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I. INTRODUCTION

A. Motivation

Quantum chromodynamics (QCD), the field theory
describing the strong interaction, is now more than 20
years old, and naturally it has reached a certain level of
maturity. Perturbative QCD has been developed in
great detail, with most hard processes calculated beyond
leading order, compared to data, and compiled in re-
views and textbooks. However, the world around us can-
not be understood on the basis of perturbative QCD,
and the development of nonperturbative QCD has
proven to be a much more difficult task.

This is hardly surprising. While perturbative QCD
could build on the methods developed in the context of
quantum electrodynamics, strategies for dealing with the
nonperturbative aspects of field theories first had to be
developed. The gap between hadronic phenomenology
on the one side and exactly solvable model field theories
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on the other is still huge. While some fascinating discov-
eries (instantons among them) have been made, and im-
portant insights have emerged from lattice simulations
and hadronic phenomenology, a lot of work remains to
be done in order to unite these approaches and truly
understand the phenomena involved.

Among the problems the field is faced with is a diffi-
culty in communication between researchers working on
different aspects of nonperturbative field theory, and a
shortage of good introductory material for people inter-
ested in entering the field. In this review we try to pro-
vide an overview of the role of instantons in field theory,
with a particular emphasis on QCD. Such a review is
certainly long overdue. Many readers certainly remem-
ber learning about instantons from some of the excellent
papers (Callan, Dashen, and Gross, 1978a) or introduc-
tory reviews (Coleman, 1977; Vainshtein, Zakharov, and
Shifman, 1982) that appeared in the late seventies or
early eighties, but since then there have been very few
publications addressed to a more general audience.1 The
only exceptions are the book by Rajaraman (1982),
which provides a general discussion of topological ob-
jects but without particular emphasis on applications,
and a few chapters in the book by Shuryak (1988c),
which deal with the role of instantons in hadronic phys-
ics. All of these publications are at least a decade old.

Writing this review, we had several specific goals in
mind, which are represented by different layers of pre-
sentation. In the remainder of Sec. I, we provide a very
general introduction into instanton physics, aimed at a
very broad readership. We shall try to give qualitative
answers to questions like: What are instantons? What
are their effects? Why are instantons important? What is
the main progress achieved during the last decade? This
discussion is continued in Sec. III, in which we review
the current information concerning the phenomenology
of instantons in QCD.

Section II is also pedagogical, but the style is com-
pletely different. The main focus is a systematic devel-
opment of the semiclassical approximation. As an illus-
tration, we provide a detailed discussion of a classic
example, the quantum mechanics of the double-well po-
tential. However, in addition to the well-known deriva-
tion of the leading-order WKB result, we also deal with
several modern developments, like two-loop corrections,
instantons and perturbation theory at large orders, and
supersymmetric quantum mechanics. In addition to that,
we give an introduction to the semiclassical theory of
instantons in gauge theory.

Sections IV–VII make up the core of the review.
They provide an in-depth discussion of the role of in-
stantons in QCD. Specifically, we try to emphasize the
connection between the structure of the vacuum, had-
ronic correlation functions, and hadronic structure, at
both zero and finite temperatures. The style is mostly

1A reprint volume that contains most of the early work and a
number of important technical papers was recently published
by Shifman (1994).
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that of a review of the modern literature, but we have
tried to make this part as self-contained as possible.

The last two sections, VIII and IX, deal with many
fascinating applications of instantons in other theories
and with possible lessons for QCD. The presentation is
rather cursory, and our main motivation is to acquaint
the reader with the significant problems and to provide a
guide to the available literature.

B. Physics outlook

1. Hadronic structure

In this section, we should like to provide a brief out-
line of the theory and phenomenology of hadronic struc-
ture and the QCD vacuum. We shall emphasize the role
the vacuum plays in determining the structure of the
excitations and explain how instantons come into play in
making this connection.

There are two approaches to hadronic structure that
predate QCD, the quark model and current algebra.
The quark model provides a simple (and very success-
ful) scheme based on the idea that hadrons can be un-
derstood as bound states of nonrelativistic constituent
quarks. Current algebra is based on the (approximate)
SU(2)L3SU(2)R chiral symmetry of the strong interac-
tion. The fact that this symmetry is not apparent in the
hadronic spectrum led to the important concept that chi-
ral symmetry is spontaneously broken in the ground
state. Also, since the ‘‘current’’ quark masses appearing
as symmetry-breaking terms in the effective chiral La-
grangian are small, it became clear that the constituent
quarks of the nonrelativistic quark model have to be
effective, composite objects.

With the advent of QCD, it was realized that current
algebra is a rigorous consequence of the (approximate)
chiral invariance of the QCD Lagrangian. It was also
clear that quark confinement and chiral symmetry
breaking are consistent with QCD, but since these phe-
nomena occur in the nonperturbative domain, there was
no obvious way to incorporate these features into had-
ronic models. The most popular model in the early days
of QCD was the MIT bag model (DeGrand et al., 1975),
which emphasized the confinement property of QCD.
Confinement was realized in terms of a special boundary
condition on quark spinors and a phenomenological bag
pressure. However, the model explicitly violated the chi-
ral symmetry of QCD. This defect was later cured by
dressing the bag with a pionic cloud in the cloudy (Tho-
mas Theberge, and Miller, 1981) or chiral bag (Brown
and Rho, 1978) models. The role of the pion cloud was
found to be quite large, and it was suggested that one
can do away with the quark core altogether. This idea
led to (topological) soliton models of the nucleon. The
soliton model was pioneered by Skyrme in a paper that
appeared long before QCD (Skyrme, 1961). However,
the Skyrmion was largely ignored at the time and only
gained in popularity after Witten argued that in the
large-Nc limit the nucleon becomes a soliton, built from
nonlinear meson fields (Witten, 1983).
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
While all these models provide a reasonable descrip-
tion of static properties of the nucleon, the pictures of
hadronic structure they suggest are drastically different.
Although it is sometimes argued that different models
provide equivalent, dual descriptions of the same phys-
ics, it is clear that not all of these models can be right. In
the MIT bag model, for example, everything is deter-
mined by the bag pressure, while there is no such thing
in the Skyrmion, and the scale is set by chiral symmetry
breaking. Quark models attribute the nucleon-delta
mass splitting to perturbative one-gluon exchange, while
it is due to the collective rotation of the pion field in
soliton models.

In order to make progress, two shifts of emphasis
have to be made. First, it is not enough just to reproduce
the mass and other static properties of the nucleon. A
successful model should reproduce the correlation func-
tions (equivalent to the full spectrum, including excited
states) in all relevant channels—not just baryons, but
also scalar and vector mesons, etc. Second, the structure
of hadrons should be understood starting from the struc-
ture the QCD vacuum. Hadrons are collective excita-
tions, like phonons in solids, so one cannot ignore the
properties of the ground state when studying its excita-
tions.

2. Scales of nonperturbative QCD

In order to develop a meaningful strategy, it is impor-
tant to establish whether there is a hierarchy of scales
that allows the problem to be split into several indepen-
dent parts. In QCD there is some evidence that such a
hierarchy is provided by the scales for chiral symmetry
breaking and confinement, LxSB@Lconf .

The first hint comes from perturbative QCD. Al-
though the perturbative coupling constant blows up at
momenta given roughly by the scale parameter
LQCD;0.2 GeV. (1 fm) 21 (the exact value depends on
the renormalization scheme), perturbative calculations
are generally limited to reactions involving a scale of at
least 1 GeV .(0.2 fm) 21.

A similar estimate of the scale of nonperturbative ef-
fects can be obtained from low-energy effective theories.
The first result of this kind was based on the Nambu and
Jona-Lasino (NJL) model (Nambu and Jona-Lasinio,
1961).

This model was inspired by the analogy between chi-
ral symmetry breaking and superconductivity. It postu-
lates a four-fermion interaction which, if it exceeds a
certain strength, leads to quark condensation, the ap-
pearance of pions as Goldstone bosons, etc. The scale
above which this interaction disappears and QCD be-
comes perturbative enters the model as an explicit UV
cutoff, LxSB;1 GeV.

It was further argued that the scales for chiral symme-
try breaking and confinement are very different
(Shuryak, 1981): LxSB@Lconf;LQCD . In particular, it
was argued that constituent quarks (and pions) have
sizes smaller than those of typical hadrons, explaining
the success of the nonrelativistic quark model. This idea
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was developed in a more systematic fashion by (Georgi
and Manohar, 1984), who argue that LxSB.4pfp

.1 GeV provides a natural expansion parameter in chi-
ral effective Lagrangians. An effective theory using
pions and ‘‘constituent’’ quarks is the natural description
in the intermediate regime Lconf,Q,LxSB , where
models of hadronic structure operate.

While our understanding of the confinement mecha-
nism in QCD is still very poor, considerable progress has
been made in understanding the physics of chiral sym-
metry breaking. The importance of instantons in this
context is one of the main points of this review. Instan-
tons are localized (r.1/3 fm) regions of spacetime with
very strong gluonic fields, Gmn;1/(gr2). It is the large
value of this quantity which sets the scale for LxSB . In
the regime Lconf,Q,LxSB , the instanton-induced ef-
fective interaction between quarks is of the form

L5c̄~ i]”2m !c1
cG

L2 ~ c̄Gc!21
dG

L5 ~ c̄Gc!31¯ , (1)

where G is some spin-isospin-color matrix, L;r21 is de-
termined by the chiral symmetry-breaking scale and
higher-order terms involve more fermion fields or de-
rivatives. The mass scale for glueballs is even higher, and
these states decouple in the regime under consideration.
The instanton-induced interaction is nonlocal, and when
calculating higher-order corrections with the vertices in
Eq. (1), loop integrals are effectively cut off at L
;r21.

In addition to determining the scale L, instantons also
provide an organizing principle for performing calcula-
tions with the effective Lagrangian (1). If the instanton
liquid is dilute, r4(N/V)!1, where (N/V) is the density
of instantons, then vertices with more than 2Nf legs are
suppressed. In addition to that, the diluteness parameter
determines which diagrams involving the leading-order
vertices have to be resummed. As a result, one can de-
rive another effective theory valid at even smaller scales
which describes the interaction of extended, massive,
constituent quarks with pointlike pions (Diakonov,
1996). This theory is of the type considered by Georgi
and Manohar (1984).

Alternatively, one can go beyond leading order in
r4(N/V) and study hadronic correlation functions to all
orders in the instanton-induced interaction. The results
are in remarkably good agreement with experiment for
most light hadrons. Only when dealing with heavy
quarks or high-lying resonances do confinement effects
seem to play an important role. We shall discuss these
questions in detail in Sec. VI.

3. Structure of the QCD vacuum

The ground state of QCD can be viewed as a very
dense state of matter, composed of gauge fields and
quarks that interact in a complicated way. Its properties
are not easily accessible in experiments because we do
not directly observe quark and gluon fields, only the
color-neutral hadrons. Furthermore, we cannot directly
determine the interaction between quarks because we
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
cannot measure qq and q̄q scattering amplitudes as we
can for the nuclear force. Instead, the main tools at our
disposal are correlation functions of hadronic currents.
The phenomenology of these functions was recently re-
viewed by Shuryak (1993). Hadronic point-to-point cor-
relation functions were first systematically studied in the
context of ‘‘QCD sum rules.’’ The essential point, origi-
nally emphasized by Shifman, Vainshtein, and Zakharov
(1979), is that the operator product expansion relates
the short-distance behavior of current correlation func-
tion to the vacuum expectation values of a small set of
lowest-dimension quark and gluon operators. Using the
available phenomenological information on hadronic
correlation functions, Shifman, Vainshtein, and Za-
kharov deduced the quark and gluon condensates2

^q̄q&52~230 MeV!3, ^g2G2&5~850 MeV!4, (2)

as well as other, more complicated, expectation values.
The significance of the quark condensate is the fact

that it is an order parameter for the spontaneous break-
down of chiral symmetry in the QCD vacuum. The
gluon condensate is important because the QCD trace
anomaly

Tmm5(
f

mf^q̄ fqf&2
b

32p2 ^g2G2& (3)

relates this quantity to the energy density e0.
2500 MeV/fm3 of the QCD vacuum. Here, Tmn is the
energy-momentum tensor, and b511Nc/322Nf/3 is the
first coefficient of the beta function.

Any model of the QCD vacuum should explain the
origin and value of these condensates, the mechanism
for confinement and chiral symmetry breaking, and its
relation to the underlying parameters of the theory (the
scale parameter and the matter content of the theory).
Most of the early attempts to understand the QCD
ground state were based on the idea that the vacuum is
dominated by classical gauge-field configurations, for ex-
ample, constant fields (Savvidy, 1977) or regions of con-
stant fields patched together, as in the ‘‘spaghetti
vacuum’’ introduced by the Copenhagen group (Amb-
jorn and Olesen, 1977). All of these attempts were un-
successful, however, because constant fields were found
to be unstable against quantum perturbations.

