured by the two quotations above: In principle
everything behaves as a fluid, but in some systems observing fluid dynamic behavior may require
divine patience (3).

Fluid dynamics is based on the observation that there are two basic timescales associated with
the behavior of a many-body system. The first is a microscopic timescale, τfluid, that characterizes
the rate at which a generic disturbance relaxes. In a typical molecular liquid, this rate is governed by
the collision rate between molecules. The second timescale, τdiff , is associated with the relaxation
of conserved charges. Because conserved charges cannot relax locally but rather have to decay
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by diffusion or collective motion, this time increases with the length scale λ of the disturbance:
τdiff ∼ λ. Fluid dynamics is based on the separation of scales τfluid � τdiff , and ωfluid = τ−1

fluid can be
viewed as the breakdown scale of fluid dynamics as an effective theory.

In a simple nonrelativistic fluid, the conserved charges are the mass density ρ, the momentum
density π , and the energy density E . The momentum density can be used to define the fluid
velocity: u = π/ρ. By Galilean invariance, the energy density can then be written as the sum of
the internal energy density and kinetic energy density: E = E0 + 1

2 ρu2. The conservation laws are

∂ρ

∂t
= −∇ · π , 1.

∂πi

∂t
= −∇ j i j , 2.

∂E
∂t

= −∇ · jε . 3.

For these equations to close, we have to specify constitutive relations for the stress tensor i j and
the energy current jε . Because fluid dynamics is an effective long-wavelength theory, we expect
that the currents can be systematically expanded in gradients of the hydrodynamic variables ρ, u,
and E0. In the case of the stress tensor, the leading, no-derivative terms are completely fixed by
rotational symmetry and Galilean invariance. We have

i j = ρui u j + Pδi j + δi j , 4.

where P = P (ρ, E0) is the equation of state and δi j contains gradient terms. The approximation
δi j = 0 is known as ideal fluid dynamics. Ideal fluid dynamics is time reversal invariant and the
entropy is conserved. If gradient terms are included, then time reversal invariance is broken and
the entropy increases. We refer to δi j as the dissipative stresses. At first order in the gradient
expansion, δi j can be written as δi j = −ησi j − ζ δi j 〈σ 〉, with

σi j = ∇i u j + ∇ j ui − 2
3
δi j 〈σ 〉, 〈σ 〉 = ∇ · u. 5.

This expression contains two transport coefficients, the shear viscosity η and the bulk viscosity ζ .
The energy current is given by jε = uw + δ jε , where w = P + E is the enthalpy. At leading
order in the gradient expansion, δ j ε

i = u j δi j − κ∇i T , where κ is the thermal conductivity. The
second law of thermodynamics implies that η, ζ , and κ must be positive.

We can now establish the expansion parameter that controls the fluid dynamic description.
We first note that the ideal stress tensor contains two terms, which are related to the pressure P
and the inertial stress ρui u j . The relative importance of these two terms is governed by the Mach
number Ma = v/c s , where c2

s = (∂P )/(∂ρ)s̄ is the speed of sound and s̄ = s /n is the entropy per
particle. Flows with Ma ∼ 1 are termed compressible, and flows with Ma � 1 incompressible.
We are most interested in expanding systems, which are certainly compressible.

The validity of hydrodynamics requires that dissipative terms be small relative to ideal terms.
We focus on the role of shear viscosity both because it is the dominant source of dissipation in
the systems considered here and because both ζ and κ can become zero in physically realizable
limits. In particular, ζ vanishes in a scale-invariant fluid such as the unitary gas, and κ vanishes in
a relativistic fluid with zero baryon chemical potential such as the pure gluon plasma. In the case
in which Ma ∼ 1, the expansion parameter is

Re−1 = η∇u
ρu2

= η

ρuL
, 6.
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where Re is the Reynolds number and L is a characteristic length scale of the flow. Before con-
tinuing, we briefly comment on incompressible flows. The expansion parameter in this case is
Ma2/Re. Flows with Ma � 1 and Re−1 � 1 are nearly ideal, turbulent flows. The regime in
which Ma2/Re � 1 but Re−1 � 1 is that of very viscous flow. Today, interest in very viscous
flow is often related to classical fluids in confined geometries. A typical example is the problem of
bacterial swimming (4).

We note that Re−1 can be written as

Re−1 = η

�n
× �

muL
, 7.

where both factors are dimensionless. The first factor is solely a property of the fluid, and the
second factor characterizes the flow. For a typical classical flow, the second factor is much smaller
than one, and the validity of fluid dynamics places no constraints on η/(�n). For the types of
experiments that are explored in Sections 2 and 3, the second factor is of order one and the
applicability of fluid dynamics requires η � �n. We note that in relativistic flows the inertial term
is i j = sTui u j and the analogous requirement is η � �s /kB. We refer to fluids that satisfy this
condition as nearly perfect fluids (5–8) and show that these fluids exhibit hydrodynamic behavior
on remarkably short length and timescales, comparable to microscopic scales such as the inverse
temperature or the inverse Fermi wave vector. Throughout this review, we use units in which
� = kB = 1.

The long-wavelength expansion can be extended beyond the first order in gradients of the
hydrodynamic variables. The classical higher-order equations are known as Burnett and super-
Burnett equations (9, 10). Explicit forms of second-order terms based on kinetic theory were
derived by Grad (11) in the nonrelativistic case, as well as by Israel & Stewart (12) and others for
relativistic fluids. Historically, these theories have not been used very frequently. One reason is
that the effects are not very large. In the case of the Navier–Stokes equation, dissipative terms can
exponentiate and alter the motion qualitatively, even if at any given time gradient corrections are
small. A simple example is a collective oscillation of a fluid (see Section 2.2). Without viscosity the
mode cannot decay, but if dissipation is present the motion is exponentially damped. Typically,
second-order terms do not exponentiate, and the gain in accuracy from including higher-order
terms is frequently offset by uncertainties in higher-order transport coefficients or the need for
additional boundary conditions.

The second reason that these theories are infrequently used is that the classical equations at
second order are unstable to short-wavelength perturbations. In relativistic fluid dynamics, prob-
lems with acausality and instability already appear at the Navier–Stokes level. These difficulties
are not fundamental: Fluid dynamics is an effective theory, and unstable or acausal modes occur
outside the domain of validity of the theory. It is nevertheless desirable to construct schemes that
have second- or higher-order accuracy and satisfy causality and stability requirements. A pos-
sible solution is to promote the dissipative currents to hydrodynamic variables and postulate a
set of relaxation equations for these quantities. Consider the dissipative stress tensor and define
πi j = δi j . The relaxation equation for πi j is

τRπ̇i j = −πi j − ησi j + . . . , 8.

where the ellipse contains second-order terms such as (∇ · u)σi j and σikσkj . To second-order
accuracy, this equation is equivalent to δi j = −ησi j + τRησ̇i j + . . . , which is part of standard
Burnett theory. Physically, Equation 8 describes the relaxation of the dissipative stresses to the
Navier–Stokes form. The resulting equations are stable and causal, and the sensitivity to higher-
order gradients can be checked by varying second-order coefficients such as τR (13).
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Equation 8 was first proposed by Maxwell as a model for very viscous fluids. Cattaneo (14)
observed that relaxation equations can be used to restore causality and studied a relaxation model
in the context of Fourier’s law, δ jε = −κ∇T (15). Relaxation equations were derived from
kinetic theory by Müller (16), Israel & Stewart (17), and others. To achieve the expected scaling
of second-order terms with Re−2 it is important to include a full set of second-order terms that
respect the symmetries of the theory. This problem was addressed for relativistic scale-invariant
fluids by Baier et al. (18) and in the nonrelativistic case by Chao & Schäfer (19).

