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ABSTRACT

We review recent progress in understanding the importance of instanton effects
in QCD. Instantons provide a mechanism for quark and gluon condensation,
explain theU(1), anomaly and the appearance of a non-perturbative vacuum
energy density. In the framework of the instanton liquid model, a large number of
hadronic correlation functions were calculated. The results are in good agreement
with both experimental data and lattice simulations. We also review recent results
on the phase structure of QCD-like theories. Instantons provide a mechanism for
chiral symmetry restoration at finite temperature (or for a large number of quark
flavors) connected with the formation of instanton—anti-instanton molecules.
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INTRODUCTION

Scales of Non-Perturbative QCD

Understanding the vacuum structure of strongly interacting gauge theories like
guantum chromo-dynamics (QCD) is one of the most important problems in nu-
clear and particle physics today. Although QCD is now firmly established as the
correct theory of the strong interactions, reliable calculations can only be per-
formed in the perturbative domain (hard reactions with large momentum trans-
fer). Studying non-perturbative aspects of QCD has proved to be a much more
difficult task, in large part because the corresponding methods first had to be de-
veloped. There remains alarge gap between QCD, where the main results come
from hadronic phenomenology or numerical simulations on the lattice, and well-
understood (or even exactly solvable) toy models, which are typically either 2-
dimensional or supersymmetric. Although a number of fascinating discoveries
have been made (instantons among them), much work remains to be done.

In order to develop a systematic strategy, it is important to establish whether
the problem can be split into separate parts. As usual in physics, we expect
this to be possible if a hierarchy of scales exists. In the case of QCD, there is
some evidence that such a hierarchy is indeed available. One fundamental input
comes from perturbative QCD. Although the value of the QCD scale parameter
that enters perturbative calculationstigcp ~ 0.2 GeV ~ 1fm™! (the exact
value depending on the definition), the applicability of the parton model to hard
processes is limited to reactions involving a scale of at least 1 GeV.

Alternatively, an estimate of the scale of non-perturbative effects in QCD can
be made on the basis of low-energy effective theories. The first estimate of the
kind goes back to the Nambu & Jona-Lasinio (NJL) model (1). The model was
developed in the early 1960s, inspired by the analogy between chiral symmetry
breaking and superconductivity. It postulates a four-fermion interaction that,
if it exceeds a certain strength, leads to quark condensation, the appearance of
pions as Goldstone bosons, etc. The scale at which these interactions disappear
and QCD becomes perturbative enters the model as an explicit UV cut-off,
AxSB ~ 1GeV.

In addition to that, one can argue that the scales for chiral symmetry breaking
and confinement are very different (2):,sg > Acont ~ Aqcp- In particular,
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it was proposed that constituent quarks (and pions) have sizes smaller than those
of typical hadrons, explaining the success of the non-relativistic quark model.
This idea was developed in a systematic fashion by Georgi & Manohar (3),
who considered the ratio of these two scales as a natural expansion parameter
in chiral effective Lagrangians. They also argued that an effective theory of
pions and constituent quarks is the natural description in the intermediate regime
Acont < Q < Aysg, in which models of hadronic structure operate.

Although the progress in understanding confinement is still very slow, the
fundamental mechanism of chiral symmetry breaking has been clarified in sig-
nificant detail. It is the purpose of this review to explain the main ideas and
results. For a more detailed exposition and technical details, the reader is in-
vited to consult the more comprehensive work (4). The picture of the vacuum
that has emerged over the years has been termed the instanton liquid model (5).
The main feature of this model is that the non-perturbative gluon fields are con-
centrated in well-localizedo( ~ 1/3 fm) topological fluctuations, instantons,
with very strong fields. The small size of the typical instanton is the reason why
the parameten ,sg ~ 1 GeV is large, why the pion is small, why glueballs are
heavy (6), etc.

In the remainder of this introduction we would like to give a brief discussion
of hadronic structure from the perspective of the instanton liquid model and
provide a short history of the subject. In Section 2, we discuss hadronic corre-
lation functions and their importance in providing a bridge between hadronic
phenomenology and the structure of the vacuum. In Sections 3 and 4, we intro-
duce the instanton solution and discuss the vacuum structure of the instanton
liquid, the mechanism for quark and gluon condensation as well as the effective
interaction between quarks. In Section 5, we give a more detailed discussion
of hadronic correlation functions and the hadronic spectrum. In Section 6, we
discuss some issues related to the phase structure of QCD, in particular QCD at
finite temperature, QCD with many flavors and supersymmetric generalizations
of QCD. Section 7 finally provides a brief summary and outlook.

Hadronic Structure

Understanding the structure of hadrons and the regularities in the spectrum
of hadrons is an old problem. Indeed, the first two attempts to understand
hadronic structure, the non-relativistic quark model and current algebra, pre-
date the development of QCD. The quark model provides a very simple and
phenomenologically successful scheme to describe the spectrum and the prop-
erties of hadrons, based on the idea that hadrons are loosely bound composites
of massive {300 MeV) constituent quarks. On the other hand, current algebra
led to the conclusion that the the current quark masses that appear as symmetry
breaking terms in the Lagrangian are tiny, on the order of a few MeV.
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To reconcile these seemingly conflicting results was one of the major chal-
lenges to model builders. Another important task is to understand the rela-
tive importance of the various forces acting between quarks. Hadronic mod-
els incorporated) perturbative one-gluon-exchange interactiobsconfining
(string) potentials,d) pion or other collective exchanges artt) uasi-local
instanton-induced interactions (which can be either two- or three-body forces).
To understand the interplay of these interactions on the basis of hadronic spec-
troscopy alone is probably impossible; below we argue that the systematic study
of hadronic correlation functions is a much more appropriate tool.

Here, we only want to make a few comments on the role of these forces.
First, from the study of hard processes and the analysis of correlation func-
tions (determined from experiment or on the lattice), it has become clear
that the perturbative treatment of gluon fields at the hadronic scale & fm
(0.2GeV) 1Y) is impossible. Gluons propagate perturbatively only at distances
<1GeVvt

Second, one may argue that the numerical role of confinement for the masses
of hadrons made of light quarks appears to be small. It has been known foralong
time that the effective confining potential that provides an optimal description of
low-lying hadronsin the constituent quark modelis weaker than the one deduced
from heavy quarlkcc, bb states. It is tempting to attribute this difference to the
extended nature of constituent quarks, in contrast to the point-bké quark.
Constituent quarks have form-factors and only interact with sufficiently soft
gluonic modes. This can be simulated on the lattice by measuring the string
tension after smoothing the gauge fields. An example is shown in Figure 1.
Although the string tension (the slope at large distances) is the same for both
potentials, the smoothed potential is much smallerfer 3a ~ 1fm. This
suggests that the string potential only affects the tail of hadronic wave functions.
This can be seen more explicitly by comparing hadronic correlators and wave
functions in full and cooletigauge configurations (8).

There is another indirect hint that confinement effects are not dominant in
light hadrons. The MIT bag model (9) assumes that confinement leads to the
creation of a bubble of the perturbative phase that contains valence quarks
(and gluons) surrounded by the non-perturbative vacuum in which quarks are
confined. Hadronic spectroscopy then determines the difference in vacuum
energy between the two phases, the so-called bag pressure. It turns out that
the MIT bag constant is more than an order of magnitude smaller than the
phenomenologically determined non-perturbative energy density (10). This
implies that non-perturbative vacuum fields like instantons are not completely
expelled from the interior of hadrons, but only slightly modified.

1Cooling is a specific smoothing method designed to isolate instanton contributions.
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Figure 1 Theqq potential before (above) and after (below) smoothing of the gauge fields, from
Reference 7.

Over the years many hadronic models have been developed. These models
cure many of the defects of the simple MIT bag model, particularly with regard
to chiral symmetry. However, the relation between these models and the un-
derlying field theory, QCD, remains unclear. This is hardly suprising; hadrons
are collective excitations of the vacuum, like phonons in solids, so any model
that attempts to reproduce their properties without addressing the structure of
the ground state is meaningless.

Motivated by the hierarchy of scales discussed above, the strategy we wish to
follow here isfirstto treat the phenomenon of chiral symmetry breaking. Starting
from a satisfactory theory of constituent quarks and pions, one can go to the next
scale and try to build a quantitative theory of hadrons. We will argue that the
physics of chiral symmetry breaking is quite well understood, while the physical
nature of confinement remains unclear. However, given the arguments above,
this should provide a reasonable procedure for hadrons made of light quarks.