Instantons are classical solutions to the Euclidean
equations of motion. They are characterized by a topo-
logical quantum number and correspond to tunneling
events between degenerate classical vacua in Minkowski
space. As in quantum mechanics, tunneling lowers the
ground-state energy. Therefore instantons provide a
simple understanding of the negative nonperturbative
vacuum energy density. In the presence of light fermi-
ons, instantons are associated with fermionic zero
modes. Zero modes not only are crucial to our under-

2In the operator product expansion one has to introduce a
scale m that separates soft and hard contributions. The conden-
sates take into account soft fluctuations, and the values given
here correspond to a scale m.1 GeV.
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standing of the axial anomaly, they are also intimately
connected with spontaneous chiral symmetry breaking.
When instantons interact through fermion exchanges,
zero modes can become delocalized, forming a collective
quark condensate.

A crude picture of quark motion in the vacuum can
then be formulated as follows [see Fig. 1(a)]. Instantons
act as a potential well, in which light quarks can form
bound states (the zero modes). If instantons form an
interacting liquid, quarks can travel over large distances
by hopping from one instanton to another, similar to
electrons in a conductor. Just as the conductivity is de-
termined by the density of states near the Fermi surface,
the quark condensate is given by the density of eigen-
states of the Dirac operator near zero virtuality. A sche-
matic plot of the distribution of eigenvalues of the Dirac
operator is shown3 in Fig. 1(c). For comparison, the
spectrum of the Dirac operator for noninteracting
quarks is depicted by the dashed line. If the distribution
of instantons in the QCD vacuum is sufficiently random,
there is a nonzero density of eigenvalues near zero, and
chiral symmetry is broken.

The quantum numbers of the zero modes produce
very specific correlations between quarks. First, since
there is exactly one zero mode per flavor, quarks with
different flavors (say u and d) can travel together, but
quarks with the same flavor cannot. Furthermore, since
zero modes have a definite chirality (left-handed for in-
stantons, right-handed for anti-instantons), quarks flip
their chirality as they pass through an instanton. This is
very important phenomenologically because it distin-
guishes instanton effects from perturbative interactions,
in which the chirality of a massless quark does not

3We shall discuss the eigenvalue distribution of the Dirac op-
erator in some detail in the main part of the review; see Figs.
16 and 34 below.

FIG. 1. Schematic picture of the instanton liquid: (a) at zero
temperature; (b) above the chiral phase transition. Instantons
and anti-instantons are shown as open and shaded circles. The
lines correspond to fermion exchanges. Figures (c) and (d)
show the schematic form of the Dirac spectrum in the configu-
rations (a) and (b).
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change. It also implies that quarks can only be ex-
changed between instantons of the opposite charge.

Based on this picture, we can also understand the for-
mation of hadronic bound states. Bound states corre-
spond to poles in hadronic correlation functions. As an
example, let us consider the pion, which has the quan-
tum numbers of the current jp5ūg5d . The correlation
function P(x)5^jp(x)jp(0)& is the amplitude for an up
quark and a down anti-quark with opposite chiralities
created by a source at point 0 to meet again at the point
x . In a disordered instanton liquid, this amplitude is
large because the two quarks can propagate by the pro-
cess shown in Fig. 2(a). As a result, there is a light pion
state. For the r meson, on the other hand, we need the
amplitude for the propagation of two quarks with the
same chirality. This means that the quarks have to be
absorbed by different instantons (or propagate in non-
zero-mode states); see Fig. 2(c). The amplitude is
smaller, and the meson state is much less tightly bound.

Using this picture, we can also understand the forma-
tion of a bound nucleon. Part of the proton wave func-
tion is a scalar ud diquark coupled to another u quark.
This means that the nucleon can propagate as shown in
Fig. 2(b). The vertex in the scalar diquark channel is
identical to the one in the pion channel with one of the
quark lines reversed.4 The D resonance has the quantum
numbers of a vector diquark coupled to a third quark.
Just as in the case of the r meson, there is no first-order
instanton-induced interaction, and we expect the D to be
less bound than the nucleon.

The paradigm discussed here bears a striking similar-
ity to one of the oldest approaches to hadronic structure,
the Nambu–Jona-Lasinio model (Nambu and Jona-
Lasinio, 1961). In analogy with the Bardeen-Cooper-

4For more than three flavors, the color structure of the two
vertices is different, so there is no massless diquark in SU(3)
color.

FIG. 2. Instanton contribution to hadronic correlation func-
tions: (a) the pion; (b) the nucleon; (c) the rho-meson cor-
relator. The solid lines correspond to zero-mode contributions
to the quark propagator.
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Schrieffer theory of superconductivity, it postulates a
short-range attractive force between fermions (nucleons
in the original model and light quarks in modern ver-
sions). If this interaction is sufficiently strong, it can re-
arrange the vacuum, and the ground state becomes su-
perconducting, with a nonzero quark condensate. In the
process, nearly massless current quarks become effec-
tively massive constituent quarks. The short-range inter-
action can then bind these constituent quarks into had-
rons (without confinement).

This brief outline indicates that instantons provide at
least a qualitative understanding of many features of the
QCD ground state and its hadronic excitations. How can
this picture be checked and made more quantitive?
Clearly, two things need to be done. First, a consistent
instanton ensemble has to be constructed in order to
make quantitative predictions for hadronic observables.
Second, we should like to test the underlying assumption
that the topological susceptibility, the gluon condensate,
the chiral symmetry breaking, etc. are dominated by in-
stantons. This can be done most directly on the lattice.
We shall discuss both of these issues in the main part of
this review, Secs. III–VI.

4. QCD at finite temperature

Properties of the QCD vacuum, like the vacuum en-
ergy density, and the quark and gluon condensates, are
not directly accessible to experiment. Measuring non-
perturbative properties of the vacuum requires the abil-
ity to compare the system with the ordinary, perturba-
tive state.5 This state of matter has not existed in nature
since the Big Bang, so experimental attempts at studying
the perturbative phase of QCD have focused on recre-
ating miniature Big Bangs in relativistic heavy-ion colli-
sions.

The basic idea is that at sufficiently high temperature
or density QCD will undergo a phase transition to a new
state, referred to as the quark-gluon plasma, in which
chiral symmetry is restored and quarks and gluon are
deconfined. The temperature scale for this transition is
set by the vacuum energy density and pressure of the
vacuum. For the perturbative vacuum to have a pressure
comparable to the vacuum pressure 500 MeV/fm3, a
temperature on the order of 150–200 MeV is required.
According to our current understanding, such tempera-
tures are reached in the ongoing or planned experiments
at the Alternating-Gradient Synchrotron (AGS; about
212 GeV per nucleon in the center-of-mass system),
CERN SPS (about 10110 GeV) or RHIC (100
1100 GeV).

In order to interpret these experiments, we need to
understand the properties of hadrons and hadronic mat-
ter near and above the phase transition. As for cold mat-

5A nice analogy is given by the atmospheric pressure. In or-
der to measure this quantity directly, one has to evacuate a
container filled with air. Similarly, one can measure the non-
perturbative vacuum energy density by filling some volume
with another phase, the quark-gluon plasma.
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ter, this requires an understanding of the ground state
and how the rearrangement of the vacuum takes place
that causes chiral symmetry to be restored. A possible
mechanism for chiral symmetry restoration in the instan-
ton liquid is indicated in Figs. 1(b) and 1(d). At high
temperature, instantons and anti-instantons have a ten-
dency to bind in pairs that are aligned along the (Euclid-
ean) time direction. The corresponding quark eigen-
states are strongly localized, and chiral symmetry is
unbroken. There is some theoretical evidence for this
picture, which will be discussed in detail in Sec. VII. In
particular, there is evidence from lattice simulations that
instantons do not disappear at the phase transition, but
only at even higher temperatures. This implies that in-
stantons affect properties of the quark-gluon plasma at
temperatures not too far above the phase transition.

C. The history of instantons

In books and reviews, physical theories are usually
presented as a systematic development, omitting the of-
ten confusing history of the subject. The history of in-
stantons did not follow a straight path either. Early en-
thusiasm concerning the possibility of understanding
nonperturbative phenomena in QCD, in particular con-
finement, caused false hopes, which led to years of frus-
tration. Only many years later did work on phenomeno-
logical aspects of instantons lead to breakthroughs. In
the following we shall try to give a brief tour of the two
decades that have passed since the discovery of instan-
tons.

1. Discovery and early applications

The instanton solution of the Yang-Mills equations
was discovered by Polyakov and co-workers (Belavin,
Polyakov, Schwartz, and Tyupkin, 1975), motivated by
the search for classical solutions with nontrivial topology
in analogy with the ’t Hooft-Polyakov monopole (Polya-
kov, 1975). Shortly thereafter, a number of authors clari-
fied the physical meaning of the instanton as a tunneling
event between degenerate classical vacua (Callan,
Dashen, and Gross, 1976; Jackiw and Rebbi, 1976a;
Polyakov, 1977). These works also introduced the con-
cept of u vacua in connection with QCD.

Some of the early enthusiasm was fueled by Polyak-
ov’s discovery that instantons cause confinement in
certain three-dimensional models (Polyakov, 1977).
However, it was soon realized that this is not the case
in four-dimensional gauge theories. An important devel-
opment originated with the classic paper6 by ’t Hooft
(1976a), in which he calculated the semiclassical tunnel-
ing rate. In this context he discovered the presence of
zero modes in the spectrum of the Dirac operator. This
result implied that tunneling is intimately connected
with light fermions, in particular, that every instanton
absorbs one left-handed fermion of every species, and

6In this paper, ’t Hooft also coined the term instanton; Polya-
kov had referred to the classical solution as a pseudoparticle.
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emits a right-handed one (and vice versa for anti-
instantons). This result also explained how anomalies,
for example the violation of axial charge in QCD and
baryon number in electroweak theory, are related to in-
stantons.

In his work, ’t Hooft estimated the tunneling rate in
electroweak theory, where the large Higgs expectation
value guarantees the validity of the semiclassical ap-
proximation, and found it to be negligible. Early at-
tempts to study instanton effects in QCD, where the rate
is much larger but also harder to estimate, were summa-
rized by Callan et al. (1978a). These authors realized
that the instanton ensemble can be described as a four-
dimensional ‘‘gas’’ of pseudoparticles that interact via
forces that are dominantly of the dipole type. While they
were not fully successful in constructing a consistent in-
stanton ensemble, they nevertheless studied a number of
important instanton effects: the instanton-induced po-
tential between heavy quarks, the possibility that instan-
tons cause the spontaneous breakdown of chiral symme-
try, and instanton corrections to the running coupling
constant.

One particular instanton-induced effect, the anoma-
lous breaking of U(1)A symmetry and the h8 mass, de-
serves special attention.7 Witten and Veneziano wrote
down an approximate relation that connects the h8 mass
with the topological susceptibility (Veneziano, 1979 Wit-
ten, 1979a). This was a very important step, because it
was the first quantitative result concerning the effect of
the anomaly on the h8 mass. However, it also caused
some confusion because the result had been derived us-
ing the large-Nc approximation, which is not easily ap-
plied to instantons. In fact, both Witten and Veneziano
expressed strong doubts concerning the relation be-
tween the topological susceptibility and instantons,8 sug-
gesting that instantons are not important dynamically
(Witten, 1979b).

2. Phenomenology leads to a qualitative picture

By the end of the seventies the general outlook was
very pessimistic. There was no experimental evidence
for instanton effects and no theoretical control over
semiclassical methods in QCD. If a problem cannot be
solved by direct theoretical analysis, it is often useful to
turn to a more phenomenological approach. By the early
eighties, such an approach to the structure of the QCD
vacuum became available with the QCD sum-rule
method (Shifman, Vainshtein, and Zakharov, 1979).
QCD sum rules relate vacuum parameters, in particular,
the quark and gluon condensates, to the behavior of
hadronic correlation functions at short distances. Based

7There is one historical episode that we should mention
briefly. Crewther and Christos (Christos, 1984) questioned the
sign of the axial charge violation caused by instantons. A re-
buttal of these arguments can be found in ’t Hooft (1986).

8Today, there is substantial evidence from lattice simulations
that the topological susceptibility is dominated by instantons;
see Sec. III.C.2.
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on this analysis, it was realized that ‘‘all hadrons are not
alike’’ (Novikov et al., 1981). The operator product ex-
pansion (OPE) does not give reliable predictions for
scalar and pseudoscalar channels (p ,s ,h ,h8 as well as
scalar and pseudoscalar glueballs). These are precisely
the channels that receive direct instanton contributions
(Geshkenbein and Ioffe, 1980; Novikov et al., 1981;
Shuryak, 1983).

In order to understand the available phenomenology,
a qualitative picture, later termed the instanton liquid
model, was proposed by Shuryak (1982a). In this work,
the two basic parameters of the instanton ensemble
were suggested: the mean density of instantons is n
.1 fm24, while their average size is r.1/3 fm. This
means that the spacetime volume occupied by instantons
f;nr4 is small; the instanton ensemble is dilute. This
observation provides a small expansion parameter that
we can use in order to perform systematic calculations.