It is well known that the low-energy expansion in effective field theories is not a simple power
series in the expansion parameter ω/�. Quantum fluctuations lead to nonanalytic terms. In the
case of fluid dynamics, � = ωfluid and nonanalyticities arise due to thermal fluctuations of the
hydrodynamic variables. As a consequence, the dissipative currents δi j and δ jε contain not
only gradient terms but also stochastic contributions. The magnitude of the stochastic terms is
determined by fluctuation-dissipation theorems. We have

〈
i j (t, x)kl (t′, x′)

〉 = 2ηT
(

δikδ j l + δilδ j k − 2
3
δi j δkl

)
δ(t − t′)δ(x − x′), 9.

〈
j ε
i (t, x) j ε

j (t′, x′)
〉 = 2κT 2δi j δ(t − t′)δ(x − x′), 10.

where 〈.〉 denotes a thermal average and we have neglected bulk viscosity. A calculation of the
response function in stochastic fluid dynamics shows that the hydrodynamic expansion contains
nonanalyticities that are smaller than the Navier–Stokes term but larger than second-order terms
(20, 21). This finding implies that, strictly speaking, the second-order theory is consistent only
if stochastic terms are included. Some studies of fluctuating fluid dynamics have been performed
(22), but in particle and nuclear physics this problem has only recently attracted interest (23).

1.2. Microscopic Models of Fluids: Kinetic Theory

Within fluid dynamics, the equation of state and the transport coefficients are parameters that
have to be extracted from experiments. If a more microscopic description of the fluid is available,
then we can compute these parameters in terms of more fundamental quantities. The simplest
microscopic description of a fluid is kinetic theory. Kinetic theory is itself an effective theory that
describes the long-distance behavior of an underlying classical or quantum many-body system.
It is applicable whenever there is a range of energies and momenta in which the excitations of
the fluid are long-lived quasi-particles. Kinetic theory can be used to relate properties of these
quasi-particles—their masses, lifetimes, and scattering cross sections—to the equation of state and
the transport coefficients. Kinetic theory can also be used to extend the description of collective
effects, such as sound or macroscopic flow, into the regime where fluid dynamics breaks down.

The basic object in kinetic theory is the quasi-particle distribution function f p (x, t). Hydrody-
namic variables can be written as integrals of fp over d� = d3 p/(2π )3. For example, the off-diagonal
component of the stress tensor is given by

i j (x, t) =
∫

d�p piv j f p (x, t), (i �= j ), 11.

where v = ∇ p Ep is the quasi-particle velocity. Similar expressions exist for other conserved
currents. The equation of motion for f p (x, t) is the Boltzmann equation,(

∂

∂t
+ v · ∇x + F · ∇ p

)
f p (x, t) = C[ f p ], 12.
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where F = −∇x Ep is the force and C[ f p ] is the collision term. By taking moments of the
Boltzmann equation, we can derive the conservation laws (1–3). To extract the constitutive re-
lations, we have to assume that the distribution function is close to the equilibrium distribution,
f p (x) = f 0

p (x) + δ f p (x), and that the spatial variation of f p (x) is small. The equilibrium distribu-
tion can be expressed in terms of the conserved charges or, more conveniently, in terms of the
corresponding intensive quantities μ, T, and u. We find

f 0
p (x) = 1

exp[β(Ep − u · p − μ)] ± 1
, 13.

where β = 1/T ; the plus/minus sign corresponds to fermions/bosons, respectively; and
β, μ, and u are functions of x and t.

To identify the expansion parameter, we have to understand the scales involved in the collision
term. If δ f p � f 0

p , we can use C[ f 0
p ] = 0 to linearize the collision term. The linearized collision

term is a Hermitian, negative semidefinite operator that can be expanded in terms of its eigenvalues
and eigenvectors. We refer to the inverse eigenvalues as collision times. At long times, we can
approximate the collision term by the longest collision time τ0 and write

C[ f 0
p + δ f p ] 	 − δ f p

τ0
, 14.

where we have used the fact that at late times δ f p is dominated by its projection on the lowest
eigenvector. Equation 14 is known as the Bhatnagar–Gross–Krook (BGK) or relaxation time
approximation (24). We can define a mean free path by lmfp = τ0v̄, where v̄ = 〈v2〉1/2. The
expansion parameter for the gradient expansion is given by the Knudsen number,

Kn = lmfp

L
, 15.

where L ∼ ∇−1, as in Equation 6. The systematic determination of the constitutive equation via
an expansion in Kn is termed the Chapman–Enskog expansion (25). We find, for example,

η = 1
3

nlmfp p̄, 16.

and τR = τ0 = η/P (19, 25). To estimate the Reynolds number, we can use Ma = u/c s ∼ 1. In
kinetic theory we find c 2

s = 5
9 〈v2〉 and Kn ∼ Re−1. The Knudsen expansion is equivalent to the

Reynolds number expansion in fluid dynamics.
Fluid dynamics corresponds to the long-time behavior of kinetic theory. It is also interesting

to examine the short-time behavior. Consider the response of the fluid to an external shear strain
hxy with frequency ω and wave number k. The solution of the Boltzmann equation is of the form

δ f p (ω, k) = 1
2T

−iωpxvy

−iω + iv · k + τ−1
0

f 0
p hxy . 17.

This result can be used to compute the spectral function of correlators of conserved currents. For
k = 0, the term (−iω + τ−1

0 ) in the denominator of Equation 17 leads to a Lorentzian shape of
the spectral function, which is a signature of the presence of quasi-particles. The spectral function
also provides information about the breakdown of kinetic theory for large ω and k. There is no
intrinsic scale in the Boltzmann equation other than the collision time τ 0, which sets the scale for
the hydrodynamic expansion. The high-energy scale is set by matching the Boltzmann equation
to the equation of motion for a nonequilibrium Green function in quantum field theory (26).
Instead of matching these equations explicitly, we can compare the kinetic spectral functions in
Equation 17 with the spectral functions in quantum field theory (see Section 2.1). The result is
that the breakdown scale is ωmicro ∼ T . This result should be compared with the hydrodynamic
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scale, ωfluid ∼ τ−1
0 ∼ P/η. For a typical fluid these scales are well separated, but for a nearly perfect

fluid the two scales are comparable. At least parametrically, in a nearly perfect fluid there is no
room for kinetic theory; that means there is no regime in which kinetic theory is more accurate
than fluid dynamics.

The collision term is determined by the quasi-particle cross section σ , and a rough estimate
of the mean free path is given by lmfp = 1/(nσ ). Using Equation 16, we find η ∼ p̄/σ . This result
has two interesting consequences:

1. The viscosity of a dilute gas is independent of its density. The physical reason for this
behavior is that viscosity is determined by the rate of momentum diffusion. The number of
particles is proportional to n, but the mean free path scales as 1/n. As a result, the diffusion
rate is constant. Maxwell was so surprised by this result that he tested it by measuring the
damping rate of a torsion pendulum in a sealed container as a function of the air pressure
(27, 28). He confirmed that η is not a function of P at fixed T. Of course, if the air is very
dilute, then lmfp > L and the hydrodynamic description breaks down. In this limit, known
as the Knudsen regime, damping is proportional to pressure.