The importance of instantons in the context of chiral symmetry breaking is
related to the fact that the Dirac operator has a chiral zero mode in the field of an
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instanton. These zero modes correspond to localized quark states that can be-
come collective if many instantons and anti-instantons interact. The resulting
delocalized state corresponds to the wave function of the quark condensate. In
addition to that, instanton zero modes generate an effective four-fermion inter-
action.

This brings us back to one of the oldest approaches to hadronic structure, the
NJL model. Nambu & Jona-Lasinio showed that a short-range attractive force
between fermions, if strong enough, can rearrange the vacuum, and the ground
state becomes superconducting. There is agap inthe fermionic spectrum, corre-
sponding to the constituent quark mass, and a non-zero quark condensate. The
role of instantons in QCD (similar to that of phonon exchange in a superconduc-
tor) is to provide the fundamental mechanism for the four-fermion interaction.
Instantons fix the strength of the interaction and its spin-isospin dependence.
In addition to that, asymptotic freedom and the finite size of instantons provide
a natural cutoff (as opposed to the ad hoc cutoff in the NJL model). Finally, a
numerical but quite practical approach was developed, allowing calculations to
all orders in the instanton-induced 't Hooft effective interaction.

A Brief Survey of Instanton Physics

In this section we would like to give a brief overview of instantons, their discov-
ery, early applications and recent developments. Here, we mostly follow the
historical path, while in Section 3 we will provide a more standard, systematic,
discussion.

The instanton solution of the Yang-Mills equations was discovered by
Polyakov and coworkers (11), motivated by the search for classical solutions
that might be relevant for the large-distance behavior of Yang-Mills theories.
Within a short time, a number of papers clarified the physical meaning of the
instanton as a tunneling event between topologically distinct classical vacua
(12-14). The tunneling rate was calculated in 't Hooft's classic paper (in which
he also introduced the term instanton) (15), which also contains an impor-
tant discovery: the presence of fermion zero modes in the spectrum of the
Dirac operator. 't Hooft realized that these zero modes provide the microscopic
mechanism for anomalies, the fact that quantum mechanically, the flavor sin-
glet axial charge in QCD (or baryon number in electroweak theory) is not
conserved.

In electroweak theory, the tunneling rate is suppressed by the vacuum expec-
tation value of the Higgs field and therefore instanton effects are too small to be
observable. In QCD, on the other hand, instanton effects are much larger, but
the calculations are affected by infrared divergencies. Early attempts to study
instantons effects in QCD were summarized in (16). This paper introduced the
picture of the instanton ensemble as a 4-dimensional gas of pseudoparticles and
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pointed out that instantons might be responsible for the spontaneous breakdown
of SU(Ny) chiral symmetry.

Nevertheless, they were not able to formulate a consistent theory of the in-
stanton ensemble and the general outlook at that time was rather pessimistic:
there was no clearly identified instanton effect, and no theoretical control over
the semi-classical approximation in QCD. Eventually, a new impetus was pro-
vided when more phenomenological information on the structure of the QCD
vacuum became available from the analysis of QCD sum rules (17). A particu-
larly important conclusion was that the size of non-perturbative effects in scalar
correlation functions, corresponding to theo, n, n” mesons as well as scalar
and pseudoscalar glueballs, is much bigger than in vector or tensor channels
(18). It was realized that these are precisely those channels that receive direct
instanton contributions (18—20). In addition to that, Witten and Veneziano sug-
gested an approximate relation that connects;thmass with the topological
susceptibility (21, 22), providing the most direct estimate so far of the instanton
density in QCD.

Based on these developments, the instanton liquid model was proposed by
one of us (23). Its basic assumption is that instantons in QCD form a random
liquid, characterized the mean density of instantans: 1fm~* and their
average sizep ~ 1/3fm. These parameters imply that the fraction of the
space-time occupied by instantohs- np* is small and that the semi-classical
approximation is under control. They reproduce the values of the quark and
gluon condensates, and the available information on the short-distance behavior
of correlation functions.

Further steps towards providing a more sound theoretical basis for the in-
stanton liquid model were taken in (24, 25). In addition to that, Diakonov and
Petrov (26) introduced the picture of the quark condensate as a collective state
built from delocalized zero modes and studied the properties of pseudoscalar
meson in the random phase approximation (RPA). In parallel, one of us initiated
numerical studies of the instanton liquid (27), which allows one to go beyond
the mean field and RPA approximations. Finally, around that time, a number
of authors began to study the properties of instantons directly on the lattice (see
e.g. 28-31).

In the past few years, a lot of progress was made in the study of instantons
in QCD. The instanton liquid model was used for large-scale, quantitative cal-
culations of hadronic correlation functions in essentially all meson and baryon
channels (32—34). Hadronic masses and coupling constants in most mesonic
and baryonic channels were shown to be in quantitative agreement with phe-
nomenology (35) and the lattice (36). It was shown how to go beyond the simple
random instanton liquid and construct a self-consistent, interacting instanton
ensemble (37, 38). The theory was also generalized to finite temperatures and
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applied to the chiral phase transition. Some of these results will be reviewed in
this paper.

In addition to that, a lot of effort went into studies of instantons on the lattice.
Using a variety of methods such as cooling (39) or inverse blocking (40), one can
produce a smoothed version of the original gauge field configuration and extract
their classical content. Basically, these studies try to distill the instanton liquid
from lattice configurations. The results are in very good agreement with the
parameters of the instanton liquid model. The MIT group (8) also showed that
cooling leaves the correlation functions of light hadrons essentially unaffected.
This clearly suggests that the agreement between the lattice correlators and the
results of the instanton model was not a coincidence. At the moment, very
active work is going on in this direction, and in a few years we will understand
the role of instantons in QCD on a much more quantitative level.

Finally, we would like to mention significant progress in understanding the
role of instantons in supersymmetric extensions of QCD. Supersymmetric the-
ories have the advantage that most higher-order perturbative effects cancel and
instantons are the dominant non-perturbative effect left. An exame=s2
supersymmetric gauge theory, for which the low-energy effective action was
recently determined by Seiberg and Witten (41). The result can be expanded
as a power series in the instanton density, and the coefficients can be checked
against explicit instanton calculations (see 42—-45). In addition to that, Seiberg
and coworkers clarified the vacuum structure of the (more interesting) 1
supersymmetric extensions of QCD. Again, instantons play an important role.
These results can potentially be generalized to non-supersymmetric theories
and, maybe, ultimately to QCD.

CORRELATION FUNCTIONS AS A BRIDGE BETWEEN
VACUUM AND HADRONIC STRUCTURE

In a (relativistic) field theory, correlation functions of gauge-invariant local
operators are the proper tool to study the spectrum of the theory. The correlation
functions can be calculated either from the physical states (mesons, baryons,
glueballs) or in terms of the fundamental fields (quarks and gluons) of the theory.
In the latter case, we have a variety of techniques at our disposal, ranging from
perturbative QCD to the operator product expansion (OPE) to models of QCD
and lattice simulations. For this reason, correlation functions provide a bridge
between hadronic phenomenology on the one side and the underlying structure
of the QCD vacuum on the other side.

Loosely speaking, hadronic correlation functions play the same role for un-
derstanding the forces between quarks ad\tNescattering phase shifts did in
the case of nuclear forces. In the case of quarks, however, confinement implies
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that we cannot define scattering amplitudes in the usual way. Instead, one has
to focus on the behavior of gauge invariant correlation functions at short and
intermediate distance scales. The available theoretical and phenomenological
information about these functions was recently reviewed in (35).

Euclidean point-to-point correlation functions are defined as

T (X) = (01jn(x) jn(0)|0), 1.

where jn(X) is a local operator with the quantum numbers of a hadronic state
h. We will concentrate on mesonic and baryonic currents of the type

jmes(X) = 82PY RO TYP(x), 2.
joar(X) = €25 2AT (X)CTYP )T Y C(x). 3.

Here, a, b, c are color indices and’, I’ are isospin and Dirac matrices. In
the following, we will only consider spacelike separatians: «/—x2. In this
case, correlation functions are exponentially suppressed rather than oscillatory
at large distance.