Using the instanton liquid parameters n.1 fm24, r
.1/3 fm, one can reproduce the phenomenological val-
ues of the quark and gluon condensates. In addition to
that, one can calculate direct instanton corrections to
hadronic correlation functions at short distances. The re-
sults were found to be in good agreement with experi-
ment in both attractive (p ,K) and repulsive (h8) pseu-
doscalar meson channels (Shuryak, 1983).

3. Technical development during the eighties

Despite its phenomenological success, there was no
theoretical justification for the instanton liquid model.
The first steps towards providing some theoretical basis
for the instanton model were taken by Ilgenfritz and
Müller-Preussker (1981) and Diakonov and Petrov
(1984). These authors used variational techniques and
the mean-field approximation to deal with the statistical
mechanics of the instanton liquid. The ensemble was sta-
bilized using a phenomenological core (Ilgenfritz and
Müller-Preussker, 1981) or a repulsive interaction de-
rived from a specific ansatz for the gauge-field interac-
tion (Diakonov and Petrov, 1984). The resulting en-
sembles were found to be consistent with the
phenomenological estimates.

The instanton ensemble in the presence of light
quarks was studied by Diakonov and Petrov (1986). This
work introduced the picture of the quark condensate as
a collective state built from delocalized zero modes. The
quark condensate was calculated using the mean-field
approximation and found to be in agreement with ex-
periment. Hadronic states were studied in the random-
phase approximation. At least in the case of pseudo-
scalar mesons, the results were also in good agreement
with experiment.

In parallel, numerical methods for studying the instan-
ton liquid were developed (Shuryak, 1988a). Numerical
simulations allow one to go beyond the mean-field and
random-phase approximations, and include the ’t Hooft
interaction to all orders. This means that one can also
study hadronic channels that, like vector mesons, do not
have first-order instanton-induced interactions, or chan-
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nels, like the nucleon, that are difficult to treat in the
random-phase approximation.

Nevertheless, many important aspects of the model
remain to be understood. This applies in particular to
the theoretical foundation of the instanton liquid model.
When the instanton anti-instanton interaction was stud-
ied in more detail, it became clear that there is no clas-
sical repulsion in the gauge-field interaction. A well-
separated instanton anti-instanton pair is connected to
the perturbative vacuum by a smooth path (Balitsky and
Yung, 1986; Verbaarschot, 1991). This means that the
instanton ensemble cannot be stabilized by purely clas-
sical interactions because, in general, it is not possible to
separate nonperturbative (instanton-induced) and per-
turbative effects. Only in special cases, like quantum
mechanics (Sec. II.A.5) and supersymmetric field theory
(Sec. VIII.C), has this separation been accomplished.

4. Recent progress

In the past few years a great deal has been learned
about instantons in QCD. The instanton liquid model
with the parameters mentioned above, now referred to
as the random instanton liquid model, has been used for
large-scale, quantitative calculations of hadronic correla-
tion functions in essentially all meson and baryon chan-
nels (Shuryak and Verbaarschot, 1993a; Schäfer,
Shuryak, and Verbaarschot, 1994). Hadronic masses and
coupling constants for most of the low-lying mesons and
baryon states have been shown to be in quantitative
agreement with experiment.

The next surprise came from a comparison of the cor-
relators calculated in the random model and the first
results from lattice calculations (Chu et al., 1993a). The
results agree quantitatively, not only in channels that
were already known from phenomenology, but also in
others (such as the nucleon and delta) where no previ-
ous information (except for the particle masses, of
course) existed.

These calculations were followed up by direct studies
of the instanton liquid on the lattice. Using a procedure
called cooling, one can extract the classical content of
strongly fluctuating lattice configurations. Using cooled
configurations, the MIT group determined the main pa-
rameters of the instanton liquid (Chu et al., 1994).
Within 10% error, the density and average size coin-
cided with the values suggested a decade earlier. In the
meantime, these numbers had been confirmed by other
calculations (see Sec. III.C). In addition to that, it was
shown that the agreement between lattice correlation
functions and the instanton model was not a coinci-
dence: the correlators were essentially unaffected by
cooling. This implied that neither perturbative (removed
by cooling) nor confinement (strongly reduced) forces
are crucial for hadronic properties.

Technical advances in numerical simulation of the in-
stanton liquid led to the construction of a self-consistent,
interacting instanton ensemble, which satisfied all the
general constraints imposed by the trace anomaly and
chiral low-energy theorems (Shuryak and Verbaarschot,
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1995; Schäfer and Shuryak, 1996a, 1996b). The corre-
sponding unquenched (with fermion vacuum bubbles in-
cluded) correlation functions significantly improved the
description of the h8 and d mesons, which are the two
channels in which the random model fails completely.

Finally, significant progress was made in understand-
ing the instanton liquid at finite temperature and the
mechanism for the chiral phase transition. It was real-
ized earlier that, at high temperature, instantons should
be suppressed by Debye screening (Shuryak, 1978b;
Pisarski and Yaffe, 1980). Therefore it was generally as-
sumed that chiral symmetry restoration is a consequence
of the disappearance of instantons at high temperature.

More recently it was argued that, up to the critical
temperature, the density of instantons should not be
suppressed (Shuryak and Velkovsky, 1994). This predic-
tion was confirmed by direct lattice measurements of the
topological susceptibility (Chu and Schramm, 1995),
which indeed found little change in the topological sus-
ceptibility for T,Tc and the expected suppression for
T.Tc . If instantons are not suppressed around Tc , a
different mechanism for the chiral phase transition is
needed. It was suggested that chiral symmetry is re-
stored because the instanton liquid is rearranged, going
from a random phase below Tc to a correlated phase
of instanton anti-instanton molecules above Tc (Ilgen-
fritz and Shuryak, 1994; Schäfer, Shuryak, and Verbaar-
schot, 1995). This idea was confirmed in direct simula-
tions of the instanton ensemble, and a number of
consequences of the scenario were explored.

D. Topics that are not discussed in detail

There is a vast literature on instantons (the SLAC
database lists over 3000 references, which probably does
not include the more mathematically oriented works),
and limitations of space and time, as well as of our ex-
pertise, have forced us to exclude many interesting sub-
jects from this review. Our emphasis in writing this re-
view has been on the theory and phenomenology of
instantons in QCD. We discuss instantons in other mod-
els only to the extent that they are pedagogically valu-
able or provide important lessons for QCD. Let us men-
tion a few important omissions and give a brief guide to
the relevant literature:

(1) Direct manifestations of small-size instantons in
high-energy baryon-number-violating reactions. The
hope is that in these processes one may observe
rather spectacular instanton effects in a regime
where reliable semiclassical calculations are pos-
sible. In the electroweak theory, instantons lead to
baryon-number violation, but the amplitude for this
reaction is strongly suppressed at low energies. It
was hoped that this suppression could be overcome
at energies on the order of the sphaleron barrier E
.10 TeV, but the emerging consensus is that this
dramatic phenomenon will not be observable. Some
of the literature is mentioned in Sec. VIII.B; see also
the recent review of Aoyama et al. (1997).
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(2) The transition from tunneling to thermal activation
and the calculation of the sphaleron rate at high
temperature. This question is of interest in connec-
tion with baryogenesis in the early universe and
axial charge fluctuations in the quark-gluon plasma.
A recent discussion can be found in the review of
Smilga (1996).

(3) The decay of unstable vacua in quantum mechanics
or field theory (Coleman, 1977). A more recent re-
view can be found in Aoyama et al. (1997).

(4) Direct instanton contributions to deep-inelastic scat-
tering and other hard processes in QCD. See Bal-
itskii and Braun (1993; 1995) and the review of
Ringwald and Schrempp (1994).

(5) Instanton-inspired models of hadrons or phenom-
enological Lagrangians supplemented by the
’t Hooft interaction. These models include the
Nambu–Jona-Lasinia models (Hatsuda and Kuni-
hiro, 1994), soliton models (Diakonov, Petrov, and
Pobylitsa, 1988; Christov et al., 1996), potential
models (Blask et al., 1990), bag models (Dorokhov,
Zubov, and Kochelev, 1992), etc.

(6) Mathematical aspects of instantons (Eguchi, Gilkey,
and Hanson, 1980), the construction of the most
general n-instanton solution (Atiyah, Hitchin, Drin-
feld, and Manin, 1977), constrained instantons (Af-
fleck, 1981), instantons and four-manifolds (Fried
and Uhlenbeck, 1984), and the connection between
instantons and solitons (Atiyah and Manton, 1989).
For a review of known solutions of the classical
Yang-Mills field equations in both Euclidean and
Minkowski space, we refer the reader to Actor
(1979).

(7) Formal aspects of the supersymmetric instanton cal-
culus, spinor techniques, etc. This material is cov-
ered by Novikov, Shifman, Voloshin, and Zakharov
(1983), Novikov, Shifman, Vainshtein, and Za-
kharov (1985a), Novikov (1987), and Amati et al.
(1988).

(8) The strong CP problem, bounds on the theta pa-
rameter, the axion mechanism (Peccei and Quinn,
1977), etc. Some remarks on these questions can be
found in Sec. II.C.3.

II. SEMICLASSICAL THEORY OF TUNNELING

A. Tunneling in quantum mechanics

1. Quantum mechanics in Euclidean space

This section serves as a brief introduction to path-
integral methods and can easily be skipped by readers
familiar with the subject. We shall demonstrate the use
of Feynman diagrams in a simple quantum-mechanical
problem, which does not suffer from any of the diver-
gencies that occur in field theory. Indeed, we hope that
this simple example will find its way into introductory
field theory courses.

Another point we should like to emphasize in this sec-
tion is the similarity between quantum and statistical
mechanics. Qualitatively, both quantum and statistical
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
mechanics deal with variables that are subject to random
fluctuations (quantum or thermal), so that only
ensemble-averaged quantities make sense. Formally, the
connection is related to the similarity between the sta-
tistical partition function tr@exp(2bH)# and the generat-
ing functional (6) (see below), describing the dynamic
evolution of a quantum system.

Consider the simplest possible quantum-mechanical
system, the motion of a particle of mass m in a time-
independent potential V(x). The standard approach is
based on an expansion in terms of stationary states
cn(x), given as solutions of the Schrödinger equation
Hcn5Encn . Instead, we shall concentrate on another
object, the Green’s function9

G~x ,y ,t !5^yuexp~2iHt !ux&, (4)

which is the amplitude for a particle to go from point x
at time t50 to point y at time t . The Green’s function
can be expanded in terms of stationary states

G~x ,y ,t !5 (
n51

`

cn* ~x !cn~y !exp~2iEnt !. (5)

This representation has many nice features that are de-
scribed in standard text books on quantum mechanics.
There is, however, another representation that is more
useful in introducing semiclassical methods and in deal-
ing with systems containing many degrees of freedom,
the Feynman path integral (Feynman and Hibbs, 1965),

G~x ,y ,t !5E Dx~ t !exp~ iS@x~ t !# !. (6)

Here, the Green’s function is given as a sum over all
possible paths x(t) leading from x at t50 to y at time t .
The weight for the paths is provided by the action S
5*dt@mẋ2/22V(x)# . One way to provide a more pre-
cise definition of the path integral is to discretize the
path. Dividing the time axis into N intervals, a5t/N , the
path integral becomes an N-dimensional integral over
xn5x(tn5an) n51,.. . ,N . The discretized action is
given by

S5(
n

F m

2a
~xn2xn21!22aV~xn!G . (7)

This form is not unique; other discretizations with the
same continuum limit can also be used. The path inte-
gral is now reduced to a multiple integral over xn ,
where we have to take the limit n→` . In general, only
Gaussian integrals can be done exactly. In the case of
the harmonic oscillator V(x)5mv2x2/2 one finds
(Feynman and Hibbs, 1965)

Gosc~x ,y ,t !5S mv

2pi sin vt D
1/2

expF S imv

2 sin vt D
3„~x21y2

…cos~vt !22xy !G . (8)

9We use natural units \5h/2p51 and c51. Mass, energy,
and momentum all have dimensions of inverse length.
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In principal, the discretized action (7) should be amen-
able to numerical simulations. In practice, the strongly
fluctuating phase in (6) renders this approach com-
pletely useless. There is, however, a simple way to get
around the problem. If one performs an analytic con-
tinuation of G(x ,y ,t) to imaginary (Euclidean) time t
5it , the weight function becomes exp„2SE@x(t)#… with
the Euclidean action SE5*dt@m(dx/dt)2/21V(x)# . In
this case, we have a positive-definite weight, and nu-
merical simulations, even for multidimensional prob-
lems, are feasible. Note that the relative sign of the
kinetic- and potential-energy terms in the Euclidean ac-
tion has changed, making it look like a Hamiltonian. In
Euclidean space, the discretized action (7) looks like the
energy functional of a one-dimensional spin chain with
nearest-neighbor interactions. This observation provides
the formal link between an n-dimensional statistical sys-
tem and Euclidean quantum (field) theory in (n21) di-
mensions.