2. The result η ∼ 1/σ also implies that viscosity of a weakly coupled gas is very large, which
is counterintuitive because we think of viscosity as friction between fluid layers. Consider a
fluid sheared between two parallel plates in the xz plane. The force per unit area is

F
A

= η∇y ux . 18.

We naı̈vely expect this force to grow with the strength of the interaction. Our intuition is
shaped by very viscous fluids, for which viscosity is indeed determined by force chains and
solid friction. This expectation is not entirely inappropriate, because the word viscosity is
derived from the Latin name for mistletoe, Viscum album.

1.3. Matching and Kubo Relations

In the case of kinetic theory, we can derive the equations of fluid dynamics from the underlying
microscopic theory. In more complicated cases, for example, if the short-distance description is a
strongly coupled field theory, this may not be possible. In that case, we can rely on the fact that fluid
dynamics is a general long-distance effective theory, and compute the transport coefficients on the
basis of the idea of matching. Matching expresses the requirement that in the regime of validity of
the effective theory, correlation functions must agree with correlators in the microscopic theory.
Consider the retarded correlation function of the stress tensor

Gxyxy
R (ω, k) = −i

∫
dt

∫
d3x eiωt−i k·x�(t)〈[xy (t, x),xy (0, 0)]〉. 19.

In linear response theory, this function controls the stress induced by an external strain. In fluid
dynamics, xy 	 ρuxuy , and we can compute the correlation function from linearized hydrody-
namics and fluctuation relations. We find

Gxyxy
R (ω, k) = P − iηω + τRηω2 − κR

2
k2 + O(ω3, ωk2), 20.

where τR is the relaxation time defined in Equation 8 and κR is another second-order transport
coefficient (21). Equation 20 implies the Kubo relation:

η = − lim
ω→0

lim
k→0

d
dω

ImGxyxy
R (ω, k). 21.
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This equation can be applied to field theory on the basis of Equation 19 and the microscopic
definition of the stress tensor. This method is used to compute transport coefficients on the lattice
in both relativistic and nonrelativistic field theories (29–34). The difficulty with using Kubo’s
formula is that imaginary-time Monte Carlo simulations do not provide direct access to correlation
functions for real frequencies. Measuring the shear viscosity requires analytic continuation of
imaginary-time data, which leads to uncertainties that are difficult to quantify. We note that some
transport coefficients, such as the parameter κR in Equation 20, can be measured directly from
imaginary-time data.

Equation 20 confirms that the expansion parameter of the hydrodynamic expansion is ω/ωfluid,
where ωfluid 	 P/η 	 τ−1

R . Note that fluctuations introduce nonanalytic terms at order ω3/2 (20,
21). This is a breakdown of the gradient expansion but not a breakdown of hydrodynamics. For
example, at second order in the low-energy expansion, the ω3/2 term is completely determined
by η and P, and the relaxation time τR can be extracted by matching GR(ω) to the low-energy
expansion in fluid dynamics.

1.4. Microscopic Models of Fluids: Holography

Kinetic theory provides explicit theoretical realizations of weakly coupled fluids. Holographic
dualities and the anti–de Sitter/conformal field theory (AdS/CFT) correspondence have led to
controlled realizations of strongly coupled fluids. The basic idea originated from the study of
black holes. It has been known for some time that black holes have entropy and that the process
of a perturbed black hole settling down into a stationary configuration bears some resemblance to
dissipative relaxation in fluids. Indeed, one can assign shear viscosity and electric conductivity to
the “stretched horizon,” an imaginary surface that hovers just above the event horizon (35).

These ideas were made precise in the context of the AdS/CFT correspondence (36; see Ref-
erences 37–40 for reviews). In the simplest case, consider a Schwarzschild black hole embedded
in five-dimensional AdS (AdS5) space. The full space-time has additional compact dimensions,
which are required by string theory but play no role in our discussion. Black holes in AdS5 do
not evaporate, and the black hole is in thermal equilibrium. This means that the rate of Hawking
radiation balances the amount of energy falling back into the black hole. On the basis of its causal
structure, we can view AdS5 as having a “boundary,” which is four-dimensional Minkowski space.
Matter on the boundary is in thermal equilibrium with the black hole space-time.

The AdS/CFT correspondence asserts that the boundary is described by an ordinary quantum
field theory and that the correlation functions of this field theory have a dual description in terms
of boundary correlation functions of a gravitational theory in the bulk. The correspondence is
simplest if the boundary theory is strongly coupled and contains a large number N degrees of
freedom. In this case, the bulk theory is simply classical gravity. The partition function of the
boundary quantum field theory is

ZQFT[Ji ] = exp(−S[φi |∂M = Ji ]), 22.

where Ji is a set of sources in the field theory, S is the gravitational action, φi is a dual set of fields in
the gravitational theory, and ∂M is the boundary of AdS5. The fields φi satisfy classical equations
of motions subject to boundary conditions on ∂M .

The original construction involves a black hole in AdS5 and is dual to a relativistic fluid governed
by a generalization of QCD known as N = 4 super-Yang–Mills theory. This theory is considered
in the limit of a large number of colors Nc. The gravitational theory is Einstein gravity with
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additional matter fields that are not relevant here. The AdS5 black hole metric is

ds2 = (πTR)2

u
[− f (u)dt2 + dx2] + R2

4u2 f (u)
du2, 23.

where x and t are Minkowski space coordinates and u is a “radial” coordinate, where u = 1 is
the location of the black hole horizon and u = 0 is the boundary. T is the temperature, R is
the AdS radius, and f (u) = 1 − u2. In the boundary theory, the metric couples to the stress
tensor μν . Correlation functions of the stress tensor can be found by linearizing the bulk action
around the AdS5 solution, gAB = g0

AB + δgAB , where A, B = 1, . . . , 5. Small oscillations of the off-
diagonal strain δg y

x are particularly simple. We consider harmonic dependence on the Minkowski
coordinates δg y

x = φp (u)e ikx−iωt . Fluctuations are governed by the wave equation

φ′′
p (u) − 1 + u2

u f (u)
φ′

p (u) + ω2 − k2 f
(2πT )2u f (u)2

φp (u) = 0. 24.

This differential equation has two linearly independent solutions. The retarded correlation func-
tion corresponds to picking a solution that is purely infalling at the horizon (37). For small (or very
large) ω and k, this solution can be found analytically (41, 42). GR(ω, k) is computed by inserting
the solution into the Einstein–Hilbert action, and then computing the variation with respect to
the boundary value of δg y

x . The result is of the form given in Equation 20, with (18, 43)

P = sT
4

, η = s
4π

, τR = 2 − log(2)
2πT

. 25.

Note that in the case of a relativistic fluid, η is naturally expressed in units of the entropy density
s, not the density n, because a relativistic fluid need not have a conserved particle number. As a
rough comparison, we can use the fact that for a weakly interacting relativistic gas s/n = 3.6. We
observe that the AdS/CFT correspondence describes a very good fluid. In particular, η/s < 1 and
τR ∼ T −1. This is a remarkable result because the AdS/CFT correspondence has provided the
first reliable theoretical description of a nearly perfect fluid.