Hadronic correlation functions can be written in terms of the spectrum and
the coupling constants of the physical excitations with the quantum numbers
of the currentj,,. This connection is based on the standard dispersion relation

(—QH)" / ImII(s)
(02) = 2 ... 4.
(Q9 - s”(Q2—|-s)+a0+alQ +oeeey
and the spectral decompositign(§) = %Iml‘[(s))
p(s=—q% = (21)°>_ 8% — a0 (0ljn()IN)(nl il (0)]0). 5.
n
Here,Q? = —q? is the euclidean momentum transfer and we have indicated

possible subtraction constargts A spectral representation of the coordinate
space correlation function is obtained by Fourier transforming Equation 4,

M(r) = /dSp(S)D(ﬁ, 7), 6.

whereD(m, ) = m/(47%7)K,(mr) is the euclidean propagator of a scalar
particle with massn. Note that for large arguments the correlation function
decays exponentially](r) ~ exp(—mzt), where the decay is governed by the
lowest pole in the spectral function.

Correlation functions that involve quark fields only (like the meson and
baryon currents introduced above) can be expressed in terms of the full quark
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propagator. For an isovector meson currgny = ul'd (wherel is only a
Dirac matrix), the correlator only has a “one-loop” contribution

I, _1(x) = (Tr[S*P(0, x)I'SP3(x, O)I'] ). 7.

The averaging is performed over all gauge configurations, with the weight
function detp + m) exp(—S). Correlators of isosinglet meson curreftsy =
\%(Jl“u + dI"d) receive an additional two-loop, or disconnected, contribution

I, _o(7) = (Tr[S*(0, x)I' SP2(x, 0)I'] ) — 2(Tr[S*3(0, O)I']
x Tr[SPP(x, x)I']). 8.

Analogously, baryon correlators can be expressed as vacuum averages of three
quark propagators.

At short distance, asymptotic freedom implies that the correlation functions
are determined by free quark propagation. Using the free quark propagator
S(X) ~ (v - x)/x* we conclude that mesonic and baryonic correlation func-
tions at short distance behavelges ~ 1/x® andIT,g ~ 1/x°, respectively.
Deviations from asymptotic freedom at intermediate distances can be studied
using the operator product expansion (OPE). The OPE systematically accounts
for the interaction with non-perturbative quark and gluon condensates. Histori-
cally, QCD sum rules based on the OPE played an important role in establishing
the connection between hadronic phenomenology and the structure of the QCD
vacuum.

There are a number of sources for phenomenological information about
hadronic correlation functions (35). The ideal situation is that the spectral
function is determined from the optical theorem and an experimentally acces-
sible cross section, as in the case of the vector-isovector (rho meson) channel
fromo (ete” — (I = 1 hadrony) and in thea; channel from hadronic decays
of thet lepton,I"(t — v, + hadron$. In most cases, the information is much
more limited and only the contribution of a few resonances is known. The high-
energy behavior, of course, can always be extracted from perturbation theory.
Ultimately, the best source of information about hadronic correlation functions
is the lattice. At present, most lattice calculations use complicated nonlocal
sources, but some studies of correlation functions of local sources have been
reported (36, 46).

Concluding this section, we would like to emphasize that any model of the
QCD vacuum or of hadronic structure should be compared to the available in-
formation on hadronic correlation functions. Only in this way can the structure
of hadrons and the effective forces between quarks be connected to the structure
of the QCD vacuum.
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INSTANTONS IN THE QCD VACUUM

Instantons and Tunneling

In this section we remind the reader of a few basic facts about instantons. All of
this material can be found in reviews or textbooks (see for example 47, 48, 4).
Instantons are solutions of the classical equations of motion in imaginary (or
Euclidean) time. This means that, unlike solitons, instantons are not physical
objects in Minkowski space but tunneling paths that connect different vacua of
the theory.

Formally, instantons appear in the context of the semi-classical approxima-
tion to the (Euclidean) QCD partition function

Nt

Z=/DAM exp(—9) [ det(® + my), 9.
f

1
S:—/d“xGa G2 . 10.
492 MY =y

Here,Sis the gauge field action and the determinant of the Dirac opelater
v (8, — 1A,) accounts for the contribution of fermions. In the semi-classical
approximation, we look for saddle points of the functional integral Equation 9,
i.e. configurations that minimize the classical act®m his means that saddle
point configurations are solutions of the classical equations of motion.
These solutions can be found using the identity
S= 4—;2 /d“x {:I:G;‘IUG;’IU + % (G2, ¥62)%, 11.
Whereé,w = 1/2¢,,,,5 G, is the dual field strength tensor (the field strength
tensor in which the roles of electric and magnetic fields are reversed). Since
the first term is a topological invariant (see below) and the last term is always
positive, it is clear that the action is minimal if the field is (anti) self-dual

Ga, = +G3,. 12.
The action of a self-dual field configuration is determined by its topological
charge

1 ~

Q= @/d“x G, G5, 13.
From Equation 11, we hav@= (872|Q|)/g?. For finite action configurations,

Q has to be an integer. The instanton is a solution W@tk 1 (11)

Zna;wxv
X2 + )02’

A2 (x) = 14.
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where the 't Hooft symboks,,, is defined by

€ap H, V= 17 2’ 3a
Napv = Sau v =4, 15.
_Sav n = 4

andp is an arbitrary parameter characterizing the size of the instanton. The
classical instanton solution has a number of degrees of freedom, known as
collective coordinates. In addition to the size, the solution is characterized by
the instanton positior, and the color orientation matriR?” (corresponding to
color rotationsA? — R3PA). A solution with topological charg® = —1 can
be constructed by replacing,., — 7,,,, Wheren,,, is defined by changing
the sign of the last two equations in Equation 15.

The physical meaning of the instanton solution becomes clear if we consider
the classical Yang-Mills Hamiltonian (in the temporal gaugg = 0)

1
H= P /d3x(Ei2+ B?). 16.

whereE? is the kinetic andB? the potential energy term. The classical vacua
corresponds to configurations with zero field strength. For non-abelian gauge
fields this limits the gauge fields to be “pure gaug®” = iU (X)3;U (X)*.

Such configurations are characterized by a topological winding numger
which distinguishes between gauge transformatidtizat are not continuously
connected.

This means that there is an infinite set of classical vacua enumerated by an
integern. Instantons are tunneling solutions that connect the different vacua.
They have potential energy? > 0 and kinetic energ§? < 0, their sum being
zero at any moment in time. Since the instanton action is finite, the barrier
between the topological vacua can be penetrated, and the true vacuum is a
linear combination#) = 5, €"’|n) called the theta vacuum. In QCD, the
value of6 is an external parameter. #f £ 0 the QCD vacuum breaks CP
invariance. Experimental limits on CP violation reqdife< 10-°.

The rate of tunneling between different topological vacua is determined by
the semi-classical (WKB) method. From the single instanton action one expects

Prunneling~ eXp(—872/g?). 17.
The factor in front of the exponent can be determined by taking into account

fluctuationsA, = Aﬁ| + 6A,, around the classical instanton solution. This

2The question why happens to be so small is known as the “strong CP problem.” Most likely,
the resolution of the strong CP problem requires physics outside QCD and we will not discuss it
any further.
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calculation was performed in a classic paper by 't Hooft (15). The result is

0.47 exp—1.68Nc) <8L2>2N° o (_ 2 ) d*zdp
(Ne¢ — DI(N; — 2)! g%(p) p°

whereg?(p) is the running coupling constant at the scale of the instanton size.
Taking into account quantum fluctuations, the effective action depends on the
instanton size. Thisisasign ofthe conformal (scale) anomaly in QCD. Using the
one-loop beta function the result can be writterdas/ (d*z) ~ dpp>(pA)P
whereb = (11N./3) = 11 is the first coefficient of the beta function. Sirze

is a large number, small size instantons are strongly suppressed. On the other
hand, there appears to be a divergence at larda this regime, however, the
perturbative analysis based on the one-loop beta function is not applicable.