Euclidean Green’s functions can be interpreted in
terms of ‘‘thermal’’ distributions. If we use periodic
boundary conditions (x5y) and integrate over x , we
obtain the statistical sum

E dxG~x ,x ,t!5 (
n51

`

exp~2Ent!, (9)

where the time interval t plays the role of an inverse
temperature t5T21. In particular, G(x ,x ,1/T) has the
physical meaning of a probability distribution for x at
temperature T . For the harmonic oscillator mentioned
above, the Euclidean Green’s function is

Gosc~x ,y ,t!5S mv

2p sinh vt D 1/2

expF2S mv

2 sinh vt D
3„~x21y2!cosh~vt!22xy…G . (10)

For x5y , the spatial distribution is Gaussian at any T ,
with a width ^x2&51/2mv coth(v/2T). If t is very large,
the effective temperature is small and the ground state
dominates. From the exponential decay, we can read off
the ground-state energy E05v/2, and from the spatial
distribution, the width of the ground-state wave function
^x2&5(2mv)21. At high T we get the classical result
^x2&5T/(mv2).

Non-Gaussian path integrals cannot be done exactly.
As long as the nonlinearities are small, we can use per-
turbation theory. Consider an anharmonic oscillator
with (Euclidean) action

SE5E dtF ẋ2

2
1

v2x2

2
1ax31bx4G . (11)

Expanding the path integral in powers of a and b, one
can derive the Feynman rules for the anharmonic oscil-
lator. The free propagator is given by

G0~t1 ,t2!5^x~t1!x~t2!&5
1

2v
exp~2vut12t2u!. (12)
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
In addition to that, there are three- and four-point ver-
tices with coupling constants a and b. To calculate an
n-point Green’s function, we have to sum over all dia-
grams with n external legs and integrate over the time
variables corresponding to internal vertices.

The vacuum energy is given by the sum of all closed
diagrams. At one-loop order, there is only one diagram,
the free-particle loop diagram. At two-loop order, there
are two O(a2) and one O(b) diagram [see Fig. 3(a)].
The calculation of the diagrams is remarkably simple.
Since the propagator is exponentially suppressed for
large times, everything is finite. Summing all the dia-
grams, we get

^0uexp~2Ht!u0&5Av

p
expS 2

vt

2 D
3F12S 3b

4v2 2
11a2

8v4 D t1¯ G . (13)

For small a2, b, and t not too large, we can exponenti-
ate the result and read off the correction to the ground-
state energy

E05
v

2
1

3b

4v2 2
11a2

8v4 1¯ . (14)

Of course, we could have obtained the result using ordi-
nary Rayleigh-Schrödinger perturbation theory, but the
method discussed here proves to be much more power-
ful when we come to nonperturbative effects and field
theory.

One more simple exercise is worth mentioning: the
evaluation of first perturbative corrections to the
Green’s function. The diagrams shown in Fig. 3(b) give

DG0~0,t!5
9a2

4v6 1
a2

2v6 e22vt

1
15a2

4v5 te2vt2
3b

2v3 te2vt. (15)

Comparing the result with the decomposition in terms of
stationary states

G~0,t!5 (
n50

`

e2~En2E0!tu^0uxun&u2, (16)

FIG. 3. Feynman diagrams for the anharmonic oscillator: (a)
energy; (b) Green’s function.
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we can identify the first (time-independent) term with
the square of the ground-state expectation value ^0uxu0&
(which is nonzero due to the tadpole diagram). The sec-
ond term comes from the excitation of two quanta, and
the last two (with extra factors of t) are the lowest-order
‘‘mass renormalization,’’ or corrections to the zero-order
gap between the ground and first excited states, E1
2E05v .

2. Tunneling in the double-well potential

Tunneling phenomena in quantum mechanics were
discovered by George Gamow in the late 1920’s in the
context of alpha decay. He introduced the exponential
suppression factor that explained why a decay governed
by the Coulomb interaction (with a typical nuclear time
scale of 10222 sec) could lead to lifetimes of millions of
years. Tunneling is a quantum-mechanical phenomenon,
a particle penetrating a classically forbidden region.
Nevertheless, we shall describe the tunneling process us-
ing classical equations of motion. Again, the essential
idea is to continue the transition amplitude to imaginary
time.

Let us give a qualitative argument for why tunneling
can be treated as a classical process in imaginary time.
The energy of a particle moving in the potential V(x) is
given by E5p2/(2m)1V(x), and in classical mechanics
only regions of phase space where the kinetic energy is
positive are accessible. In order to reach the classically
forbidden region E,V , the kinetic energy would have
to be negative, corresponding to imaginary momentum
p . In the semiclassical WKB approximation to quantum
mechanics, the wave function is given by c(x)
;exp@iF(x)# with F(x)56*xdx8p(x8)1O(\) where
p(x)5(2m)1/2@E2V(x)#1/2 is the local classical mo-
mentum. In the classically allowed region, the wave
function is oscillatory, while in the classically forbidden
region (corresponding to imaginary momenta) it is ex-
ponentially suppressed.

Another way to introduce imaginary momenta, which
is more easily generalized to multidimensional problems
and field theory, is by considering motion in imaginary
time. Continuing t5it , the classical equation of motion
is given by

m
d2x

dt2 51
dV

dx
, (17)

where the sign of the potential-energy term has changed.
This means that classically forbidden regions are now
classically allowed. The distinguished role of the classi-
cal tunneling path becomes clear if one considers the
Feynman path integral. Although any path is allowed in
quantum mechanics, the path integral is dominated by
paths that maximize the weight factor exp(2S@xcl(t)#)
or minimize the Euclidean action. The classical path is
the path with the smallest possible action.

Let us consider a widely used toy model, the double-
well potential,

V5l~x22h2!2, (18)
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with minima at 6h , the two ‘‘classical vacua’’ of the
system. Quantizing around the two minima, we would
find two degenerate states localized at x56h . Of
course, we know that this is not the correct result. Tun-
neling will mix the two states; the true ground state is
(approximately) the symmetric combination, while the
first excited state is the antisymmetric combination of
the two states.

It is easy to solve the equations of motion in imagi-
nary time and obtain the classical tunneling solution10

xcl~t!5h tanhFv2 ~t2t0!G , (19)

which goes from x(2`)52h to x(`)5h . Here, t0 is a
free parameter (the instanton center) and v258lh2.
The action of the solution is S05v3/(12l). We shall
refer to the path (19) as the instanton, since (unlike a
soliton) the solution is localized in time.11 An anti-
instanton solution is given by xcl

A(t)52xcl
I (t). It is con-

venient to rescale the time variable such that v51 and
to shift x such that one of the minima is at x50. In this
case, there is only one dimensionless parameter, l, and
since S051/(12l), the validity of the semiclassical ex-
pansion is controlled by l!1.

The semiclassical approximation to the path integral is
obtained by systematically expanding around the classi-
cal solution

^2hue2Htuh&5e2S0E Dx~t!

3expS 2
1
2

dx
d2S

dx2 U
xcl

dx1¯ D . (20)

Note that the linear term is absent because xcl is a solu-
tion of the equations of motion. Also note that we im-
plicitly assume t to be large, but smaller than the typical
lifetime for tunneling. If t is larger than the lifetime, we
have to take into account multi-instanton configurations
(see below). Clearly, the tunneling amplitude is propor-
tional to exp(2S0). The pre-exponent requires the cal-
culation of fluctuations around the classical instanton so-
lution. We shall study this problem in the following
section.

3. Tunneling amplitude at one-loop order

In order to take into account fluctuations around the
classical path, we have to calculate the path integral

E @Ddx#expS 2
1
2 E dt dx~t!Odx~t! D (21)

10This solution is most easily found using energy conservation
mẋ2/22V(x)5const rather than the (second-order) equation
of motion mẍ5V8. This is analogous to the situation in field
theory, where it is more convenient to use self-duality than the
equations of motion.

11In (111)-dimensional f4 theory, there is a soliton solution
with the same functional form, usually referred to as the kink
solution.
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where O is the differential operator,

O52
1
2

d2

dt2 1
d2V

dx2 U
x5xcl

. (22)

This calculation is somewhat technical, but it provides a
very good illustration of the steps that are required to
solve the more difficult field-theory problem. We follow
here the original work (Polyakov, 1977) and the review
(Vainshtein et al., 1982). A simpler method for calculat-
ing the determinant is described in the appendix of
Coleman’s lecture notes (Coleman, 1977).

The integral (21) is Gaussian, so it can be done ex-
actly. Expanding the differential operator O in some ba-
sis $xi(t)%, we have

E S)
n

dxnD expS 2
1
2 (

ij
xiOijxjD 5~2p!n/2~det O !21/2.

(23)

The determinant can be calculated by diagonalizing O ,
Oxn(t)5enxn(t). This eigenvalue equation is just a
one-dimensional Schrödinger equation,12

S 2
d2

dt2 1v2F12
3

2 cosh2~vt/2!G D xn~t!5enxn~t!.

(24)

There are two bound states plus a continuum of scatter-
ing states. The lowest eigenvalue is e050, and the other
bound state is at e15 3

4 v2. The eigenfunction of the
zero-energy state is

x0~t!5A3v

8
1

cosh2~vt/2!
, (25)

where we have normalized the wave function, *dtxn
2

51. There should be a simple explanation for the pres-
ence of a zero mode. Indeed, the appearance of a zero
mode is related to translational invariance, the fact that
the action does not depend on the location t0 of the
instanton. The zero-mode wave function is just the de-
rivative of the instanton solution over t0 ,

x0~t!52S0
21/2 d

dt0
xcl~t2t0!, (26)

where the normalization follows from the fact that the
classical solution has zero energy. If one of the eigenval-
ues is zero, this means that the determinant vanishes and
the tunneling amplitude is infinite. However, the pres-
ence of a zero mode also implies that there is one direc-
tion in functional space in which fluctuations are large,
so the integral is not Gaussian. This means that the in-
tegral in that direction should not be performed in a
Gaussian approximation, but has to be done exactly.

This can be achieved by replacing the integral over
the expansion parameter c0 associated with the zero-
mode direction [we have parametrized the path by

12This particular Schrödinger equation is discussed in many
textbooks on quantum mechanics, e.g., Landau and Lifshitz
(1959).
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x(t)5(ncnxn(t)] with an integral over the collective
coordinate t0 . Using

dx5
dxcl

dt0
dt052AS0x0~t!dt0 (27)

and dx5x0dc0 , we have dc05AS0dt0 . The functional
integral over the quantum fluctuation is now given by

E @Ddx~t!#exp~2S !5F )
n.0

S 2p

en
D G 1/2

AS0E dt0 ,

(28)

where the first factor, the determinant with the zero
mode excluded, is often referred to as det8 O. The result
shows that the tunneling amplitude grows linearly with
time. This is as it should be; there is a finite transition
probability per unit time.

The next step is the calculation of the non-zero-mode
determinant. For this purpose we make the spectrum
discrete by considering a finite time interval
(2tm/2,tm/2) and imposing boundary conditions at
6tm/2: xn(6tm/2)50. The product of all eigenvalues is
divergent, but the divergence is related to large eigen-
values, independent of the detailed shape of the poten-
tial. The determinant can be renormalized by taking the
ratio over the determinant of the free harmonic oscilla-
tor. The result is

S detF2
d2

dt2 1V9~xcl!G
detF2

d2

dt2 1v2G D 21/2

5AS0

2p
vE dt0S det8F2

d2

dt2 1V9~xcl!G
v22 detF2

d2

dt2 1v2G D
21/2

(29)

where we have eliminated the zero mode from the de-
terminant and replaced it by the integration over t0 . We
also have to extract the lowest mode from the harmonic-
oscillator determinant, which is given by v2. The next
eigenvalue is 3v2/4, while the corresponding oscillator
mode is v2 (up to corrections of order 1/tm

2 , that are not
important as tm→`). The rest of the spectrum is con-
tinuous as tm→` . The contribution from these states
can be calculated as follows.

The potential V9(xcl) is localized, so for t→6` the
eigenfunctions are just plane waves. This means we can
take one of the two linearly independent solutions to be
xp(t);exp(ipt) as t→` . The effect of the potential is
to give a phase shift

xp~t!5exp~ ipt1idp! t→2` , (30)

where, for this particular potential, there is no reflected
wave. The phase shift is given by (Landau and Lifshitz,
1959)

exp~ idp!5
11ip/v
12ip/v

112ip/v
122ip/v

. (31)
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The second independent solution is obtained by t→
2t . The spectrum is determined by the quantization
condition x(6tm/2)50, which gives

pntm2dpn
5pn , (32)

while the harmonic-oscillator modes are determined by
pntm5pn . If we denote the solutions of Eq. (32) by p̃n ,
the ratio of the determinants is given by

)
n

Fv21p̃n
2

v21pn
2 G5expS (

n
logFv21p̃n

2

v21pn
2 G D

5expS 1
p E

0

` 2pdpdp

p21v2 D 5
1
9

, (33)

where we have expanded the integrand in the small dif-
ference p̃n2pn5dpn

/tm and changed from summation
over n to an integral over p . In order to perform the
integral, it is convenient to integrate by part and use the
result for (ddp)/(dp). Collecting everything, we finally
get

^2hue2Htmuh&5FAv

p
expS 2

vtm

2 D G
3FA6S0

p
exp~2S0!G~vtm!, (34)

where the first factor comes from the harmonic-
oscillator amplitude and the second is the ratio of the
two determinants.