Many aspects of the strongly coupled fluid can be studied using AdS/CFT:

1. The spectral function η(ω) = − 1
ω

ImGR(ω) does not show evidence for quasi-particles (42,
44). Instead of a Lorentzian of width 1/τR, one finds a smooth function that interpolates
between the hydrodynamic limit η(0) = η and the high-frequency limit η(ω) ∼ ω3. Because
of nonrenormalization theorems, the ω → ∞ limit is given by the correlation function in
free field theory.

2. The relaxation time can written as τR = c η/P , where c = [2 − log(2)]/2 	 0.65. This
value can be compared with the Israel–Stewart result, τR = 1.5 η/P . We observe that the
relaxation time is very short, but in units of η/P it is only a factor of 2.3 smaller than kinetic
theory would predict. The AdS/CFT correspondence has also been used to compute other
second-order transport coefficients (18).

3. The validity of the hydrodynamic expansion is controlled by the location of the poles of
GR(ω) in the complex ω plane. The hydrodynamic pole of the shear correlator is located at
ω 	 i Dηk2, where Dη = η/(s T ) is the momentum diffusion constant. Nonhydrodynamic
poles correspond to so-called quasi-normal modes of the linearized Einstein equations.
These quasi-normal modes come in complex conjugate pairs and are located at a minimum
distance of order T from the real axis (45). This observation confirms that the expansion
parameter in a nearly perfect fluid is ω/T .

4. Using the AdS/CFT correspondence, one can study the approach to equilibrium in great
detail. For initial conditions that lead to Bjorken flows, the approach to hydrodynamics is very
rapid. After the quasi-normal modes are damped, on timescales on the order of (τT ) � 1,
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the Navier–Stokes description is very accurate, even though nonequilibrium contributions
to the pressure can be large (46, 47). This phenomenon is sometimes referred to as rapid
hydrodynamization.

5. Heller et al. (48) studied the large-order behavior of the hydrodynamic expansion for a
Bjorken-like flow. They found that the gradient expansion is an asymptotic series and that
the radius of convergence is zero. The coefficients of high-order terms, and the leading
singularity in the Borel plane, are governed by the lowest quasi-normal mode. We note that
this phenomenon is unrelated to the nonanalytic terms in the expansion mentioned above.
The calculation is performed in the large-Nc limit of the field theory, so nonanalytic terms
in the gradient expansion are suppressed (49). Heller et al. speculate that the large-order
behavior is analogous to the factorial divergence of large orders of perturbation theory in
quantum field theory.

Finally, we note that one can directly derive the equation of fluid dynamics by promoting
the parameters that label the near horizon metric to hydrodynamic variables (50). Solving the
resulting Einstein equations order by order in gradients provides an alternative derivation of the
second-order transport coefficients discussed above. This method provides a general connection
between solutions of the Einstein equation and the Navier–Stokes equation, referred to as the
fluid–gravity correspondence (51).

1.5. Viscosity Bounds

The AdS/CFT correspondence provides an explicit, albeit somewhat theoretical, example of a
nearly perfect fluid, leading to two questions: Can nearly perfect fluids be realized in the laboratory,
and is there a fundamental limit to fluidity? We address the first question in Sections 2 and 3 below.
There are several arguments that the answer to the second question is affirmative. We summarize
these arguments here.

1.5.1. Uncertainty relation. Kinetic theory predicts that η = 1
3 nlmpf p̄ and that low viscosity

corresponds to a short mean free path (5). However, the uncertainty relation suggests that the
product of the mean free path and mean momentum cannot become arbitrarily small. Using
lmpf p̄ � 1 implies η/n � 1/3. This argument was originally presented in the context of relativistic
fluids. In these systems, the inverse Reynolds number is given by η/(sτT ). Using the entropy per
particle of a weakly interacting relativistic Bose gas, s/n = 3.6, we get η/s � 0.09.

There are several issues with this argument. First, it is based on the application of kinetic theory
in a regime where there are no well-defined quasi-particles and the theory is not applicable. Second,
there is no obvious reason that the entropy per particle cannot be much larger than the free-gas
value (52). Finally, a bound on transport coefficients related to the uncertainty relation was first
proposed by Mott (53) in connection with electric conductivity. A minimal conductivity implies
that the metal–insulator transition must be continuous. However, this prediction is known to be
false. Continuous metal–insulator transitions have been observed (54), and the physical mechanism
of these transitions can be understood in terms of Anderson localization.

1.5.2. Holographic dualities. The value η/s = 1/(4π ) is obtained in the strong coupling limit
of a large class of holographic theories (6). These theories are characterized by the fact that the
dual gravitational description involves the Einstein–Hilbert action (37, 55, 56). Kovtun, Son, and
Starinets (KSS) conjectured that the strong coupling result is an absolute lower bound for the
ratio η/s in all fluids,

η

s
≥ 1

4π
. 26.
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This idea is a significant step forward compared with the argument based on the uncertainty
relation. The value 1/(4π ) is the result of a reliable calculation. Holographic dualities explain why
the relevant quantity is η/s , and they account for the difference between momentum and charge
diffusion. The diffusion constant goes to zero in the strong coupling limit (57–59), whereas the
ratio η/s remains finite.

However, holographic theories exist that provide counterexamples to the KSS conjecture (60,
61). Finite coupling corrections increase the ratio η/s , but there are cases in which calculable
finite Nc corrections decrease η/s . In terms of the dual description, these theories correspond to
gravitational theories that contain a certain higher-derivative correction to the Einstein–Hilbert
action, known as the Gauss–Bonnet term (62). Although this result rules out the KSS conjecture,
there are compelling arguments for a weaker version of the viscosity bound. Given that the violation
of the KSS bound can be related to the Gauss–Bonnet term, one has to study constraints on the
Gauss–Bonnet coefficient λGB. It was found that high values of λGB lead to violations of causality.
For the class of theories that are known to violate the KSS bound, causality implies the slightly
weaker bound η/s ≥ (16/25)(1/4π ) (63). It seems likely that this is not the final word from
holographic dualities. Generalizations of Gauss–Bonnet gravity, so-called Lovelock theories, have
been studied (64), and lower values of η/s may be possible.

1.5.3. Fluctuations. Shear viscosity is related to momentum diffusion, and η/s = 0 implies that
mean free path for momentum transport is zero (20, 21). However, in fluid dynamics momentum
can also be carried by collective modes such as sound and shear waves. Indeed, if the viscosity is
small, this process becomes more efficient because the damping rate of sound and shear modes is
small. This observation suggests that the physical viscosity of the fluid cannot be zero.

This argument can be made more precise using the low-energy expansion of hydrodynamic
correlation functions. Fluctuations not only contribute to nonanalytic terms in GR(ω), but also
correct the polynomial terms that determine the transport coefficients. The retarded shear
stress correlator in a relativistic fluid is of the form GR(ω) = P + δP + iω(η + δη) + . . . , where
δP is a correction to the pressure and

η + δη = η + 17
120π2

�K Dηs 2T 3

η2
27.

is the physical viscosity. Here, �K is the breakdown momentum of the hydrodynamic description
and Dη = η/(s T ) is the momentum diffusion constant. The gradient expansion requires �K Dη �
1. We observe that δη ∼ 1/η2, so the physical viscosity cannot become arbitrarily small. The
bound for η/s depends on the equation of state. For a quark–gluon plasma (QGP) η/s � 0.1 (20),
and in a nonrelativistic Fermi gas η/s � 0.2 (21).