The Instanton Liquid

The discussion above concentrated on the effects of a single instanton, but in
orderto understand the structure of the QCD vacuum we have to consider ensem-
bles with a finite densityN/V) of instantons and anti-instantons. Taking into
account the interaction between instantons also provides us with a consistent
method to deal with large size instantons. The instanton ensemble is described
by the following partition function in the space of collective coordinates

N +N- N¢

ZZNZ;l N, IN_ |/ H [d<2i n(pi)] exp(—Snt) - Hdei(D+mf)
: 19.

dn = 18.

whereN,. is the number of (anti) instantord$?; = dU; d*z dp; is the measure
for the collective coordinates (color orientation, position and size) associated
with individual instantons and(p) is the single instanton density given in
Equation 18.

The partition function Equation 19 resembles a statistical mechanics system
of four-dimensional pseudoparticles interacting via the bosonic intera§tion
and the (non-local) fermion determinant @2t+ m¢). This means that we
can evaluate the partition function using standard techniques from statistical
mechanics, like the mean field approximation (MFA), variational methods or
numerical Monte Carlo calculations. We will not go into detail here but refer
the reader to the more extensive review (4). The simplest method is the mean
field approximation. If we ignore all correlations among instantons, the parti-
tion function can be represented in terms of a single instanton distribution

(49)
Ny +N_
Z~ N+|N ' ( /dpu(p)) . 20.
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For smallp, the instanton distribution is given by the single instanton result
Equation 18 while for largep interactions are important and the size distri-
bution is modified. If the average effective interaction between instantons is
repulsive, large instantons are suppressed and the distribution is peaked at some
average size. Precisely how to define the interaction between very close (or
very large) instantons is not very well understood. We will come back to this
problem in the next section.

Let us mention a few simple predictions of the instanton liquid model. First,
we would like to consider the gluon condensate. The volume integ@f af
the field of a single instanton is 32, independent of the size of the instanton.
If we can ignore interactions between instantons, we get

2y 2 E
(G)_(32n)<v>. 21.

Due to tunneling, the energy density of the QCD vacuum is less than that
of the perturbative vacuum (which we take to be zero). The classical energy
density inside an instanton is zero everywhere (this is true for any self-dual field
configuration), but quantum mechanically this result is modified. Consistency
with the QCD trace anomaly requires that

b /N
€e=—|—, 22.
:(v)

whereb is the first coefficient of the beta function. This means that the energy
density of the non-perturbative vacuum is about 1 @e¥? lower than the
perturbative one.

Finally, let us consider the topological susceptibility, which is related to
fluctuations of the topological charge. If the theta angle is zero, the average
topological chargeQ) = ((N. — N_)) vanishes. In pure gauge theory, the
instanton ensemble is fairly random and local fluctuations of the humber of
pseudoparticles are Poissonian. This means(fat— N_) ~ +/N and

e Q) ((Np—ND?) /N
e g (1)

In the presence of light quarks, the situation is more complicated. Light quarks
lead to correlations between instantons and anti-instantons and the topological
charge is screenegop ~ m(qq) and vanishes in the chiral limit. This result
has important consequences for the properties ofthgeson.

Phenomenology of the Instanton Liquid

In order to determine the total tunneling rate in QCD from the standard semi-
classical theory, one has to face the problem connected with large size instan-
tons. We have seen that one way to solve this problem is to have a repulsive
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effective interaction between instantons. However, in the relevant regime the
interaction is not very well defined.

In this section, we want to give a review of the available information on the
instanton distribution in QCD, coming from both hadronic phenomenology and
the lattice. The first attempt of this type was made by Shifman et al in (50).
These authors used the value of the gluon condeK@&@ /w) |0) ~ 0.5GeV*
obtained from a QCD sum rule analysis of the charmonium spectrum (17). If
the gluon condensate is dominated by (weakly interacting) instantons, then we
can estimate their density from Equation 21. This estimate providepper
limit for the instanton density

N

(V) < 3—217,2<(Giv)2> ~ 1fm™* 24.

A similar estimate can be obtained from the (pure gauge) topological sus-
ceptibility. The value ofx:op in quenched QCD can be estimated from the
Witten-Veneziano relation (51, 22)

Xiop = 2f2(mf + m7 —2mg ) = (180 MeV)*. 25.
Using Equation 23, we again ge¥l/V) ~ 1 fm™,

The other important parameter characterizing the instanton ensemble is the
typical instanton size. Ifthe total tunneling rate can be calculated from the semi-
classical 't Hooft formula, then we can estimate the critical size by determining
the maximum size up to which the rate has to be integrated in order to reproduce
the phenomenological instanton density

Pmax
/ dp Nsci(p) = Nphen 26.

Usingnphen= 1fm~4, Shifman et al concluded thagax ~ 1 fm. Thisis a very
pessimistic result, because it implies that there are no individual instantons and
that their action is not large, so the semi-classical approximation is useless.
However, if instantons interact, the situation may be different. The role of
interactions can also be estimated using the value of the gluon condensate

4 4
dn = o) 1+ S5 ((G1)7) 4 | 27,

Using the canonical value of the gluon condensate, we see thatf00.2 fm
the interaction of instantons with the gluon condensate cannot be neglected.
Also, we observe that interactions lead to a tunneling rate that grows faster than

3A more extensive discussion of the current status of this problem can be found in (4).
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the semi-classical rate. Based on this result, one of us (23) suggested that the
typical instanton size is significantly smaller,

Pmax 1/3 fm. 28.

If the average instanton is indeed small, we obtain a completely different picture
of the QCD vacuum:

1. Since the instanton size is significantly smaller than the typical separation
R between instantong,/R ~ 1/3, the vacuum is fairly dilute. The fraction
of spacetime occupied by strong fields is only a few percent.

2. The fields inside the instanton are very str@g > A2. This means that
the semi-classical approximation is valid, and the typical action is large

S = 872/g%(p) ~ 10— 15> 1. 29.

Higher-order corrections are proportional t6§ and presumably small.

3. Instantons retain their individuality and are not destroyed by interactions.
From the dipole formula, one can estimate

18Snt] ~ (2—-3) < K. 30.

4. Nevertheless, interactions are important for the structure of the instanton
ensemble, since

expldSnel ~ 20> 1. 31.

This implies that interactions have a significant effect on correlations among
instantons; the instanton ensemble in QCD is not a dilute gas but an inter-
acting liquid.

Improved estimates of the instanton size can be obtained from phenomeno-
logical applications of instantons. The average instanton size determines the
structure of chiral symmetry breaking, in particular the values of the quark
condensate, the pion mass, its decay constant and form factor. We will discuss
these observables in more detail below.

The most direct way to determine properties of the instanton liquid is pro-
vided by numerical simulations on the lattice. In these simulations one can
identify individual instantons and study their distribution. In practice, this is a
very technical subject and we will not go into much detail here. The simplest
method of this type is the cooling algorithm, which is based on locally mini-
mizing the action in order to extract the semi-classical content of a given gauge
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Figure 2 Cooled lattice configuration (on a Euclidean time slice5id(3) gauge theory with
dynamical quarks, from (52). The dark dots represent the topological charge distribution and the
light dots the chiral condensate.

configuratiortt After the quantum noise disappears, one can identify classical
objects and determine their properties. As an example, Figure 2 shows the
topological charge distribution in a cooled lattice configuration (52). Also plot-
ted is the distribution of the quark condensate, showing that there is a strong
correlation of the condensate with instantons. From an analysis of many con-
figurations of this type, the MIT group of Chu et al concludes that the instanton
density in pure gauge QCD (4.3— 1.6) fm~*(8). This number is indeed quite
close to the estimates presented above.

4There are several problems with this method. For example, instantons and anti-instantons tend
to annihilate during the cooling procedure.
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The average instanton size can be obtained by fitting the topological charge
correlation function after cooling. The fitis very good and gives an average size
o = 0.35fm (8). More detail is provided by measurements of the instanton
size distribution. Recently the first lattice study of this type was performed
for purge gaugesU(2) (53). The result qualitatively agrees with the semi-
classical prediction for small radii (although for smajldistortions due to the
finite lattice size are important), but shows a strong suppression of large-size
instantons. As emphasized above, the physical mechanism for this effect is not
adequately understood. The lattice result can be described either in terms of a
repulsive core in the instanton interaction, or by non-perturbative modifications
of the beta function that enters the single instanton distribution (54).

INSTANTONS AND LIGHT QUARKS

Zero Modes and the (1), Anomaly

In the last section we showed that instantons interpolate between different
topological vacua in QCD. It is then natural to ask if the different vacua can
be physically distinguished. This question is answered most easily in the pres-
ence of light fermions, because the different vacua have different axial charge.
This observation is the key element in understanding the mechanism of chiral
anomalies.