The result shows that the transition amplitude is pro-
portional to the time interval tm . In terms of stationary
states this is due to the fact that the contributions from
the two lowest states almost cancel each other. The
ground-state wave function is the symmetric combina-
tion C0(x)5@f2h(x)1fh(x)#/& , while the first ex-
cited state E15E01DE is antisymmetric, C1(x)
5@f2h(x)2fh(x)#/& . Here, f6h are the harmonic-
oscillator wave functions around the two classical
minima. For times t!1/DE , the tunneling amplitude is
given by

^2hue2Htmuh&5C0* ~2h!C0~h!e2E0tm

1C1* ~2h!C1~h!e2E1tm1¯

5
1
2

f2h* ~2h!fh~h!~DEtm!e2vtm/2

1¯ . (35)

Note that the validity of the semiclassical approximation
requires t@1/v .

We can read off the level splitting from Eqs. (34) and
(35). The result can be obtained in an even more elegant
way by going to large times t.1/DE . In this case, multi-
instanton paths are important. If we ignore the interac-
tion between instantons, multi-instanton contributions
can easily be summed up
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
^2hue2Htmuh&5Av

p
e2vtm/2 (

n odd
E

2tm/2,t1, . . .,tm/2

3F)
i51

n

vdt iG SA6S0

p
exp~2S0! D n

5Av

p
e2vtm/2 (

n odd

~vtmd !n

n!

5Av

p
e2vtm/2 sinh~vtmd !, (36)

where d5(6S0 /p)1/2 exp(2S0). Summing over all in-
stantons simply leads to the exponentiation of the tun-
neling rate. Now we can directly read off the level split-
ting

DE5A6S0

p
v exp~2S0!. (37)

If the tunneling rate increases, 1/DE.1/v , interactions
between instantons become important. We shall study
this problem in Sec. II.A.5.

4. The tunneling amplitude at two-loop order

The WKB method can be used to calculate higher
orders systematically in 1/S0 . Beyond leading order,
however, the WKB method becomes quite tedious, even
when applied to quantum mechanics. In this subsection
we show how the 1/S0 correction to the level splitting in
the double well can be determined using a two-loop in-
stanton calculation. We follow here Wohler and
Shuryak (1994), who corrected a few mistakes in the
earlier literature (Aleinikov and Shuryak, 1987; Olejnik,
1989). Numerical simulations were performed by
Shuryak (1988b), while the correct result was first ob-
tained using different methods by Zinn-Justin (1981).

To next order in 1/S0 , the tunneling amplitude can be
decomposed as

^2hue2Htuh&.uc0~h!u2S 11
2A

S0
1¯ D

3expS 2
vt

2 F11
B

S0
1¯ G D

3DE0S 11
C

S0
1¯ D t , (38)

where we are interested in the coefficient C , the next
order correction to the level splitting. The other two cor-
rections, A and B , are unrelated to tunneling, and we
can get rid of them by dividing the amplitude by
^huexp(2Ht)uh&; see Eq. (15).

In order to calculate the next-order correction to the
instanton result, we have to expand the action beyond
order (dx)2. The result can be interpreted in terms of a
new set of Feynman rules in the presence of an instan-
ton (see Fig. 4). The triple and quartic coupling con-
stants are a54lxcl(t) and b5l (compared to a0
54lh5A2l and b05l for the anharmonic oscillator).



336 T. Schäfer and E. V. Shuryak: Instantons in QCD
The propagator is the Green’s function of the differen-
tial operator (22). There is one complication due to the
fact that the operator O has a zero mode. The Green’s
function is uniquely defined by requiring it to be or-
thogonal to the translational zero mode. The result is
(Olejnik, 1989)

~2v!G~x ,y !5g0~x ,y !F22xy1
1
4

ux2yu~1123xy !

1~x2y !2G1
3
8

~12x2!~12y2!

3F log@g0~x ,y !#2
11
3 G , (39)

g0~x ,y !5
12ux2yu2xy

11ux2yu2xy
, (40)

where x5tanh(vt/2), y5tanh(vt8/2), and g0(x ,y) is the
Green’s function of the harmonic oscillator (12). There
are four diagrams at two-loop order (see Fig. 4). The
first three diagrams are of the same form as the
anharmonic-oscillator diagrams. Subtracting these con-
tributions, we get

a1523b0E
2`

`

dt„G2~ t ,t !2G0
2~ t ,t !…52

97
1680

S0
21,

(41)

b1153a0
2E

2`

` E
2`

`

dtdt8„tanh~ t/2!

3tanh~ t8/2!G3~ t ,t8!2G0
3~ t ,t8!…52

53
1260

S0
21,

(42)

b125
9
2

a0
2E

2`

` E
2`

`

dtdt8„a2tanh~ t/2!

3tanh~ t8/2!G~ t ,t !G~ t ,t8!G~ t8,t8!

2G0~ t ,t !G0~ t ,t8!G0~ t8,t8!…

52
39
560

S0
21 . (43)

The last diagram comes from expanding the Jacobian in

FIG. 4. Feynman diagrams for the two-loop correction to the
tunneling amplitude in the quantum-mechanical double-well
potential. The first three correspond to the diagrams in Fig.
3(a) but with different propagators and vertices, while the
fourth diagram contains a new vertex, generated by the collec-
tive coordinate Jacobian.
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dx . This leads to a tadpole graph proportional to ẍcl ,
which has no counterpart in the anharmonic-oscillator
case. We get

c1529b0E
2`

` E
2`

`

dtdt8
tanh~ t/2!

cosh2~ t/2!

3tanh~ t8/2!G~ t ,t8!G~ t8,t8!52
49
60

S0
21 . (44)

The sum of the four diagrams is C5(a11b111b12
1c1)S05271/72. The two-loop result for the level split-
ting is

DE5A6S0

p
v expS 2S02

71
72

1
S0

1¯ D , (45)

in agreement with the WKB result obtained by Zinn-
Justin (1981). The fact that the next-order correction is
of order one and negative is significant. It implies that
the one-loop result becomes inaccurate for moderately
large barriers (S;1) and that it overestimates the tun-
neling probability. We have presented this calculation in
detail in order to show that the instanton method can be
systematically extended to higher orders in 1/S . In field
theory, however, this calculation is sufficiently difficult
that it has not yet been performed.

5. Instanton/anti-instanton interaction
and the ground-state energy

Up to now we have focused on the tunneling ampli-
tude for transitions between the two degenerate vacua
of the double-well potential. This amplitude is directly
related to the gap DE between the ground state and the
first excited state. In this subsection we wish to discuss
how the semiclassical theory can be used to calculate the
mean Ectr5(E01E1)/2 of the two levels. In this context,
it is customary to define the double-well potential by V
5(x2/2)(12gx)2. The coupling constant g is related to
the coupling l used above by g252l . Unlike the split-
ting, the mean energy is related to topologically trivial
paths connecting the same vacua. The simplest nonper-
turbative path of this type is an instanton/anti-instanton
pair.

In Sec. II.A.3 we calculated the tunneling amplitude
using the assumption that instantons do not interact with
each other. We found that tunneling makes the coordi-
nates uncorrelated and leads to a level splitting. If we
take the interaction among instantons into account, the
contribution from instanton/anti-instanton pairs is given
by

^hue2Htmuh&5tmE dt

pg2 exp@SIA~t!# , (46)

where SIA(t) is the action of an instanton/anti-instanton
pair with separation t, and the prefactor (pg2)21 comes
from the square of the single-instanton density. The ac-
tion of an instanton/anti-instanton (IA) pair can be cal-
culated given an ansatz for the path that goes from one
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minimum of the potential to the other and back. An
example of such a path is the ‘‘sum ansatz’’ (Zinn-Justin,
1983),

xsum~t!5
1

2g F22tanhS t2tI

2 D1tanhS t2tA

2 D G . (47)

This path has the action SIA(T)51/g2@1/322e2T

1O(e22T)# , where T5utI2tAu. It is qualitatively clear
that if the two instantons are separated by a large time
interval T@1, the action SIA(T) is close to 2S0 . In the
opposite limit T→0, the instanton and the anti-instanton
annihilate, and the action SIA(T) should tend to zero. In
that limit, however, the IA pair is at best an approxi-
mate solution of the classical equations of motion, and it
is not clear how the path should be chosen.

The best way to deal with this problem is the ‘‘stream-
line’’ or ‘‘valley’’ method (Balitsky and Yung, 1986). In
this approach one starts with a well-separated IA pair
and lets the system evolve using the method of steepest
descent. This means that we have to solve

f~l!
dxl~t!

dl
5

dS

dxl~t!
, (48)

where l labels the path as we proceed from the initial
configuration xl50(t)5xsum(t) down the valley to the
vacuum configuration, and f(l) is an arbitrary function
that reflects the reparametrization invariance of the
streamline solution. A sequence of paths obtained by
solving the streamline equation (48) numerically is
shown in Fig. 5 (Shuryak, 1988b). An analytical solution
to first order in 1/S0 can be found in Balitsky and Yung
(1986). The action density s5 ẋ2/21V(x) corresponding
to the paths in Fig. 5 is shown in Fig. 6. We can see
clearly how the two localized solutions merge and even-
tually disappear as the configuration progresses down
the valley. Using the streamline solution, we find the
instanton/anti-instanton action for large T (Faleev and
Silvestrov, 1995)

FIG. 5. Streamline configurations in the double-well potential
for h51.4 and l51 (v.4, S0.5), adapted from Shuryak,
1988b. The horizontal axis shows the time coordinate and the
vertical axis the amplitude x(t). The different paths corre-
spond to different values of the streamline parameter l as the
configuration evolves from a well-separated pair to an almost
perturbative path. The initial path has an action S51.99S0 , the
other paths correspond to a fixed reduction of the action by
0.2S0 .
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S~T !5
1
g2 F1

3
22e2T212Te22T1O~e22T!G

1@24Te2T1O~e2T!#1F71g2

6
1O~g4!G ,

(49)

where the first term is the classical streamline interac-
tion up to next-to-leading order, the second term is the
quantum correction (one-loop) to the leading-order in-
teraction, and the last term is the two-loop correction to
the single-instanton interaction.

If one tries to use the instanton result (46) in order to
calculate corrections to Ectr , one encounters two prob-
lems. First, the integral diverges at large T . This is sim-
ply related to the fact that IA pairs with large separation
should not be counted as pairs, but as independent in-
stantons. This problem is easily solved; all one has to do
is subtract the square of the single-instanton contribu-
tion. Second, once this subtraction has been performed,
the integral is dominated by the region of small T ,
where the action is not reliably calculable. This problem
is indeed a serious one, stemming from the fact that Ectr
is not directly related to tunneling, but is dominated by
perturbative contributions. In general, we expect Ectr to
have an expansion

Ectr5(
k

g2kEctr,k
~0 ! 1e22/~6g2!(

k
g2kEctr,k

~2 ! 1¯ , (50)

where the first term is the perturbative contribution, the
second corresponds to one IA pair, and so on. However,
perturbation theory in g is divergent (not even Borel
summable), so the calculation of the IA contribution re-
quires a suitable definition of perturbation theory.

One way to deal with this problem (going back to
Dyson’s classical work on QED) is analytic continuation
in g . For g imaginary (g2 negative), the IA contribution
is well defined [the integral over T is dominated by T
;2log(2g2)]. The IA contribution to Ectr is (Bogo-
molny, 1980; Zinn-Justin, 1983)

Ectr
~2 !5

e21/~3g2!

pg2 F logS 2
2
g2D1g1O„g2 log~g2!…G ,

(51)

FIG. 6. Distribution of the action density s5 ẋ2/21V(x) for
the streamline configurations shown in Fig. 5.
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where g50.577... is Euler’s constant. When we now
continue back to positive g2, we get both real and imagi-
nary contributions to Ectr . Since the sum of all contri-
butions to Ectr is certainly real, the imaginary part has to
cancel against a small O(e21/(3g2)) imaginary part in the
perturbative expansion. This allows us to determine the
imaginary part Im Ectr

(0) of the analytically continued per-
turbative sum.13

From the knowledge of the imaginary part of pertur-
bation theory, one can determine the large-order behav-
ior of the perturbation series Ectr

(0)5(kg2kEctr,k
(0) (Brezin,

Parisi, and Zinn-Justin, 1977; Lipatov, 1977). The coef-
ficients are given by the dispersion integrals

Ectr,k
~0 ! 5

1
p E

0

`

Im@Ectr,k
~0 ! ~g2!#

dg2

g2k12 . (52)

Since the semiclassical result (51) is reliable for small g ,
we can calculate the large-order coefficients. Including
the corrections calculated by Faleev and Silvestrov
(1995), we have

Ectr,k
~0 ! 5

3k11k

p S 12
53

18k
1¯ D . (53)

This result can be compared with the exact coefficients
(Brezin et al., 1977). For small k the result is completely
wrong, but already for k55,6,7,8 the ratio of the
asymptotic result to the exact coefficients is 1.04, 1.11,
1.12, 1.11. We conclude that instantons determine the
large-order behavior of the perturbative expansion. This
is in fact a generic result: the asymptotic behavior of
perturbation theory is governed by semiclassical con-
figurations (although not necessarily involving instan-
tons).