The bound is interesting because it sheds some light on what is special about shear viscosity.
The stress tensor is quadratic in the fluid velocity and has a leading-order, nonlinear coupling to
shear waves. Other currents do not have nonlinear-mode couplings at leading order. The bound
is not universal, but it is complementary to the holographic bounds in the sense that it operates
only at finite N, whereas the holographic bounds are rigorous at infinite N.

It is difficult to summarize the situation regarding the proposed viscosity bounds. There is
strong evidence that viscosity is different from other transport coefficients. We can find systems
for which bulk viscosity, conductivity, or diffusion constants vanish, but physical effects, the uni-
versality of the graviton coupling in holographic theories, and the universality of the stress tensor
in stochastic fluid dynamics make it difficult to find scenarios in which the shear viscosity vanishes.
The precise value of the bound is not known, but empirically the value η/s = 1/(4π ) found in
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simple holographic theories is a good approximation for the viscosity of the best quantum fluids
that can be studied in the laboratory (as discussed further below).

2. NONRELATIVISTIC FLUIDS

2.1. The Unitary Fermi Gas

In the following two sections, we describe theoretical and experimental results regarding the
transport properties of the two best fluids that have been studied in the laboratory (7). These
two fluids are ultracold atomic Fermi gases magnetically tuned to a Feshbach resonance and
the QGP produced in relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) in Brookhaven, New York, and the Large Hadron Collider (LHC) at CERN in Geneva,
Switzerland.

Ultracold Fermi gases are composed of atoms with half-integer total spin. Experiments focus
on alkali atoms such as 6Li. These atoms can be confined in all-optical or magneto-optical traps.
We concentrate on systems in which two hyperfine states are macroscopically occupied. Because
the density and temperature are very low, details of the atomic interaction and the atomic structure
are not resolved; each atom can be described as the two components of a pointlike nonrelativistic
spin-1/2 fermion. The fermions are governed by the effective Lagrangian

L = ψ †
(

i∂0 + ∇2

2m

)
ψ − C0

2
(
ψ †ψ

)2
. 28.

The coupling constant C0 is related to the s-wave scattering length a. At low temperature and
density, neither higher partial waves nor range corrections are important. The two-body s-wave
scattering matrix is

M = 4π

m
1

1/a + iq
, 29.

where q is the relative momentum. The precise relation between C0 and a depends on the regu-
larization scheme. In dimensional regularization, C0 = 4πa/m. In the limit of weak coupling, this
result follows from the Born approximation.

Of particular interest is the “unitarity” limit a → ∞. In this limit, the system has no dimension-
ful parameters and the theory is scale invariant (65). The scattering amplitude behaves as 1/(iq),
which saturates the s-wave unitarity bound. The two-body wave function scales as 1/r, and the
many-body system is strongly correlated even if the density is low. Experimentally, the unitarity
limit can be studied using magnetically tuned Feshbach resonances (66, 67).

We note that even at unitarity the dilute Fermi gas has well-defined quasi-particles if the
temperature is large. The average scattering amplitude scales as σ ∼ 〈q−2〉 ∼ λ2

dB , where λdB ∼
(mT )−1/2 is the thermal wavelength. In the high-temperature limit the average cross section is
small, and the collisional width of a fermion quasi-particle is � ∼ zT (68), where z = (nλ3)/2 � 1
is the fugacity. In this regime the shear viscosity can be computed using kinetic theory. The result
is (69, 70)

η = 15
32

√
π

(mT )3/2. 30.

As expected, the viscosity is independent of density and increases with temperature. The ratio η/n
scales as 1/z and is parametrically large. We also find η/s ∼ 1/[z log(1/z)].

In the regime z � 1, the unitary gas is strongly coupled. At z ∼ 12, the system undergoes a
phase transition to a superfluid (71). In the superfluid phase the U(1) symmetry of the effective
Lagrangian (Equation 28) is spontaneously broken, and at low temperature there is a well-defined
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A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 2
01

4.
64

:1
25

-1
48

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

 o
n 

10
/2

1/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



NS64CH05-Schaefer ARI 8 September 2014 13:21

bosonic quasi-particle related to the U(1) Goldstone mode. Momentum diffusion due to
Goldstone modes can be studied using kinetic theory, and we find η ∼ T −5 (72). Combined
with Equation 30, this result indicates that the viscosity has a minimum in the vicinity of the
critical temperature. In this regime, there are no reliable calculations of transport properties,
but T-matrix calculations suggest that η/n reaches a value of ∼0.5 (73). We note that at Tc the
entropy per particle is very close to one. Lower values of the shear viscosity, η/s 	 0.2, have been
found in quantum Monte Carlo calculations (34).

In kinetic theory, the viscosity spectral function has a Lorentzian line shape with width τ−1
R =

P/η (74). In the strongly coupled regime, the shape of the spectral function is not known, but one
can determine the asymptotic behavior for ω → ∞ as well as the frequency sum rule. The sum
rule is given by (73, 75)

2
π

∫
dω

[
η(ω) − C

15π
√

mω

]
= 2

3
E, 31.

where C is a short-distance coefficient known as the contact density, which measures the strength
of short-range correlations (76), and the subtraction term inside the integral corresponds to the
high-frequency tail of the spectral function (77). In the high-temperature limit, C = 4πn2λ2

dB , and
one can check that the high-frequency tail smoothly matches kinetic theory for ω ∼ T . We can
now identify the relevant scales that limit the fluid dynamic and kinetic descriptions: ωfluid ∼ zT
and ωmicro ∼ T . For z � 1 we find the expected hierarchy of scales, but in the strongly correlated
regime both scales are comparable.

2.2. Flow and Viscosity

Fluid dynamics can be observed in experiments that involve releasing the gas from a de-
formed trap. In typical experiments, the trap corresponds to a harmonic confinement potential,
V = (1/2)m(ω2

⊥x2
⊥ + ω2

z z2), with an aspect ratio ω⊥/ωz ∼ (20–30). In hydrostatic equilibrium,
pressure gradients along the transverse direction are much larger than pressure gradients along the
longitudinal direction. Hydrodynamic evolution after the gas is released converts this difference
into different expansion velocities, and during the late stages of evolution the cloud is elongated
along the transverse direction (Figure 1). The observation of this effect led to the discovery of
nearly perfect fluidity in ultracold gases (78). Shear viscosity counteracts the differential accelera-
tion and leads to a less deformed final state. The shear viscosity can be measured by studying the
time evolution of the cloud radii (79, 80).

An alternative approach is based on recapturing the gas after release from the trap, which
excites a transverse breathing mode. Hydrodynamic behavior can be verified by measuring the
frequency of the collective mode. In an ideal fluid, ω = √

10/3 ω⊥, whereas in a weakly collisional
gas, ω = 2ω⊥ (81, 82). The transition from ballistic behavior in the weak coupling limit to

Figure 1
Expansion of a dilute Fermi gas at unitarity (78). The cloud contains N 	 1.5 × 105 6Li atoms at a
temperature T = 8 μK. Shown are a series of false-color absorption images taken between t = 0.1 and t =
2.0 ms. The scale of each image is the same. The axial size of the cloud remains nearly constant as the
transverse size increases.
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hydrodynamic behavior in the unitary gas has been observed experimentally (83, 84). In the
hydrodynamic regime, damping of collective modes is governed by dissipative terms. The rate of
energy dissipation is

Ė = −
∫

d3x
{

1
2
η(x)(σi j )2 + ζ (x)〈σ 〉2 + κ(x)

T
(∇T )2

}
. 32.