Anomalies first appeared in the context of perturbation theory (55, 56). From
the axial vector-two gluon (AW) triangle diagram current one finds that the
flavor singlet current which is conserved on the classical level develops an
anomalous divergence on the quantum level

iy = 1'?'—&;203@;. 32.
This anomaly plays an important role in QCD, because it explains the absence
of a ninth Goldstone boson, the so-callédl) o puzzle.

The mechanism of the anomaly is intimately connected with instantons.
First, we recognize the integral of the RHS of Equation 32 [dsQ@, where
Q is the topological charge. This means that in the background field of an
instanton we expect axial charge conservation to be violatedNpyiRits. The
crucial property of instantons, originally discovered by 't Hooft, is that the
Dirac operator has a zero mod@o(x) = 0 in the instanton field. For an
instanton in the singular gauge, the zero mode wave function is

P 1 y -X1+ys
T (X2 + ,02)3/2 /X2 2 ’

whereg®™ = ¢*™//2 is a constant spinor, which couples the color inde®

Yo(X) = 33.
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the spin indexm = 1, 2. Note that the solution is left-handeg /o = — .
Analogously, in the field of an anti-instanton there is a right-handed zero mode.

We can now see how axial charge conservation is violated during tunneling
(57,58). For this purpose, let us consider the Dirac HamiltoiianD in the
field of the instanton. The presence of a 4-dimensional normalizable zero mode
implies that there is one left-handed state that crosses from positive to negative
energy during the tunneling event. This can be seen as follows: In the adiabatic
approximation, solutions of the Dirac equation are given by

t
Yi(X, 1) = i (X, t = —o0) exp(— / dt’ € (t’)). 34.
—0oQ0

The only way we can have a 4-dimensional normalizable wave function is if
€; is positive fort — oo and negative fot — —oo. This explains how axial
charge can be changed during tunneling. No fermion ever changes its chirality;
all states simply move one level up or down. The axial charge comes, so to say,
from the “bottom of the Dirac sea.”

The Effective Interaction Between Quarks

Proceeding from pure glue theory to QCD with light quarks, one has to deal with
the much more complicated problem of quark-induced interactions. Indeed,
on the level of a single instanton we cannot even understand the presence of
instantons in full QCD. The reason is again related to the existence of zero
modes. In the presence of light quarks, the tunneling rate is proportional to the
fermion determinant, which is given by the product of the eigenvalues of the
Dirac operator. This means that (@s— 0) the tunneling amplitude vanishes

and individual instantons cannot exist!

This result is related to the anomaly: During the tunneling event, the ax-
ial charge of the vacuum changes, so instantons have to be accompanied by
fermions. The tunneling amplitude is non-zero only in the presence of external
guark sources, because zero modes in the denominator of the quark propaga-
tor can cancel against zero modes in the determinant. Consider the fermion
propagator in the instanton field

wo(X)l/fo (y) Ly v @) U (0¥ () 35,

S(x, y) = rim

10
whereiDy; = Ay, For N; light quark flavors the instanton amplitude is
proportional tomN'. Instead of the tunneling amplitude, let us calculate a
2N¢-quark Green'’s functiof[ [ ; ¥ ¢ (Xt )¢ (Y1)}, containing one quark and
antiquark of each flavor. Performing the contractions, the amplitude involves
N; fermion propagators Equation 35, so that the zero mode contribution in-
volves a factomN' in the denominator.
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The result can be written in terms of an effective Lagrangian (15). Itis a
non-local ¢ -fermion interaction, where the quarks are emitted or absorbed in
zero mode wavefunctions. The result simplifies if we take the long wavelength
limit (in reality, the interaction is cut off at momerita> p~1) and average over
the instanton position and color orientation. Bor = 1 the result is (59, 60)

3

whereng(p) is the tunneling rate. Note that the zero mode contribution acts
like a mass term. FON; = 1, there is only one chirdJ (1) symmetry, which

is anomalous. This means that the anomaly breaks chiral symmetry and gives
a fermion mass term. This is not true for more than one flavor. Nfoe 2,

the result is

4 3 /4 2
Lni=2 = /dp No(p) lH (mp - é”zpsaf,RQf.L> + 7 (§JT2P3>

f

4, .
Lng-1 = /dp No(p) (mp -~ —nzpquqL>, 36.

X (JRAauLaRkadL — JROMV)\auLd_RUILU)LadL> . 37.

One can easily check that the interactioB14(2) x SU(2) invariant, butJ (1) o

is explicitly broken. This Lagrangian is of the type first studied by Nambu and
Jona-Lasinio (1) and widely used as a model for chiral symmetry breaking and
as an effective description for low-energy chiral dynamics (61, 62, 63).

Unlike the NJL model, however, the instanton-induced interaction has a
natural cut-off parameter, and the coupling constants are not free parameters,
but determined by a physical quantity, the instanton density. The interaction is
attractive for quark-antiquark pairs with the quantum numbers ofrthedo
meson. If the interaction is sufficiently strong, it can rearrange the vacuum and
lead to quark condensation and a light (Goldstone) pion. We will study these
phenomena in much more detail below.

The Quark Condensate in the Mean Field Approximation

We showed in the last section that in the presence of light fermions, tunneling
can only take place if the tunneling event is accompaniel pfermions which
change their chirality. But in the QCD vacuum, chiral symmetry is broken and
the quark condensat@qg) = (qLgr + QrdL) iS non-zero. This means that
there is a finite amplitude for a quark to change its chirality and we expect the
instanton density to be finite.

For a sufficiently dilute system of instantons, we can estimate the instanton
density in full QCD from the expectation value of thi 2 fermion operator in
the effective Lagrangian Equation 37. Using the factorization assumption (17),
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we find that the factof[; ms in the instanton density should be replaced by
[1; m%, where the effective quark mass is given by

2 _
mi =my¢ — énZPZ(Qfo)- 38,

This shows that if chiral symmetry is broken, the instanton density is finite in
the chiral limit.

This obviously raises the question whether the quark condensate itself can be
generated by instantons. This question can be addressed using several different
techniques (for a review, see 4,64). One possibility is to use the effective
interaction Equation 37 and to calculate the quark condensate in the mean field
(Hartree-Fock) approximation. This corresponds to summing the contribution
of all“cactus” diagrams to the full quark propagator. The resultis a gap equation
(26)

d’k  M?k) N 39

(2m)4 k2 + M2(k) ~ 4NV’ '
which determines the constituent quark m&sg) in terms of the instanton
density(N/V). Here,M (k) = M(0)k?¢’?(k) /(27 p) is the momentum depen-
dent effective quark mass agd(k) is the Fourier transform of the zero mode
profile Equation 26. The quark condensate is given by

d*k M (k)
‘) (27r)4 M2(k) 4 k2

Using our standard parameteid/V) = 1fm~* andp = 1/3 fm, one finds

(qg) ~ —(255 MeV)® and M(0) = 320 MeV. Parametrically(qq) ~
(N/V)Y2p=2 and M(0) ~ (N/V)¥2p. Note that both quantities are pro-
portional not to(N/V), but to (N/V)¥2. This is a reflection of the fact that
spontaneous breaking of chiral symmetry is not a single instanton effect, but
involves infinitely many instantons.

A very instructive way to study the mechanism for chiral symmetry breaking
at a more microscopic level is by considering the distribution of eigenvalues of
the Dirac operator. A general relation that connects the spectral dergsity
of the Dirac operator to the quark condensate was given by Banks and Casher
(65),

(@q) = —mp(0). 41.

This result is analogous to the Kondo formula for the electrical conductivity.
Just like the conductivity is given by the density of states at the Fermi surface,
the quark condensate is determined by the level density at zero virtuakiyr

a disordered, random, system of instantons the zero modes interact and form

(@q) = —4N 40.
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a band around = 0. As a result, the eigenstates are delocalized and chiral
symmetry is broken. On the other hand, ifinstantons are strongly correlated, for
example bound into topologically neutral molecules, the eigenvalues are pushed
away from zero, the eigenstates are localized and chiral symmetry is unbroken.
As we will see in Section 6, precisely which scenario is realized depends on the
parameters of the theory, like the number of light flavors and the temperature.
Of course, for “real” QCD with two light flavors af = 0, we expect chiral
symmetry to be broken. This is supported by numerical simulations of the
partition function of the instanton liquid (38).