In order to check the instanton/anti-instanton result
(51) against the numerical value of Ectr for different val-
ues of g , we have to subtract the perturbative contribu-
tion to Ectr . This can be done using analytic continua-
tion and the Borel transform (Zinn-Justin, 1982), and
the result is in very good agreement with the instanton
calculation. A simpler way to check the instanton result
was proposed by Faleev and Silvestrov (1995). These
authors simply truncated the perturbative series at the
Nth term. In this case, the best accuracy occurs when
uN21/3g2u;1 and the estimate for Ectr is given by

Ectr5 (
n50

N

g2nEctr,n
~0 ! 1

3Ne2N

p F log~6N !1g

1
1
3
A2p

N G S 12
53

18N D , (54)

which is compared to the exact values in Table I. We
observe that the result (54) is indeed very accurate, and
that the error is on the order of e2N5e21/3g2

.

13How can the perturbative result develop an imaginary part?
After analytic continuation, the perturbative sum is Borel sum-
mable because the coefficients alternate in sign. If we define
Ectr

(0) by analytic continuation of the Borel sum, it will have an
imaginary part for positive g2.
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In summary, Ectr is related to configurations with no
net topology, and in this case the calculation of instan-
ton effects requires a suitable definition of the perturba-
tion series. This can be accomplished using analytic con-
tinuation in the coupling constant. After analytic
continuation, we can perform a reliable interacting in-
stanton calculation, but the result has an imaginary part.
This shows that the instanton contribution by itself is not
well determined—it depends on the definition of the
perturbation sum. However, the sum of perturbative and
nonperturbative contributions is well defined (and real)
and agrees very accurately with the numerical value of
Ectr .

In gauge theories the situation is indeed very similar:
there are both perturbative and nonperturbative contri-
butions to the vacuum energy, and the two contributions
are not clearly separated. However, in the case of gauge
theories, we do not know how to define perturbation
theory, so we are not yet able to perform a reliable cal-
culation of the vacuum energy similar to Eq. (54).

B. Fermions coupled to the double-well potential

In this section we consider one fermionic degree of
freedom ca (a51,2) coupled to the double-well poten-
tial. This model provides additional insight into the
vacuum structure, not only of quantum mechanics, but
also of gauge theories. We shall see that fermions are
intimately related to tunneling and that the fermion-
induced interaction between instantons leads to strong
instanton/anti-instanton correlations. Another motiva-
tion for studying fermions coupled to the double-well
potential is that for a particular choice of the coupling
constant, the theory is supersymmetric. This means that
perturbative corrections to the vacuum energy cancel,
and the instanton contribution is more easily defined.

The model is defined by the action

S5
1
2 E dt~ ẋ21W821cċ1cW9cs2c!, (55)

where ca (a51,2) is a two component spinor, dots de-
note time and primes spatial derivatives, and W85x(1
2gx). We shall see that the vacuum structure depends
crucially on the Yukawa coupling c . For c50 fermions
decouple, and we recover the double-well potential
studied in the previous sections, while for c51 the clas-
sical action is supersymmetric. The supersymmetry
transformation is given by

dx5zs2c , dc5s2z ẋ2W8z , (56)

TABLE I. Exact center-of-the-band energies Ectr5(E0
1E1)/2 for different values of g2 [expressed in terms of N
51/(3g2)] compared to the semiclassical estimate discussed in
the text.

N[1/(3g2) 4 6 8 10 12

Ectr
ex 0.4439 0.43797 0.44832 0.459178 0.467156

Ectr
th 0.4367 0.44367 0.44933 0.459307 0.467173
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where z is a Grassmann variable. For this reason, W is
usually referred to as the superpotential. The action (55)
can be rewritten in terms of two bosonic partner poten-
tials (Salomonson and Holton, 1981; Cooper, Khare, and
Sukhatme, 1995). Nevertheless, it is instructive to keep
the fermionic degree freedom, because the model has
many interesting properties that also apply to QCD,
where the action cannot be bosonized.

As before, the potential V5 1
2 W82 has degenerate

minima connected by the instanton solution. The tunnel-
ing amplitude is given by

Tr~e2bH!5E dtJ
1

Adet OB8
Adet OFe2Scl, (57)

where Scl is the classical action, OB is the bosonic opera-
tor (22), and OF is the Dirac operator,

OF5
d

dt
1cs2W9~xcl!. (58)

As explained in Sec. II.A.3, OB has a zero mode, related
to translational invariance. This mode has to be treated
separately, which leads to a Jacobian J and an integral
over the corresponding collective coordinate t. The fer-
mion determinant also has a zero mode,14 given by

xI ,A5N expS 7E
2`

t
dt8cW9~xcl! D 1

&
S 1

7i D . (59)

Since the fermion determinant appears in the numerator
of the tunneling probability, the presence of a zero
mode implies that the tunneling rate is zero.

The reason for this is simple: the two vacua have dif-
ferent fermion number, so they cannot be connected by
a bosonic operator. The tunneling amplitude is nonzero
only if a fermion is created during the process
^0,1uc1u0,2&, where c65(1/&)(c16ic2) and u0,6&
denote the corresponding eigenstates. Formally, we get
a finite result because the fermion creation operator ab-
sorbs the zero mode in the fermion determinant. As we
shall see later, this mechanism is completely analogous
to the axial U(1)A anomaly in QCD and baryon-
number violation in electroweak theory. For c51, the
tunneling rate is given by (Salomonson and Holton,
1981)

^0,1uc1u0,2&5
1

Apg2
e21/6g2

. (60)

This result can be checked by performing a direct calcu-
lation using the Schrödinger equation.

Let us now return to the calculation of the ground-
state energy. For c50, the vacuum energy is the sum of
perturbative contributions and a negative nonperturba-
tive shift O(e21/(6g2)) due to individual instantons. For
cÞ0, the tunneling amplitude [Eq. (60)] will only enter
squared, so one needs to consider instanton/anti-

14In the supersymmetric case, the fermion zero mode is the
superpartner of the translational zero mode.
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instanton pairs. Between the two tunneling events, the
system has an excited fermionic state, which causes a
new interaction between the instantons. For c51, super-
symmetry implies that all perturbative contributions (in-
cluding the zero-point oscillation) to the vacuum energy
cancel. Using supersymmetry, one can calculate the
vacuum energy from the tunneling rate15 [Eq. (60)]
(Salomonson and Holton, 1981). The result is
O(e21/(3g2)) and positive, which implies that supersym-
metry is broken.16 While the dependence on g is what
we would expect for a gas of instanton/anti-instanton
molecules, understanding the sign in the context of an
instanton calculation is more subtle (see below).

It is an instructive exercise to calculate the vacuum
energy numerically (which is quite straightforward; we
are still dealing with a simple quantum-mechanical toy
model). In general, the vacuum energy is nonzero, but
for c→1, the vacuum energy is zero up to exponentially
small corrections. Varying the coupling constant, one
can verify that the vacuum energy is smaller than any
power in g , showing that supersymmetry breaking is a
nonperturbative effect.

For cÞ1, the instanton/anti-instanton contribution to
the vacuum energy has to be calculated directly. Even
for c51, where the result can be determined indirectly,
this is a very instructive calculation. For an instanton/
anti-instanton path, there is no fermionic zero mode.
Writing the fermion determinant in the basis spanned by
the original zero modes of the individual pseudopar-
ticles, we have

det~OF!ZMZ5S 0 TIA

TAI 0 D , (61)

where TIA is the overlap matrix element,

TIA5E
2`

`

dtxA~] t1cs2W9„xIA~ t !…!xI . (62)

Clearly, mixing between the two zero modes shifts the
eigenvalues away from zero, and the determinant is non-
zero. As before, we have to choose the correct
instanton/anti-instanton path xIA(t) in order to evaluate
TIA . Using the valley method introduced in the last sec-
tion, we find the ground-state energy (Balitsky and
Yung, 1986)

E5
1
2

@12c1O~g2!#2
1

2p
e21/3g2S g2

2 D c21

2ccE
0

`

dt

3expS 22c~t2t0!1
2
g2 e22tD , (63)

15The reason is that, for supersymmetry theories, the Hamil-
tonian is the square of the supersymmetry generators Qa , H
5

1
2 $Q1 ,Q2%. Since the tunneling amplitude ^0,1uc1u0,2& is

proportional to the matrix element of Q1 between the two
different vacua, the ground-state energy is determined by the
square of the tunneling amplitude.

16This was indeed the first known example of nonperturbative
supersymmetry breaking (Witten, 1981).
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where t is the instanton/anti-instanton separation and
exp(22t0)5cg2/2. The two terms in the exponent inside
the integral correspond to the fermionic and bosonic in-
teractions between instantons. One can see that fermi-
ons cut off the integral at large t. There is an attractive
interaction, which grows with distance and forces instan-
tons and anti-instantons to be correlated. Therefore, for
cÞ0, the vacuum is no longer an ensemble of random
tunneling events, but consists of correlated instanton/
anti-instanton molecules.

The fact that both the bosonic and the fermionic in-
teraction are attractive means that the integral (63), just
like (46), is dominated by small t where the integrand is
not reliable. This problem can be solved as outlined in
the last section, by analytic continuation in the coupling
constant. As an alternative, Balitsky and Yung sug-
gested shifting the integration contour in the complex t
plane, t→t1ip/2. On this path, the sign of the bosonic
interaction is reversed, and the fermionic interaction
picks up a phase factor exp(icp). This means that there
is a stable saddle point, but the instanton contribution to
the ground-state energy is in general complex. The
imaginary part cancels against the imaginary part of the
perturbation series, and only the sum of the two contri-
butions is well defined.

A special case is the supersymmetric point c51. In
this case, perturbation theory vanishes and the contribu-
tion from instanton/anti-instanton molecules is real,

E5
1

2p
e21/3g2

@11O~g2!# . (64)

This implies that at the supersymmetry point c51 there
is a well-defined instanton/anti-instanton contribution.
The result agrees with what one finds from the H
5 1

2 $Q1 ,Q2% relation or directly from the Schrödinger
equation.

In summary, in the presence of light fermions, tunnel-
ing is possible only if the fermion number changes dur-
ing the transition. Fermions create a long-range attrac-
tive interaction between instantons and anti-instantons,
and the vacuum is dominated by instanton/anti-
instanton ‘‘molecules.’’ It is nontrivial to calculate the
contribution of these configurations to the ground-state
energy because topologically trivial paths can mix with
perturbative corrections. The contribution of molecules
is most easily defined if one allows the collective coordi-
nate (time separation) to be complex. In this case, there
exists a saddle point where the repulsive bosonic inter-
action balances the attractive fermionic interaction and
molecules are stable. These objects give a nonperturba-
tive contribution to the ground-state energy, which is in
general complex, except in the supersymmetric case
where it is real and positive.

C. Tunneling in Yang-Mills theory

1. Topology and classical vacua

Before we study tunneling phenomena in Yang-Mills
theory, we have to become more familiar with the clas-
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sical vacuum of the theory. In the Hamiltonian formula-
tion, it is convenient to use the temporal gauge A050
(here we use matrix notation Ai5Ai

ala/2, where the
SU(N) generators satisfy @la,lb#52ifabclc and are
normalized according to Tr(lalb)52dab). In this case,
the conjugate momentum to the field variables Ai(x) is
just the electric field Ei5]0Ai . The Hamiltonian is
given by

H5
1

2g2 E d3x~Ei
21Bi

2!, (65)

where Ei
2 is the kinetic and Bi

2 the potential-energy
term. The classical vacuum corresponds to configura-
tions with zero field strength. For non-Abelian gauge
fields this does not imply that the potential has to be
constant, but limits the gauge fields to be ‘‘pure gauge,’’

Ai5iU~xW !] iU~xW !†. (66)

In order to enumerate the classical vacua, we have to
classify all possible gauge transformations U(xW ). This
means that we have to study equivalence classes of maps
from 3-space R3 into the gauge group SU(N). In prac-
tice, we can restrict ourselves to matrices satisfying
U(xW )→1 as x→` (Callan et al., 1978a). Such mappings
can be classified using an integer called the winding (or
Pontryagin) number, which counts how many times the
group manifold is covered,

nW5
1

24p2 E d3xe ijk Tr@~U†] iU !~U†] jU !

3~U†]kU !# . (67)

In terms of the corresponding gauge fields, this number
is the Chern-Simons characteristic

nCS5
1

16p2 E d3xe ijkS Ai
a] jAk

a1
1
3

fabcAi
aAj

bAk
c D . (68)

Because of its topological meaning, continuous deforma-
tions of the gauge fields do not change nCS . In the case
of SU(2), an example of a mapping with winding num-
ber n can be found from the ‘‘hedgehog’’ ansatz,

U~xW !5exp@ if~r !tax̂a# , (69)

where r5uxW u and x̂a5xa/r . For this mapping, we find

nW5
2
p E dr sin2~f !

df

dr
5

1
pF f~r !2

sin@2 f~r !#

2 G
0

`

. (70)

In order for U(xW ) to be uniquely defined, f(r) has to be
a multiple of p at both zero and infinity, so that nW is
indeed an integer. Any smooth function with f(r→`)
50 and f(0)5np provides an example of a function
with winding number n .