At unitarity, the system is scale invariant and the bulk viscosity is predicted to vanish (65, 85).
This prediction has been experimentally verified (86). Thermal conductivity does not contribute
to damping, because the gas is isothermal. As a consequence, the damping rate is a measure of
shear viscosity.

Both the expansion and the collective-mode experiments involve approximate scaling flows.
The motion is analogous to the Hubble flows in cosmology and to the Bjorken expansion of a
QGP. Consider the Euler equation for the acceleration of an ideal fluid. We have u̇ 	 −∇P/ρ =
−∇μ/m, where we have used the Gibbs–Duhem relation dP = ndμ. Because the external potential
is harmonic, the chemical potential is harmonic, too. As a consequence, the velocity field is linear,
and the cloud expands in a self-similar fashion. Because the fluid velocity is linear, the shear stress
σi j is spatially constant and the rate of dissipation is sensitive to the spatial integral of η(x):

〈η〉 =
∫

d3xη(x). 33.

Using measurements of the trap-integrated entropy, we can extract the ratio 〈η〉/〈s 〉. This analysis
was originally performed in References 87 and 88. Figure 2 shows a more recent analysis that
combines collective-mode data at low T with expansion data at high T (80). The high-temperature
data match expectations from kinetic theory. The viscosity drops with T, and the ratio of trap
averages reaches 〈η〉/〈s 〉 � 0.4.

10

8
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2

0
1 2 3 4 5

E/EF
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0.0
0.6 0.90.7 0.8 1.0 1.1

Figure 2
Measurements of η/s in the dilute Fermi gas at unitarity by use of collective modes (blue circles) and elliptic
flow (red squares). Note that η/s in the plot refers to a ratio of trap integrated quantities, 〈η〉/〈s 〉. (Inset) The
dashed line corresponds to the proposed bound η/s = 1/(4π ). Modified from Reference 80.
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It is clearly desirable to unfold these measurements and determine local values of η/s . The
main difficulty is a reliable treatment of the low-density corona. In this regime, η is independent
of density and the integral in Equation 33 is ill defined, signaling the breakdown of fluid dynamics
in the dilute region. The problem also appears if one applies the Navier–Stokes equation to an
expanding gas cloud. In the dilute regime, η is not a function of density and the viscous stresses
ησi j are independent of position, implying that although ideal stresses propagate with the speed
of sound, viscous stresses propagate with infinite speed. As discussed in Section 1.1, this problem
can be solved by including a finite relaxation time (79, 89). In the low-density regime, the viscous
relaxation time τR 	 η/(nT ) is large. Because the dissipative stresses are zero initially, taking a
finite relaxation time into account suppresses the contribution of the corona. A schematic version
of this idea was used by Cao et al. (80), but a more systematic treatment is needed.

3. RELATIVISTIC FLUIDS

3.1. The Quark–Gluon Plasma

The QGP is a hot, dense system of quarks and gluons governed by the QCD Lagrangian

L = −1
4

Ga
μνGa

μν +
∑

f

q̄ f (iγ μ Dμ − m f )q f , 34.

where Ga
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f abc Ab

μ Ac
ν is the QCD field strength tensor, g is the coupling

constant, and f abc are the SU(3) structure constants. The covariant derivative acting on the quark
fields is iDμq = [i∂μ + g Aa

μ(λa/2)]q , and mf is the quark mass. At the temperature scale probed
in RHIC or LHC experiments, the three light flavors (up, down, and strange) are thermally
populated, whereas the heavy flavors (mainly charm and bottom) are produced in hard collisions
and can serve as probes of the medium.

Asymptotic freedom implies that at very high temperature the QGP can be described in terms
of quark and gluon quasi-particles. A typical gluon has a thermal momentum of order T. Soft
gluons with momenta much lower than T are modified by interaction with hard particles. As a
consequence, electric gluons acquire a Debye screening mass: mD ∼ gT . In perturbation theory
there is no static screening of magnetic fields, but magnetic gluons are dynamically screened
for momenta greater than (m2

Dω)1/3, where ω is the frequency. The static magnetic sector of
QCD is nonperturbative even if the temperature is very large. Confinement in three-dimensional
pure gauge theory generates a mass scale of order g2T. This mass scale determines the magnetic
screening scale in the QGP: mM ∼ g2T .

Perturbation theory in the QGP is based on the separation of scales: mM � mD � T . Strict
perturbation theory in g works only for very low values of the coupling constant, g � 1 (90).
However, quasi-particle models that rely on the separation of scales describe the thermodynamics
of the plasma quite well, even for temperatures close to the phase transition to a hadronic gas (91).

The dispersion relation for the bosonic modes in the plasma evolves smoothly from quasi-
gluons with masses m ∼ mD at momenta q � gT to collective oscillations, plasmons, at low
q. The energy of the plasmon in the limit q → 0 is ωP = mD/

√
3, and the plasmon width

is � ∼ g2T (92). The calculation of the collisional width of quasi-particles with momenta of
order T is a complicated, nonperturbative problem, but the width remains parametrically small:
� ∼ g2 log(1/g)T (93).

Momentum diffusion is controlled by binary scattering between quarks and gluons. The cross
section is proportional to g4, and the IR divergence due to the exchange of massless gluons is reg-
ulated by dynamic screening. As a consequence, the shear viscosity scales as η ∼ T 3/[g4 log(1/g)].
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A detailed calculation in N f = 3 QCD gives (94–96)

η = kT 3

g4 log(μ∗/mD)
, 35.

where k = 106.67. The scale inside the logarithm is sensitive to bremsstrahlung processes such
as gg → ggg. Arnold et al. (95, 96) found μ∗ = 2.96T . The timescale for momentum diffusion
is η/(s T ) ∼ 1/[g4 log(1/g)T ]. This scale is parametrically large, but the precise value is very
sensitive to the coupling constant. In N f = 3 QCD, we get η/s 	 9.2/[g4 log(1/g)]. Using g 	 2
(which corresponds to αs 	 0.3) and log(1/g) � 1, we conclude that η/s � 0.6.

At T 	 150 MeV, the QGP undergoes a crossover transition to a hadronic resonance gas (97,
98). The resonance gas is strongly coupled, but as the temperature is reduced further, the system
evolves to a weakly coupled gas of mostly pions, kaons, and nucleons. The viscosity of a pion gas is
parametrically large: η/s ∼ ( fπ/T )4, where fπ 	 93 MeV is the pion decay constant (99). Similar
to the arguments in the case of cold Fermi gases, we therefore expect that η/s has a minimum in
the vicinity of Tc. In this regime, the only reliable theoretical approach is lattice gauge theory. As
in the case of nonrelativistic fermions, the calculations are difficult to perform because one has to
extract the viscosity spectral function from imaginary time data. In the case of pure gauge theory,
Meyer (30) finds η/s = 0.102(56) at T = 1.24Tc and η/s = 34(33) at T = 1.65Tc.