HADRONS AND CORRELATORS

Quark Propagation in the Instanton Liquid

In Section 2 we saw that hadronic correlation functions are the basic tool to
study hadronic spectroscopy. We also emphasized that hadronic correlators are
determined by ensemble averages of traces involving the fermion propagator.
For this reason, we want to start by studying the propagation of quarks in the
instanton liquid in a little more detail.

The quark propagator is defined Byx, y) = (x|(iD + im)~Y|y). Inthein-
stanton liquid, a distinguished role is played by the zero modes of the individual
instantons. We therefore write the propagator as

1
S(x, y) = <x>( . > F(y) + Sum(x, y), 42,
y %:wl Tim IJwJ y y

wherey, is the zero mode wave function associated with theinstanton,
T3 = (Y [iR]¥;) is a matrix element of the Dirac operator aBd,, denotes
the non-zero mode part of the quark propagator. The propagator Equation 42
has a simple interpretation: quarks propagate in the instanton liquid by jumping
from one instanton zero mode to the other. The amplitude for this process is
controlled by the hopping matrix elemenits .

In the vicinity of a given instanton, the propagator is dominated by the con-
tribution of the closest instantdn= 1,

Y1 00w, (y)

m*

S, y) = 1lf|*(X)< 43.

1 ~
T+im)|*|;//|*(y) x>

As a result, the propagator looks like the propagator Equation 35 in the field
of a single instanton, but with the current mass replaced by an effective mass
(m9~t = N-13(x +im)~L. In the mean field approximation, we have
m* = mp(2n/3)Y/2,

The propagator Equation 43 can be used to estimate the effects of single
instantons on hadronic correlation functions. The effect of interactions is only
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represented by the effective mass which takes into account that chiral sym-
metry is broken. As an example, let us consider the pion correlation function.
In the single instanton approximation, we have (20)

9% [4g? [ &2 &,  1+¢&

SA zt/a = = log——
= (%) o (p) 2(m*)28(x2)2 < 1_$2+2091_S ;
44,

where£? = x?/(x? + 4p?). The result is shown in Figure 3, normalized to
B T T T T T T T T T T T T /6_
- o latt . Bl
L 5 RILM & i
—=— LM )3
§//

/1o

T[fm]

Figure 3 Pion, rho meson and eta prime correlation functions. All correlators are normalized to
their perturbative behavior. We show the results in the random (RILM) and interacting instanton
liquid (IILM), the single instanton approximation (SIA) and the random phase approximation

(MFA), compared to quenched lattice results reported in (46).
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the perturbative contribution. Clearly, instantons provide a strongly attractive
interaction in the pion channel. If we repeat this simple exercise in other meson
channels, we find that the same attraction also operates in thesadlannel,

but that the interaction in the and the scalar-isovectérchannel is repulsive.
Also, onthis level thereis noinstanton contribution to the vector meson channels
P, a1, w, bl.

The single-instanton contribution correctly describes the correlation func-
tions at intermediate distances> (0.2 — 0.5) fm. However, in order to under-
stand the large distance behavior and accommodate the formation of hadronic
bound states, we have to sum up the effects of the single instanton ('t Hooft)
interaction. In the next section we will present numerical results in which this
has been accomplished by inverting the Dirac operator in the zero mode zone.
Before we get to this, we would like to discuss a simpler method where the
effective interaction (37) is treated in the random phase approximation (RPA).
This amounts to summing all “fish” diagrams in the correlation function. The
result can be written dgRPA(x) = MMM (x) + T (26, 66, 67), wher@IM™
denotes the mean field contribution and

. . +1
M (x =/d4 d9X5(q) —————TI'5(q). 45,
2 (X) q S(q)lq:C5(q) 5(@)
Here,Cs denotes the elementary loop function drykhe vertex function
\% d*p MiMy(M{M; — py -
Cs(@) = 4N, (—) P21 22( Sl 52), 46.
N @m)* (M + pf) (M3 + p3)

4p MMz (MM, — py -
rs(q)=4/dp 1Mz(MiM, — py pz), 47,

@m* (M + p?) (M2 + p3)

with p1 = p+q/2, p = p—0/2 andM; 2 = M(p12). Equation 45 has

the typical form of an RPA correlator which arises from summing a geometric
progression of elementary bubbles. The pion channel is very attractive and has
apoleif 1- Cs(q) = 0. Itis easy to check that for massless current quarks this
condition is satisfied fog? = 0, corresponding to a massless pion. The pion
decay constant is given by

(2 _ d*p  M%(p)

4N ~ (100 MeW)?, 48.
n=MNe [ i M2 v

in good agreement with experiment. Parametrically~ o(N/V)Y? ~ p~1
(p*N/V)¥2 so f, is small because the instanton liquid is diluge?N/V)1/?
~ 1/10.
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Light Hadrons in the Instanton Liquid

In order to go beyond the mean field approximation and to study channels that
do not receive first-order instanton contributions, it is desirable to calculate
the correlation functions to all orders in the 't Hooft interaction. This can
be achieved by performing numerical calculations in the interacting instanton
liquid (32, 33, 34). These calculations are done in two steps.

First, we have to construct the appropriate instanton ensemble. This is ac-
complished by performing Monte Carlo simulations of the partition function
(19). We have considered correlation functions in three different ensembles, the
random ensemble (RILM), the quenched (QILM) and fully interacting (IILM)
instanton ensembles. In the random model, we completely ignore the interac-
tion between instantons and all collective coordinates are distributed randomly
(except for the size, which is kept fixed). In the quenched approximation,
the ensemble takes into account correlations due to the bosonic interaction,
while the fully interacting ensemble also includes correlations induced by the
fermion determinant. In both cases, the instanton density and size distribution
are determined self-consistently.

The second step is the calculation of the fermion propagator and the hadronic
correlation functions in a given ensemble. The propagator is constructed based
on Equation 42, using the analytically known zero mode wave functions and
overlap matrix elements, as well as the non-zero mode propagator in the field of
a single instanton. The correlation functions are trac&#)l" S(—z)I"] and
tr[S(z)I'S(r)['S(7)T"] for mesons and baryons, respectively, averaged over
the instanton ensemble. Note that the averaging automatically includes the
interaction to all orders, not just the one-loop graph. Finally, we determine the
mass and the coupling constant of the lowest resonance by fitting the correlation
function with the spectral representation Equation 6, using a simple model for
the spectral function.

As an example we show the results in theo, " meson andN, A baryon
channelsin Figures3and 4. Inthe pion channel, theinteractionis very attractive,
as one can see from the single instanton approximation (SIA). For distances
x > 0.5fm, the single instanton vertex has to be resummed in order to reproduce
the full correlation function. The RPA correlator is somewhat larger than the
correlator in the fully interacting ensemble, but the difference is essentially
due to different values of the quark condensate (and the fact that, for technical
reasons, the interacting correlator is calculated for a fairly large current quark
mass). Both correlation functions correspond to the right value of the pion
mass> In Figures 3 and 4, we also show quenched lattice results reported in

5In the case of the interacting ensemble, the pion mass has to be extrapolated to physical values
of the current quark mass.
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Figure 4 Nucleon and delta correlation functions. All correlators are normalized to their perturba-
tive behavior. We show the results in the random (RILM) and interacting instanton liquid (I1ILM),
the operator product expansion (OPE) and the mean field approximation (MFA), compared to
quenched lattice results reported in (46).

(46). These results should be compared with the quenched (QILM) instanton
model predictions, and indeed the agreement is quite good.

In the case of the’, both the single-instanton approximation and the RPA
are too repulsive. This is one of the few channels where the quenched ap-
proximation leads to completely wrong results and correlations induced by the
fermion determinant are crucial in order reproduce experiment. Inthe quenched
approximation, the correlation function becomes unphysicakfer 0.5 fm.