We conclude that there is an infinite set of classical
vacua enumerated by an integer n . Since they are topo-
logically different, one cannot go from one vacuum to
another by means of a continuous gauge transformation.
Therefore there is no path from one vacuum to another
such that the energy remains zero all the way.
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2. Tunneling and the Belavin-Polyakov-Schwartz-Tyupkin
instanton

Two important questions concerning the classical
vacua immediately come to mind. First, is there some
physical observable that distinguishes between them?
Second, is there any way to go from one vacuum to an-
other? The answer to the first question is positive but
most easily demonstrated in the presence of light fermi-
ons, so we shall come to it later. Let us now concentrate
on the second question.

We are going to look for a tunneling path in gauge
theory which connects topologically different classical
vacua. From the quantum-mechanical example, we
know that we have to look for classical solutions of the
Euclidean equations of motion. The best tunneling path
is the solution with minimal Euclidean action connecting
vacua with different Chern-Simons numbers. To find
these solutions, it is convenient to exploit the identity

S5
1

4g2 E d4xGmn
a Gmn

a

5
1

4g2 E d4xF6Gmn
a G̃mn

a 1
1
2

~Gmn
a 7G̃mn

a !2G , (71)

where G̃mn51/2emnrsGrs is the dual field strength ten-
sor (the field tensor in which the roles of electric and
magnetic fields are interchanged). Since the first term is
a topological invariant (see below) and the last term is
always positive, it is clear that the action is minimal if
the field is (anti) self-dual,

Gmn
a 56G̃mn

a . (72)

One can also show directly that the self-duality condi-
tion implies the equations of motion,17 DmGmn50. This
is a useful observation because, in contrast to the equa-
tion of motion, the self-duality equation (72) is a first-
order differential equation. In addition to that, one can
show that the energy-momentum tensor vanishes for
self-dual fields. In particular, self-dual fields have zero
(Minkowski) energy density.

The action of a self-dual field configuration is deter-
mined by the topological charge (or four-dimensional
Pontryagin index)

Q5
1

32p2 E d4xGmn
a G̃mn

a . (73)

From Eq. (71), we have S5(8p2uQu)/g2 for self-dual
fields. For finite-action field configurations, Q has to be
an integer. This can be seen from the fact that the inte-
grand is a total derivative,

Q5E d4x]mKm5E dsmKm , (74)

Km5
1

16p2 emabgS Aa
a ]bAg

a1
1
3

fabcAa
a Ab

bAg
c D . (75)

17The reverse is not true, but one can show that non-self-dual
solutions of the equations of motion are saddle points, not
local minima of the action.
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For finite-action configurations, the gauge potential has
to be pure gauge at infinity, Am→iU]mU†. In analogy
with the arguments given in the last section, all maps
from the 3-sphere S3 (corresponding to uxu→`) into the
gauge group can be classified by a winding number n .
Inserting Am5iU]mU† into Eq. (74), one finds that Q
5n .

Furthermore, if the gauge potential falls off rapidly at
spatial infinity, then

Q5E dt
d

dt E d3xK05nCS~ t5`!2nCS~ t52`!,

(76)

which shows that field configurations with QÞ0 connect
different topological vacua. In order to find an explicit
solution with Q51, it is useful to start from the simplest
winding number n51 configuration. As in Eq. (69), we
can take Am5iU]mU† with U5i x̂mtm

1 , where tm
65(tW ,

7i). Then Am
a 52hamnxn /x2, where we have introduced

the ’t Hooft symbol hamn ,

hamn5H eamn , m ,n51,2,3,

dam , n54,

2dan , m54.

(77)

We also define h̄amn by changing the sign of the last two
equations. Further properties of hamn are summarized in
the Appendix, Sec. A.3. We can now look for a solution
of the self-duality equation (72) using the ansatz Am

a

52hamnxnf(x2)/x2, where f has to satisfy the boundary
condition f→1 as x2→` . Inserting the ansatz in Eq.
(72), we get

f~12f !2x2f850. (78)

This equation is solved by f5x2/(x21r2), which gives
the Belavin-Polyakov-Schwartz-Tyupkin instanton solu-
tion (Belavin et al., 1975),

Am
a ~x !5

2hamnxn

x21r2 . (79)

Here r is an arbitrary parameter characterizing the size
of the instanton. A solution with topological charge Q
521 can be obtained by replacing hamn with h̄amn . The
corresponding field strength is

~Gmn
a !25

192r4

~x21r2!4 . (80)

In our conventions, the coupling constant appears only
as a factor in front of the action. This convention is very
convenient in dealing with classical solutions. For per-
turbative calculations, it is more common to rescale the
fields as Am→gAm . In this case, there is a factor 1/g in
the instanton gauge potential, which shows that the field
of the instanton is much stronger than an ordinary, per-
turbative field.
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Note that Gmn
a is well localized (it falls off as 1/x4)

despite the fact that the gauge potential is long range,
Am;1/x . The invariance of the Yang-Mills equations
under coordinate inversion (Jackiw and Rebbi, 1976b)
implies that the singularity of the potential can be
shifted from infinity to the origin by means of a (singu-
lar) gauge transformation U5i x̂mt1. The gauge poten-
tial in singular gauge is given by

Am
a ~x !52

xn

x2

h̄amnr2

x21r2 . (81)

This singularity at the origin is not physical; the field
strength and topological charge density are smooth.
However, in order to calculate the topological charge
from a surface integral over Km , we need to surround
the origin by a small sphere. The topology of this con-
figuration is therefore located at the origin, not at infin-
ity. In order to study instanton/anti-instanton configura-
tions, we shall work mainly with such singular
configurations.

The classical instanton solution has a number of de-
grees of freedom known as collective coordinates. In the
case of SU(2), the solution is characterized by the in-
stanton size r, the instanton position zm , and three pa-
rameters which determine the color orientation of the
instanton. The group orientation can be specified in
terms of the SU(2) matrix U , Am→UAmU†, or the cor-
responding rotation matrix Rab5 1

2 tr(UtaU†tb), such
that Am

a→RabAm
b . Due to the symmetries of the instan-

ton configuration, ordinary rotations do not generate
new solutions.

SU(3) instantons can be constructed by embedding
the SU(2) solution. For uQu51, there are no genuine
SU(3) solutions. The number of parameters characteriz-
ing the color orientation is seven, not eight, because one
of the SU(3) generators leaves the instanton invariant.
For SU(N), the number of collective coordinates (in-
cluding position and size) is 4N . There exist exact
n-instanton solutions with 4nN parameters, but they are
difficult to construct in general (Atiyah et al., 1977). A
simple solution in which the relative color orientations
are fixed was given by ’t Hooft (unpublished), see Wit-
ten (1977), Jackiw, Nohl, and Rebbi (1977), and the Ap-
pendix Sec. A.1.

We have explicitly constructed the tunneling path that
connects different topological vacua. The instanton ac-
tion is given by S5(8p2uQu)/g2, implying that the tun-
neling probability is

P tunneling;exp~28p2/g2!. (82)

As in the quantum-mechanical example, the coefficient
in front of the exponent is determined by a one-loop
calculation.

3. The theta vacua

We have seen that non-Abelian gauge theory has a
periodic potential and that instantons connect the differ-
ent vacua. This means that the ground state of QCD
cannot be described by any of the topological vacuum
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states but has to be a superposition of all vacua. This
problem is similar to the motion of an electron in the
periodic potential of a crystal. It is well known that the
solutions form a band cu characterized by a phase u
P@0,2p# (sometimes referred to as quasimomentum).
The wave functions are Bloch waves satisfying the peri-
odicity condition cu(x1n)5eiuncu(x).

Let us see how this band arises from tunneling events.
If instantons are sufficiently dilute, then the amplitude
to go from one topological vacuum ui& to another uj& is
given by

^juexp~2Ht!ui&5(
N1

(
N2

dN12N22j1i

N1!N2!
~Kte2S!N11N2,

(83)

where K is the pre-exponential factor in the tunneling
amplitude, and N6 are the numbers of instantons and
ant-instantons. Using the identity

dab5
1

2p E
0

2p

dueiu~a2b !, (84)

we can write the sum over instantons and anti-instantons
as

^juexp~2Ht!ui&5
1

2p E
0

2p

dueiu~ i2j !

3exp@2Kt cos~u!exp~2S !# .

(85)

This result shows that the true eigenstates are the theta
vacua uu&5(neinuun&. Their energy is

E~u!522K cos~u!exp~2S !. (86)

The width of the zone is on the order of the tunneling
rate. The lowest state corresponds to u50 and has nega-
tive energy. This is as it should be; tunneling lowers the
ground-state energy.

Does this result imply that in QCD there is a con-
tinuum of states without a mass gap? Not at all. Al-
though one can construct stationary states for any value
of u, they are not excitations of the u50 vacuum be-
cause in QCD the value of u cannot be changed. As far
as the strong interaction is concerned, different values of
u correspond to different worlds. Indeed, we can fix the
value of u by adding an additional term,

L5
iu

32p2 Gmn
a G̃mn

a (87)

to the QCD Lagrangian.
Does physics depend on the value of u? Naively, the

interaction (87) violates both T and CP invariance. On
the other hand, Eq. (87) is a surface term, and one might
suspect that confinement somehow screens the effects of
the u term. A similar phenomenon is known to oc-
cur in three-dimensional compact electrodynamics
(Polyakov, 1977). In QCD, however, one can show that
if the U(1)A problem is solved (there is no massless h8
state in the chiral limit) and none of the quarks is mass-
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less, a nonzero value of u implies that CP is broken
(Shifman, Vainshtein, and Zakharov, 1980a).

Consider the expectation value of the CP-violating
observable ^GG̃&. Expanding the partition function in
powers of u, we have ^GG̃&5u(32p2)x top . Further-
more, in Sec. V.E we shall prove an important low-
energy theorem that determines the topological suscep-
tibility for small quark masses. Using these results, we
have

^GG̃&52u~32p2!fp
2 mp

2 mumd

~mu1md!2 (88)

for two light flavors to leading order in u and the quark
masses. Similar estimates can be obtained for
CP-violating observables that are directly accessible to
experiment. The most severe limits on CP violation in
the strong interaction come from the electric dipole of
the neutron. Current experiments imply that (Baluni,
1979; Crewther, et al., 1979)

u,1029. (89)

The question of why u is so small is known as the strong
CP problem. The status of this problem is unclear. As
long as we do not understand the source of CP violation
in nature, it is not clear whether the strong CP problem
is expected to have a solution within the standard
model, or whether there is some mechanism outside the
standard model that adjusts u to be small.

One possibility is provided by the fact that the state
with u50 has the lowest energy. This means that if u
becomes a dynamic variable, the vacuum can relax to
the u50 state (just as electrons can drop to the bottom
of the conduction band by emitting phonons). This is the
basis of the axion mechanism (Peccei and Quinn, 1977).
The axion is a hypothetical pseudoscalar particle that
couples to GG̃ . The equations of motion for the axion
field automatically remove the effective u term, which is
now a combination of uQCD and the axion expectation
value. Experimental limits on the axion coupling are
very severe, but an ‘‘invisible axion’’ might still exist
(Kim, 1979; Shifman, Vainshtein, and Zakharov, 1980b;
Zhitnitsky, 1980; Dine and Fischler, 1983; Preskill, Wise,
and Wilczek, 1983).

The simplest way to resolve the strong CP problem is
to assume that the mass of the u quark vanishes (pre-
sumably because of a symmetry not manifest in the stan-
dard model). Unfortunately, this possibility appears to
be ruled out phenomenologically, but there is no way to
know for sure before this scenario is explored in more
detail on the lattice. More recently, it was suggested that
QCD might undergo a phase transition near u50,p . In
the former case, there is some support for this idea from
lattice simulations (Schierholz, 1994), but the instanton
model and lattice measurements of the topological sus-
ceptibility do not suggest any singularity around u50.
The latter limit u5p also conserves CP and has a num-
ber of interesting properties (Snyderman and Gupta,
1981): in this world the instanton-induced interaction
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between quarks would change sign. Clearly, it is impor-
tant to understand the properties of QCD with a non-
zero u angle in more detail.

4. The tunneling amplitude

The next natural step is the one-loop calculation of
the pre-exponent in the tunneling amplitude. In gauge
theory, this is a rather tedious calculation, which was
done in the classic paper by ’t Hooft (1976b). Basically,
the procedure is completely analogous to what we did in
the context of quantum mechanics. The field is ex-
panded around the classical solution, Am5Am

cl1dAm . In
QCD, we have to make a gauge choice. In this case, it is
most convenient to work in a background field gauge
Dm(An

cl)dAm50.
We have to calculate the one-loop determinants for

gauge fields, ghosts, and possible matter fields (which we
shall deal with later). The determinants are divergent
both in the ultraviolet, like any other one-loop graph,
and in the infrared, due to the presence of zero modes.
As we shall see below, the two are actually related. In
fact, the QCD beta function is partly determined by zero
modes (while in certain supersymmetric theories, the
beta function is completely determined by zero modes;
see Sec. VIII.C.1).