Useful constraints on the spectral function are provided by sum rules. Romatschke & Son (100)
showed that

2
π

∫
dω [η(ω) − ηT =0(ω)] = 2

5
E, 36.

where ηT =0(ω) is the spectral function at zero temperature. The high-frequency behavior can
be studied in perturbation theory. We find η(ω) ∼ ω3 at both zero and nonzero temperatures.
Finite temperature effects were studied in References 101 and 102. We note that in nonrelativistic
theories the tail of the spectral function is determined by short-range correlations, whereas in
relativistic theories the high-frequency behavior is determined by the gg and q q̄ continuum. In
kinetic theory, the shape of the spectral function at low frequency is a Lorentzian with a width
proportional to 1/η. The lattice calculation in Reference 30 does not find a quasi-particle peak,
but the resolution is insufficient to draw a final conclusions. A spectral function that is broadly
consistent with the existence of quasi-particles was observed in a study of the electric conductivity
of the QGP (103).

3.2. Flow, Higher Moments of Flow, and Viscosity

Experimental information about transport properties of the QGP comes from the observation of
hydrodynamic flow in heavy-ion collisions at collider energies (104, 105). Several observations
support the assumption that heavy-ion collisions create a locally thermalized system:

1. The overall abundances of produced particles is described by a simple thermal model that
depends on only two parameters, the temperature T and the baryon chemical potential μ at
freeze-out (106, 107).

2. For transverse momenta p⊥ � 2 GeV, the spectra dN /d3 p of produced particles follow a
modified Boltzmann distribution characterized by the freeze-out temperature and a collec-
tive radial expansion velocity (104, 108). Radial flow manifests itself in the fact that the spectra
of heavy hadrons, which acquire a larger momentum boost from the collective expansion,
have a larger apparent temperature than the spectra of light hadrons.

3. In noncentral collisions, the azimuthal distribution of produced particles shows a strong
anisotropy termed elliptic flow (104, 109). Elliptic flow represents the collective response of
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Figure 3
Initial energy density in an Au + Au collision at RHIC from the Monte Carlo KLN model (110, 111). This
model includes the effects from the collision geometry, fluctuations in the initial position of the nucleons
inside the nucleus, and nonlinear gluon field evolution. More sophisticated versions of the model also
include quantum fluctuations of the gluon field.

the QGP to pressure gradients in the initial state, which in turn are related to the geometry
of the overlap region of the colliding nuclei (Figure 3).

Analysis of the azimuthal distribution is the main tool for constraining the shear viscosity of
the plasma. We define harmonics of the particle distribution

p0
dN
d3 p

∣∣∣∣
pz=0

= v0(pT)[1 + 2v1(pT) cos(φ − �1) + 2v2(pT) cos(2φ − �2) + . . .], 37.

where pz is the longitudinal (beam) direction, pT is the transverse momentum, and φ is the angle
relative to the impact parameter direction. The coefficient v2 is known as elliptic flow, and the
higher moments are known as, for example, triangular or quadrupolar flow. The angles �i are
known as flow angles. Substantial elliptic flow, reaching approximately v2(pT = 2 GeV) 	 20%
in semicentral collisions, was discovered in the early RHIC data (112, 113) and confirmed at the
LHC (114). More recently, studies found that fluctuations in the initial energy density generate
substantial higher harmonics, including odd Fourier moments such as v3 (115), and fluctuations
of the flow angles relative to the impact parameter plane.

Viscosity tends to equalize the radial flow velocity and suppress elliptic flow and higher flow
harmonics. An estimate of the relevant scales can be obtained from simple scaling solutions of
fluid dynamics. The simplest solution of this type was proposed by Bjorken (118), who considered
a purely longitudinal expansion. Bjorken assumed that the initial entropy density is independent
of rapidity and that the subsequent evolution is invariant under boosts along the z axis. The
Bjorken solution provides a natural starting point for more detailed numerical and analytical
studies (104, 119). Bjorken flow is characterized by a flow profile of the form uμ = γ (1, 0, 0, uz) =
(t/τ, 0, 0, z/τ ), where γ = (1−u2

z)1/2 is the boost factor and τ = (t2−z2)1/2 is the proper time. This
velocity field solves the relativistic Navier–Stokes equation. Energy conservation then determines
the evolution of the entropy density. We find

− τ

s
ds
dτ

= 1 − 4
3

η

sTτ
, 38.
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where we have neglected bulk viscosity. In ideal hydrodynamics, s ∼ T 3 and T ∼ 1/τ 1/3. The
validity of the gradient expansion requires that the viscous correction be small (5):

η

s
� 3

4
(Tτ ). 39.

It is usually assumed that in the QGP η/s is approximately constant. For the Bjorken solution,
Tτ ∼ τ 2/3 increases with time, and Equation 39 is most restrictive during the early stages of the
evolution. The use of an equilibration time τ0 = 1 fm and an initial temperature T0 = 300 MeV
gives η/s � 0.6. We conclude that fluid dynamics can be applied to heavy-ion collisions only if
the QGP behaves as a nearly perfect fluid.

At late times, the expansion becomes three dimensional and Tτ is independent of time. The
fluid is composed of hadronic resonances that have cross sections that reflect hadronic sizes and
are approximately independent of energy. In that case, η ∼ T /σ . Using s ∼ T 3 and T ∼ 1/τ , we
find that the dissipative correction η/(s T τ ) increases with proper time as τ 2. This result shows
that fluid dynamics also breaks down at late times. At RHIC and LHC energies, the duration of
the fluid dynamic phase is 5–10 fm/c, depending on collision energy and geometry. We note that,
in contrast to the situation in heavy-ion collisions, there is no freeze-out in the cold atomic gas
experiments. At unitarity the mean cross section increases as the temperature drops, and the fluid
parameter η/(nTτ ) is approximately constant during the evolution.

In heavy-ion collisions, we can observe only the final distribution of hadrons. In principle one
could imagine reconstructing azimuthal harmonics of the stress tensor from the measured particle
distribution, but doing so would require very complete coverage and particle identification, and
it has not been attempted. In any case, hadrons continue to interact after the fluid freezes out,
and some rearrangement of momentum takes place. This means that we need a prescription for
converting hydrodynamic variables to kinetic distribution functions. What is usually done is that
on the freeze-out surface the conserved densities in fluid dynamics are matched to kinetic theory
(120).

In ideal fluid dynamics, the distribution functions are Bose–Einstein or Fermi–Dirac distribu-
tions characterized by the local temperature and fluid velocity. Viscosity modifies the stress tensor,
and via matching to kinetic theory this modification changes the distribution functions f p . The
value of η/s constrains only the piv j moment of the distribution function. The full distribution
function can be reconstructed only if the collision term is specified. Using the BGK collision term,
one obtains a very simple formula for the leading correction δ fp :

δ f p = 1
2T 3

η

s
f0(1 ± f0)pα pβσ αβ, 40.

where the plus/minus sign refers to Bose/Fermi distributions, respectively. This result is a rea-
sonable approximation to more microscopic theories (95). The shift in the distribution function
leads to a modification of the single-particle spectrum. In the case of the Bjorken expansion and
at large pT, we find

δ(dN )
dN 0

= 1
3τ f Tf

η

s

(
pT

Tf

)2

, 41.

where dN 0 is the number of particles produced in ideal fluid dynamics, δ(dN ) is the dissipative
correction, and τ f is the freeze-out time. In a system with strong longitudinal expansion, viscous
corrections tend to equalize the momentum flow by pushing particles to higher pT. Because the
single-particle distribution enters into the denominator of v2, this effect tends to suppress v2 at
large pT. The effect from the numerator, dissipative corrections due to the cos(2φ) component

142 Schäfer
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of the radial flow, acts in the same direction (121). What is important is that corrections to the
spectrum are controlled by the same parameter η/(s τT ) that governs the derivative expansion in
fluid dynamics. This reflects that in the regime in which kinetic theory can be matched to fluid
dynamics we have Kn ∼ Re−1.