In the full ensemble, topological charge screening leads to the formation of
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Table 1 Meson parameters in the different instanton
ensembles. All quantities are given in units of GeV.
For technical reasons the current quark massis=

mq >~ 20MeV. Except for the pion mass, no attempt
has been made to extrapolate the parameters to physical
values of the quark mass

Unquenched Quenched RILM

my 0.265 0.268 0.284
m; (extr.) 0.117 0.126 0.155
Ax 0.214 0.268 0.369
fr 0.071 0.091 0.091
m, 0.795 0.951 1.000
9y 6.491 6.006 6.130
Mg, 1.265 1.479 1.353
Oay 7.582 6.908 7.816
My 0.579 0.631 0.865
ms 2.049 3.353 4.032
Mins 1.570 3.195 3.683

instanton—anti-instanton pairs, which provide an attractive interaction that bal-
ances some of the repulsion.

In the rho-meson channel the correlation function is close to the free cor-
relator for all distances up t& ~ 1.5fm. Note that there is no first order
instanton-induced interaction, so the mean field approximation corresponds
to non-interacting constituent quarks. Taking the interaction into account to
all orders, there is some binding in themeson channel. In the full ensem-
ble, we findm, = 795 MeV, in good agreement with the experimental value
m, = 770 MeV. Amore detailed comparison of the results in differentinstanton
ensembles can be found in Table 1.

The chiral-even component of the nucleon and delta correlation functions
is shown in Figure 4 [see (33) for a definition of the independent correlation
functions]. The most important point is that the nucleon correlation function is
much more attractive than the delta correlator. This is not captured by the OPE
or the mean field approximation but is in agreement with lattice results (36).
The nucleon mass sy = 1.019 GeV, in good agreement with experimént,
while the delta resonance is somewhat too heavy (see Table 2).

There are many more correlation functions that have been studied in the
instanton liquid (see 4 and the original literature). In addition to hadrons made
of light quarks, a number of authors have studied heavy-light (5, 32, 68) and

6Again, the current-quark mass is heavier than the physical value.



Annu. Rev. Nucl. Part. Sci. 1997.47:359-394. Downloaded from arjournals.annualreviews.org
by NORTH CAROLINA STATE UNIVERSITY on 04/24/09. For personal use only.

386 SHURYAK & SCHAFER

Table 2 Baryon parameters in different instanton
ensembles. All quantities are given in units of GeV.
The current quark mass g, = mq >~ 20 MeV,
larger than the physical value

Unquenched Quenched RILM

My 1.019 1.013 1.040
A 0.026 0.029 0.037
23 0.061 0.074 0.093
ma 1.428 1.628 1.584
ra 0.027 0.040 0.036

heavy quark systems (69) as well as glueballs (6). The instanton model reaches
its limitations when one goes to systems that are dominated by the Coulomb
interaction or confinementforces, such as heavy quark systems. We have argued
that instantons play an important role in scalar glueball channels (6). Instantons
are localized regions with a very large field strength that correspond to a strong
attractive interaction in the scalar0 glueball channel and a very repulsive
force in the pseudoscalar® channel. This is compatible with the fact that

the scalar is the lightest glueball while the pseudoscalar is significantly heavier,
and with lattice measurements that indicate a very compact wave function for
the scalar glueball (70).

THE PHASES OF QCD

In this section we want to give a brief discussion of current ideas concerning
the phase structure of QCD and QCD-like theories. This includes QCD at high
temperature, non-abelian gauge theory for different numbers of cloasd

flavors N¢, and supersymmetric extensions of QCD which include additional
fields such as gluinos (fermions in the same color representation as the gluon)
and scalar partners of quarks (squarks). The reader should be warned that, unlike
the material above, which is based on a lot of data analysis and detailed lattice
studies, many of these ideas are not yet firmly established and are currently
under intense discussion.

Heating the Vacuum

At sufficiently high temperature (and/or density) QCD is predicted to undergo

a phase transition to a new state (referred to as the quark-gluon plasma, QGP)
in which chiral symmetry is restored and color changes are screened rather than
confined. Lattice simulations suggest that the critical temperdatufer the
transition in the presence of two light flavors is around 150 MeV. Temperatures
in this range are reached in heavy-ion collisions at the Brookhaven AGS (about
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2 + 2 GeV per nucleon in the center of mass system), CERN SPS (abaut 10
10 GeV), but only for a very short time. In the near future, the dedicated heavy
ion collider RHIC (1004 100 GeV), now under construction in Brookhaven,
will allow us to study these conditions in greater detail.

In order to interpret these experiments, we need to understand the properties
of hadrons and hadronic matter near and above the phase transition. But before
we can hope to accomplish this, we have to understand how the vacuum is re-
arranged when chiral symmetry is restored. Ifinstantons provide the mechanism
for chiral symmetry breaking & = 0, one expects them to play an important
role atT ~ T, as well.

Formally, extending the instanton liquid model to finite temperature is rather
straightforward. In Euclidean space, considerihg: 0 corresponds to mak-
ing the Euclidean time direction periodic. The length of the Euclidean time
axis is determined by the inverse temperatuygy = 1/ T. Finite temperature
instantons, i.e. solutions to the classical Yang-Mills equations subject to peri-
odic boundary conditions, are known analytically. These solutions have action
S = 8r/g? and topological charg® = 1, independent of .

It was realized early on that at high temperature instantons should be sup-
pressed (71). Therefore, it was generally assumed that chiral symmetry restora-
tion is a consequence of the disappearance of instantons with Aighéow-
ever, more recently it was argued thmlow the phase transitiomstantons
should not be suppressed (72). This idea was confirmed by lattice measure-
ments of the topological susceptibility (73), which found little change in the
topological susceptibility fof < T, and the expected suppressionTor T..

This is consistent with the idea that instanton suppression is a reflection of De-
bye screening (10), which is a plasma effect.

If instantons do not disappear, then the phase transition has to be caused by
a rearrangement of the instanton liquid. It was suggested that chiral-symmetry
restoration involves a transition from a random phase bélpte a correlated
phase of instanton—anti-instanton molecules alg{e4, 75). These molecules
correspond to the most symmetric configuration of an instanton—anti-instanton
pair on the Matsubaratorus. The two instantons are at the same spatial point but
separated by half the Matsubara box in time, = 1/(2T). We have verified
that this configuration provides a very large attractive interaction. The effectis
maximal when the molecule exactly fits onto the torus, i,e.~41/T. From
the standard valug ~ 0.33 fm, we obtain the estimafe ~ 150 MeV, close
to the expected transition temperature.

We have studied the phase transition in numerical simulations of the in-
stanton liquid and explored a number of physical consequences (6). The
simulations support the basic mechanism outlined above. As an example,
Figure 5 shows a typical snapshot of the instanton ensemble below and above
the phase transition. AbovR, we clearly observe the formation of polarized
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instanton—anti-instanton moleculesn addition to that, many thermodynamic
parameters, the spectra of the Dirac operator, the quark condensate, chiral sus-
ceptibilities and hadronic correlation functions were calculated (38, 77). The
results are consistent with the available lattice data. However, some unexpected
results were also found. In particular, there are indications that certain hadronic
states (especially scalar and pseudoscalar mesons) survive the phase transition
as resonances in the quark continuum.

Phase Structure of QCD-Like Theories

A promising way to understand the role of dynamical quarks in QCD is to study
the structure of QCD with more light flavors (in the following we will always fix

the number of colordl. = 3). If the number of flavors is too larghl; > 33/2,
asymptotic freedom is lost and we get a theory very much like QED, where the
charge grows with distance. The largest number of light flavors we can have
and still keep asymptotic freedomMi; = 16. In the following, we will try to
understand what happensNf; is gradually reduced (see Figure 6). For large
N¢, QCD is in a conformal phase (78). The running coupling constant has an
infrared fixed point ag?/16n2 = —b/b’ « 1, whereb, b’ are the one- and
two-loop coefficients of beta function. N is close to 33/2g? is small, so the
perturbative analysis is reliable. The existence of an infrared fixed point im-
plies that the theory is not only asymptotically free at short distance, but that the
coupling freezes at some fixed value before it becomes large. There is no mass
gap and correlators decay as powers of the distance. All non-perturbative phe-
nomena (including instantons) are exponentially suppresse¢;-egpsyg?).

As the number of flavors is decreased the value of the fixed point coupling
becomes larger and the fixed point eventually disappears. Lattice simulations of
multi-flavor QCD were recently reported in (79). These authors studied QCD
with up to 240 flavors. From the sign of the beta function in the weak and strong
coupling domains, they confirmed the existence of an infrared fixed point for as
few asN; = 7 flavors. Below that point, we expect chiral symmetry breaking
and confinement to set in, possibly with a number of intermediate phases such
as a non-abelian Coulomb phase, or a phase with chiral symmetry breaking but

"The phase transition shows an amusing similarity to the Koesterlitz-Thouless transition (76)
in the two-dimensional O(2) sigma model. In this case, the transition connects a low-temperature
phase of vortex-antivortex pairs with a high-temperature vortex plasma (note that the two phases
are interchanged as compared to QCD).

Figure 5 Typical instanton ensembles fdr = 75 and 158 MeV, from (38). The plots show
projections of a four-dimension&BA —1)3 x T~1 box into the 3-4 ¢ axis-imaginary temperature)
plane. Instantons and anti-instanton positions are indicateg &yd— symbols. The lines show
the strength of the fermion hopping matrix elements (bonds).
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Figure 6 Schematic phase diagram of QCD (a) and supersymmetric QCD (b) as a function of the
number of colors\; and the number of flavold ;. Squares show points where lattice simulations
have found an infrared fixed point and dots denote points in the phase diagram where the instanton
ensemble is purely molecular, with unbroken chiral symmetry.

no confinement. Clearly, there remains a lot of work to be done in order to
clarify the phase structure of QCD with many flavors.

Known results for the interacting instanton model can be summarized as
follows. ForN; = 2 we found a second order phase transition at finite tem-
perature. FoN; = 3 the transition becomes weakly first order. The transition
temperature decreases with increagihgand fof N¢ > 5 one finds that chi-
ral symmetry is restored even @it = 0. This is in agreement with lattice
results obtained by the Columbia group (R. Mawhinney, private communica-
tion). ForN; = 4they found a dramatic reduction in chiral-symmetry breaking
effects as compared th; < 3. In particular, the observed mass splittings
7T —o,p —a, N— N*(1/27) are much smaller. This suggests that chiral
restoration is nearby, similarly to what was found in the instanton calculations.

Now we would like to return to Figure 6, and explain its second part, the phase
structure ofN = 1 SUSY QCD (80). Supersymmetric QCD contains a number

8Note that even if chiral symmetry is restored in the instanton liquid simulations, there is still the
possibility of weak chiral symmetry breaking due to very large instantons (see the discussion in 4).
However, the quark condensate would be much smaller and hard to observe in lattice simulations.
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of additional fields, fermions with the color structure of gluons (gluinos) and
scalar partners of quarks (squarks). These scalar fields act like the Higgs field
in electroweak theory. In particular, the tunneling rate is small if the squark
vacuum expectation value is large. Supersymmetric theories have a number
of theoretical advantages over ordinary QCD. For example, many perturbative
effects cancel and instanton effects are more easily identified. Furthermore,
supersymmetry greatly constrains the structure of the effective potential and
the phase diagram Figure 6 is completely determined.

In the case of SUSY QCD, the existence of a conformal phase, a Coulomb
phase and a chirally broken, confining phase are established. In addition to
that, the theory has two unusual phases (presumably absent in QCD): a phase
without a stable ground state and a phase with unbroken chiral symmetry but
confinement. The instability foN; < N — 1 is caused by the contribution
of instanton—anti-instanton molecules to the vacuum energy (unlike QCD, this
contribution can be calculated reliably). Also, it is amusing to note that chiral
symmetry is restored &ty = N, + 1, similar to what was found for QCD in
the instanton model.

As mentioned in the introduction, instanton calculations can be checked in
even more detail in the case Nf = 2 supersymmetric QCD. This theory has
an additional supersymmetry, and even more fermion and scalar fields. The
theory has neither confinement nor chiral symmetry bred&king we will not
discuss its phase structure any further.

SUMMARY AND OUTLOOK

With this review, we want to draw attention to a number of recent results in non-
perturbative QCD. These developments have helped to identify instantons as
a dominant phenomenon connecting the underlying gauge theory to the effec-
tive description of QCD at low momenta. The typical instanton size is small,
and p~! sets the scale that determines both the lower boundary of perturba-
tive QCD and the upper boundary of effective chiral Lagrangians. Instantons
provide a microscopic mechanism for chiral symmetry breaking and explain
how pointlike “current” quarks become massive and extended “constituent”
quarks.

Progress was made possible by two developments. First, a large number of
hadronic correlation functions were calculated in the instanton liquid model.
These correlators are available both quenched and unquenched, with the instan-
ton induced interaction included to all orders. The results have been compared
with both phenomenology and the lattice, showing very good agreement. More

9The main interest dfl = 2 SUSY QCD comes from the fact that the theory becomes confining
if slightly perturbed tdN =1 QCD. The confinement mechanism is monopole condensation.
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accurate comparisons will be possible as soon as more detailed (unquenched!)
lattice calculations become available. In particular, at some point one should
be able to see the effects of phenomena not included in the instanton model,
such as confinement.

Second, there has been a lot of progress in direct studies of instantons on
the lattice. There are data concerning the total density, the typical size, the
size distribution and correlations between instantons. Furthermore, there are
detailed studies of the mechanism({l1) o violation, and of the behavior of
correlation functions under cooling. Recent investigations have begun to focus
on many interesting questions, like correlations of instantons with monopoles.

Let us briefly summarize the basic picture of the QCD vacuum that has
emerged from the instanton liquid model. The main point is that the gauge
fields are very inhomogeneous. Strong, polarized fields are concentrated in
small regions of space-time. Quark fields, on the other hand, cannot be local-
ized inside instantons. In order to have a finite tunneling probability, quarks
have to be exchanged between instantons and anti-instantons. This difference
leads to significant differences between gluonic and fermionic correlation func-
tions. Gluonic correlators are short-range and the mass scale for glueballs is
significantly larger than that for mesons. In addition to that, the fact that the glu-
onic fields are strongly polarized leads to large spin splittings in both glueballs
and light mesons.

While the instanton liquid picture works well, there are still open questions
concerning its theoretical justification. We still do not understand why large-
size instantons are suppressed. On a phenomenological level we can account
for this fact by including a repulsive core in the instanton—anti-instanton inter-
action, but the physical nature of this interaction has not been clarified. The
problem is related to the interplay between instantons and high-order pertur-
bative contributions. In this context, studies of SUSY gauge theories might be
useful, because perturbative contributions are simpler.

We have also discussed implications of the instanton liquid model for the
behavior of QCD at finite temperature. The most important development in
this field has been the realization that instantons are not suppressed at temper-
aturesT < T, but only disappear at significantly higher temperatures. This
implies that there are a number of non-perturbative effects caused by instantons
even in the plasma phase. We have argued that the transition is caused by a re-
arrangement of the instanton liquid, going from a (dominantly) random phase at
low temperature to a correlated phase of instanton—anti-instanton molecules at
high temperature. This mechanism provides the correct scale for the transition
temperature, and gives predictions for the phase diagram, the critical behavior
of mesonic susceptibilities, etc, that are in agreement with what is known from
the lattice.



Annu. Rev. Nucl. Part. Sci. 1997.47:359-394. Downloaded from arjournals.annualreviews.org
by NORTH CAROLINA STATE UNIVERSITY on 04/24/09. For personal use only.

QCDVACUUM 393

This picture of the chiral phase transition has important consequences. If in-
stantons are still present @t> T, (although bound into topologically neutral
pairs) they will contribute to the interaction between quarks and the equation
of state. This means that instanton effects might play an important role in the
quark gluon plasma at moderate temperatlires (1—2) T.. Thisisthe regime
of temperatures that we might hope to reach at the heavy-ion accelerators cur-
rently operating or under construction. We have begun to explore some of these
consequences in more detail, in particular the behavior of spatial and temporal
correlation functions across the transition region. While spacelike screening
masses essentially agree with the results of lattice calculations, interesting phe-
nomena are seen in temporal correlation functions. Here we found hints that
some hadronic modes might survive in the high-temperature phase. Clearly,
much work remains do be done in order to improve our understanding of the
high-temperature phase.

And, finally, it is important to find out to what extent the instanton liquid
picture can be extended to other QCD-like theories. In particular, we have
speculated about the phase structure of cold QCD as a function of the number of
colors and flavors. Other theories might also be considered, with exact results
available for supersymmetric gauge theories providing important guidance.
Many exciting discoveries are waiting for us on the way.
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