We obtain several simple predictions that have been confirmed by experiment (122): Dissipative
corrections increase with pT, they are larger in small systems that freeze out earlier, and they
are larger for higher harmonics that are more sensitive to gradients of the radial flow profile.
Quantitative predictions that provide not only bounds on η/s but also reliable measurements of
transport properties of the plasma require a number of ingredients (123):

1. An initial-state model that incorporates the nuclear geometry and fluctuations in the initial
energy deposition. The simplest possibility is a Monte Carlo implementation of the Glauber
model (124), but some calculations also include saturation effects, quantum fluctuations of
the initial color field, and preequilibrium evolution of the initial field (117). Alternatively,
one may try to describe the preequilibrium stage by using kinetic theory (125, 126) or the
AdS/CFT correspondence (127). At the end of the initial stage, the stress tensor is matched
to fluid dynamics.

2. Second-order dissipative fluid dynamics in 2+1 (boost-invariant) or 3+1 dimensions. Cal-
culations must include checks to ensure insensitivity to poorly constrained second-order
transport coefficients and a realistic equation of state. A realistic equation of state has to
match lattice QCD results at high temperature and a hadronic resonance gas below Tc

(128). The resonance gas equation of state must allow for chemical nonequilibrium effects
below the chemical freeze-out temperature, Tchem 	 Tc.

3. Kinetic freeze-out and a kinetic afterburner. At the kinetic freeze-out temperature, the fluid
is converted to hadronic distribution functions. Ideally, these distribution functions are
evolved further using a hadronic cascade (129, 130), but at a minimum one has to include
feed-down from hadronic resonance decays.

Initial estimates of η/s from the RHIC data have been obtained (131–133). Figure 4 shows a
more recent analysis of LHC data (117). The authors found η/s 	 0.2 at the LHC and η/s 	 0.12
from a similar analysis of RHIC data. Similar results were obtained by other authors. Song et al.
(134) reported an average value of η/s 	 (0.2-0.24) at the LHC and η/s 	 0.16 at RHIC. Luzum
& Ollitrault (135) tried to constrain the allowed range of η/s , obtaining 0.07 ≤ η/s ≤ 0.43 at
RHIC. Given the complexity of the analysis, uncertainties are difficult to quantify. A survey of the
main sources of error in the determination of η/s can be found in Reference 136. Interestingly,
the extracted values of η/s are lower at RHIC than they are at the LHC, as one would expect on
the basis of asymptotic freedom. We emphasize, however, that given the uncertainties it is too
early to make this statement with high confidence.

4. FRONTIERS

In absolute units, the shear viscosity of the ultracold Fermi gas and that of the QGP differ by
more than 25 orders of magnitude (7). The approximate universality of η/s in strongly coupled
fluids, and the near agreement with the value predicted by the AdS/CFT correspondence in the
strong coupling limit of a large class of field theories, is quite remarkable. Much work remains
to be done to determine to what extent this observation can be made precise and what it implies
about the structure of strongly correlated quantum systems. In this outlook, we can provide only
a very brief summary of some of these issues.
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Figure 4
Fourier coefficients v2, . . . , v5 of the azimuthal charged-particle distribution as a function of the transverse
momentum pT measured in Pb + Pb collisions at the LHC (116). The measurements were performed using
the event plane (EP) method and correspond to the 20–30% centrality class. The dashed lines represent a
hydrodynamic analysis performed with η/s = 0.2 (117).

4.1. Transport Coefficients

There is an ongoing effort to map out the full density and temperature dependence of η/s in
both the ultracold gases and the QGP and to determine other transport coefficients, such as the
bulk viscosity and diffusion coefficients. Several experimental puzzles remain to be addressed. In
the case of heavy-ion collisions, nearly ideal flow is even more pervasive than one would expect.
Strong flow is also observed in photons, electrons from heavy-quark decays, and hadrons emitted
in high-multiplicity p + Pb collisions at LHC energies; see Reference 137 for a recent summary
and original references. In the case of cold atomic gases, we now have very accurate data for the
dependence of 〈η〉 on the total energy of the cloud (138). These data have not been unfolded. It was
observed that the scaling of 〈η〉 with the total energy is remarkably simple—〈η〉/〈n〉 ∼ aE + bE3

for all energies above the critical point—but the origin of this scaling behavior is not understood.

4.2. Quasi-Particles

We would like to understand whether nearly perfect fluidity, η/s ∼ 1/(4π ), necessarily implies
the absence of quasi-particles, as is the case in the AdS/CFT correspondence. The most direct way
to study this issue is to determine the spectral function. Because the only local probe of the stress
tensor is the graviton, this task will probably require numerical studies. We are also interested in
pushing weak coupling descriptions into the regime where the quasi-particle picture breaks down,
for example, by using the renormalization group.

4.3. Viscosity Bound

Whether there is a fundamental lower limit for η/s is unknown. Part of the issue may well be that
we need to define more carefully what we mean by a fluid, and that we need to understand how
these defining characteristics are reflected in microscopic theories. We would also like to know
what kinds of theories have holographic duals and what aspects of the field theory lead to the
emergence of certain universal features, such as the strong coupling limit η/s = 1/(4π ).
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4.4. Other Strongly Correlated Fluids

In addition to the two fluids discussed in this review, several other systems may be of interest.
One interesting class consists of two-dimensional fluids, for example, the electron gas in graphene
(139) and the so-called strange metal phase of the high-Tc superconductors (140).

4.5. Equilibration at Strong and Weak Coupling

Empirical evidence suggests that equilibration in heavy-ion collisions takes place on a very short
timescale: τeq ∼ 1 fm. Rapid equilibration is natural in holographic theories (46), but it is difficult
to make contact with asymptotic freedom and the well-established theory and phenomenology
of parton distribution functions. Understanding equilibration in weak coupling is a complicated
problem that involves many competing scales, and even establishing the parametric dependence
of the equilibration time on αs is difficult; see Reference 141 for a recent overview.

4.6. Anomalous Hydrodynamics

Several novel hydrodynamic effects have been discovered in recent years. An example is the chi-
ral magnetic effect. Topological charge fluctuations in the initial state of a heavy-ion collision,
combined with the magnetic field generated by the highly charged ions, can manifest themselves
in electric-charge fluctuations in the final state (142). This effect is now understood as part of a
broader class of anomalous hydrodynamic effects (143). Anomalous transport coefficients were
originally discovered in the context of holographic dualities (144) and interpreted using general
arguments based on fluid dynamics (145).
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68. Schäfer T, Dusling K. Phys. Rev. Lett. 111:120603 (2013)
69. Massignan P, Bruun GM, Smith H. Phys. Rev. A 71:033607 (2005)
70. Bruun GM, Smith H. Phys. Rev. A 72:043605 (2005)
71. Ku MJH, Sommer AT, Cheuk LW, Zwierlein MW. Science 335:563 (2012)
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