We already know how to deal with the 4Nc zero
modes of the system. The integral over the zero mode is
traded for an integral over the corresponding collective
variable. For each zero mode, we get one factor of the
Jacobian AS0. The integration over the color orienta-
tions is compact, so it just gives a factor, but the integral
over size and position, we have to keep. As a result, we
get a differential tunneling rate,

dnI;S 8p2

g2 D 2Nc

expS 2
8p2

g2 D r25drdz , (90)

where the power of r can be determined from dimen-
sional considerations.

The ultraviolet divergence is regulated using the
Pauli-Vilars scheme, which is the most convenient
method when dealing with fluctuations around non-
trivial classical field configurations (the final result can
be converted into any other scheme). This means that
the determinant det O of the differential operator O is
divided by det(O1M2), where M is the regulator mass.
Since we have to extract 4Nc zero modes from det O,
this gives a factor M4Nc in the numerator of the tunnel-
ing probability.

In addition to that, there will be a logarithmic depen-
dence on M coming from the ultraviolet divergence. To
one-loop order, it is just the logarithmic part of the po-
larization operator. For any classical field Am

cl the result
can be written as a contribution to the effective action
(Brown and Creamer, 1978; Vainshtein et al., 1982),

dSNZM5
2
3

g2

8p2 log~Mr!S~Acl!. (91)

In the background field of an instanton, the classical ac-
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tion cancels the prefactor g2/8p2, and exp(2dSNZM)
;(Mr)22/3. Now we can collect all terms in the exponent
of the tunneling rate,

dnI;expS 2
8p2

g2 14Nc log~Mr!

2
Nc

3
log~Mr! D r25drdzm

[expS 2
8p2

g2~r! D r25drdzm , (92)

where we have recovered the running coupling constant
(8p2)/g2(r)5(8p2)/g22(11Nc/3)log(Mr). Thus the in-
frared and ultraviolet divergent terms combine to give
the coefficient of the one-loop beta function, b
511Nc/3, and the bare charge and the regulator mass M
can be combined into a running coupling constant. At
two-loop order, the renormalization group requires the
miracle to happen once again, and the nonzero mode
determinant can be combined with the bare charge to
give the two-loop beta function in the exponent and the
one-loop running coupling in the pre-exponent.

The remaining constant was calculated by ’t Hooft
(1976b) and Bernard et al. (1977). The result is

dnI5
0.466 exp~21.679Nc!

~Nc21 !!~Nc22 !! S 8p2

g2 D 2Nc

3expS 2
8p2

g2~r! D d4zdr

r5 . (93)

The tunneling rate dnA for anti-instantons is of course
identical. Using the one-loop beta function, one can
write the result as

dnI

d4z
;

dr

r5 ~rL!b, (94)

and because of the large coefficient b5(11Nc/3)511,
the exponent overcomes the Jacobian and small-size in-
stantons are strongly suppressed. On the other hand,
there appears to be a divergence at large r. This is re-
lated to the fact that the perturbative beta function is
not applicable in this regime. We shall come back to this
question in Sec. III.

D. Instantons and light quarks

1. Tunneling and the U(1)A anomaly

When we considered the topology of gauge fields and
the appearance of topological vacua, we posed the ques-
tion whether the different vacua could be physically dis-
tinguished. In the presence of light fermions, there is a
simple physical observable that distinguishes between
the topological vacua, the axial charge. This observation
helped to clarify the mechanism of chiral anomalies and
showed how perturbative and nonperturbative effects
are related in the breaking of classical symmetries.

Anomalies first appeared in the context of perturba-
tion theory (Adler, 1969; Bell and Jackiw, 1969), when it
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became apparent that loop diagrams involving external
vector and axial-vector currents could not be regulated
in such a way that all the currents remained conserved.
From the triangle diagram involving two gauge fields
and the flavor singlet axial current, one finds

]mjm
5 5

Nf

16p2 Gmn
a G̃mn

a , (95)

where jm
5 5q̄gmg5q with q5(u ,d ,s , . . . ). This result is

not modified at higher orders in the perturbative expan-
sion. At this point, the gauge field on the right-hand side
is some arbitrary background field. The fact that the fla-
vor singlet current has an anomalous divergence was
quite welcome in QCD because it seemed to explain the
absence of a ninth Goldstone boson, the so-called
U(1)A puzzle.

Nevertheless, there are two apparent problems with
Eq. (95) if we want to understand the U(1)A puzzle.
The first is that the right-hand side is proportional to the
divergence of the topological current, ]mKm , so it ap-
pears that we can still define a conserved axial current.
The other is that, since the right-hand side of the
anomaly equation is just a surface term, it seems that the
anomaly does not have any physical effects.

The answer to the first problem is that, while the to-
pological charge is gauge invariant, the topological cur-
rent is not. The appearance of massless poles in correla-
tion functions of Km does not necessarily correspond to
massless particles. The answer to the second question is
of course related to instantons. Because QCD has topo-
logically distinct vacua, surface terms are relevant.

In order to see how instantons can lead to the non-
conservation of axial charge, let us calculate the change
in axial charge,

DQ55Q5~ t51`!2Q5~ t52`!5E d4x]mjm
5 . (96)

In terms of the fermion propagator, DQ5 is given by

DQ55E d4xNf]m tr„S~x ,x !gmg5…. (97)

The fermion propagator is the inverse of the Dirac op-
erator, S(x ,y)5^xu(iD” )21uy&. For any given gauge
field, we can determine the propagator in terms of the
eigenfunctions iD” cl5lcl of the Dirac operator,

S~x ,y !5(
l

cl~x !cl
†~y !

l
. (98)

Using the eigenvalue equation, we can now evaluate
DQ5 ,

DQ55NfE d4x trS (
l

cl~x !cl
†~x !

l
2lg5D . (99)

For every nonzero l, g5cl is an eigenvector with eigen-
value 2l . But this means that cl and g5cl are orthogo-
nal, so only zero modes can contribute to Eq. (99):

DQ552Nf~nL2nR!, (100)
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where NL ,R is the number of left and right-handed zero
modes, and we have used the fact that the eigenstates
are normalized.

The crucial property of instantons, originally discov-
ered by ’t Hooft, is that the Dirac operator has a zero
mode iD” c0(x)50 in the instanton field. For an instan-
ton in the singular gauge, the zero-mode wave function
is

c0~x !5
r

p

1

~x21r2!3/2

g•x

Ax2

11g5

2
f , (101)

where fam5eam/& is a constant spinor in which the
SU(2) color index a is coupled to the spin index m
51,2. Let us briefly digress in order to show that Eq.
(101) is indeed a solution of the Dirac equation. First,
observe that18

~ iD” !25S 2D21
1
2

smnGmnD . (102)

We can now use the fact that smnGmn
(6)57g5smnGmn

(6)

for (anti) self-dual fields Gmn
(6) . In the case of a self-dual

gauge potential, the Dirac equation iD” c50 then im-
plies (c5xL1xR),

S 2D21
1
2

smnGmn
~1 !DxL50, 2D2xR50, (103)

and vice versa (1↔2 ,L↔R) for anti-self-dual fields.
Since 2D2 is a positive operator, xR has to vanish, and
the zero mode in the background field of an instanton
has to be left handed, while it is right handed in the case
of an anti-instanton.19 A general analysis of the solutions
of Eq. (103) was given by ’t Hooft (1976b) and Jackiw
and Rebbi (1977). In practice, the zero mode is most
easily found by expanding the spinor x as xa

m

5Mm(tm
(1))am. For (multi) instanton gauge potentials of

the form Am
a 5h̄mn

a ]nlog P(x) (see Appendix A1), it is
convenient to make the ansatz (Grossman, 1977)

xa
m5AP~x !]mS F~x !

P~x ! D ~tm
~1 !!am. (104)

Substituting this ansatz in Eq. (103) shows that F(x) has
to satisfy the Laplace equation hF(x)50. A solution
that leads to a normalizable zero mode is given by
F(x)5r2/x2, from which we finally obtain Eq. (101).
Again, we can obtain an SU(3) solution by embedding
the SU(2) result.

We can now see how tunneling between topologically
different configurations (described semiclassically by in-

18We use Euclidean Dirac matrices that satisfy $gm ,gn%
52dmn . We also have smn5i/2@gm ,gn# and g55g1g2g3g4 .

19This result is not an accident. Indeed, there is a mathemati-
cal theorem (the Atiyah-Singer index theorem) that requires
that Q5nL2nR for every species of chiral fermion. In the case
of instantons, this relation was proven by Schwarz (1977); see
also the discussion by Coleman (1977).
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stantons) explains the axial anomaly. Integrating the
anomaly equation (95), we find that DQ5 is related to
the topological charge Q . On the other hand, from Eq.
(100) we know that DQ5 counts the number of left-
handed zero modes minus the number of right-handed
zero modes. But this is exactly what instantons do: every
instanton contributes one unit to the topological charge
and has a left-handed zero mode, while anti-instantons
have Q521 and a right-handed zero mode.

There is another way to look at this process, known as
the ‘‘infinite hotel story’’ (Gribov, 1981; see also Shif-
man, 1989). Let us consider the gauge potential of an
instanton as a fixed background field and diagonalize the
time-dependent Dirac Hamiltonian iaW •DW (again, it is
most convenient to work in the temporal gauge). The
presence of a four-dimensional, normalizable zero mode
implies that there is one left-handed state that crosses
from positive to negative energy during the tunneling
event, while one right-handed state crosses the other
way. This can be seen as follows: In the adiabatic ap-
proximation, solutions of the Dirac equation are given
by

c i~xW ,t !5c i~xW ,t52`!expS 2E
2`

t
dt8e i~ t8! D . (105)

The only way we can have a four-dimensional, normal-
izable wave function is if e i is positive for t→` and
negative for t→2` . This explains how axial charge can
be violated during tunneling. No fermion ever changes
its chirality; all states simply move one level up or down.
The axial charge comes, so to say, from the ‘‘bottom of
the Dirac sea.’’

In QCD, the most important consequence of the
anomaly is the fact that the would-be ninth Goldstone
boson, the h8, is massive even in the chiral limit. The
way the h8 acquires its mass is also intimately related
with instantons, and we shall come back to this topic a
number of times during this review. Historically, the first
attempt to understand the origin of the h8 mass from
the anomaly was based on anomalous Ward identities
(Veneziano, 1979); see Sec. V.E. Saturating these Ward
identities with hadronic resonances and using certain ad-
ditional assumptions, one can derive the Witten-
Veneziano relation (Veneziano, 1979; Witten, 1979b)

x top5E d4x^Q~x !Q~0 !&5
f p

2

2Nf
~mh

2 1mh8
2

22mK
2 !.

(106)

In this relation, we have introduced an important new
quantity, the topological susceptibility x top , which mea-
sures fluctuations of the topological charge in the QCD
vacuum. The combination of meson masses on the right-
hand side corresponds to the part of the h8 mass that is
not due to the strange-quark mass.

There are several subtleties in connection with the
Witten-Veneziano relation. In Sec. V.E, we shall show
that in QCD with massless flavors the topological charge
is screened and x top50. This means that the quantity on
the left-hand side of the Witten-Veneziano relation is
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the topological susceptibility in pure gauge theory20

(without quarks). But in pure gauge theory, the h8 cor-
relation function is pathological (see Sec. VI.C.4), so the
h8 mass on the right-hand-side of the Witten-Veneziano
relation has to be determined in full QCD. This means
that the left-hand side and the right-hand side of the
Witten-Veneziano relation are actually defined in differ-
ent theories.21 Nevertheless, the Witten-Veneziano rela-
tion provides a reasonable estimate of the quenched to-
pological susceptibility (Sec. III.C.1), and effective
Lagrangians that incorporate the Witten-Veneziano re-
lation provide a good description of the pseudoscalar
meson spectrum. We shall also show that the Witten-
Veneziano relation can be derived within the instanton
liquid model using the mean-field approximation (Sec.
IV.G). An analog of the Witten-Veneziano relation in
full QCD is described in Sec. V.E. A more detailed
study of the h8 correlation function in different instan-
ton ensembles will be given in Sec. VI.C.4.

2. Tunneling amplitude in the presence of light fermions

The previous subsection was a small detour from the
calculation of the tunneling amplitude. Now we return
to our original problem and study the effect of light
quarks on the tunneling rate. Quarks modify the weight
in the Euclidean partition function by the fermionic de-
terminant

)
f

det@D” ~Am!1mf# , (107)

which depends on the gauge fields through the covariant
derivative. Using the fact that nonzero eigenvalues come
in pairs, we can write the determinant as

det@D” 1m#5mn )
l.0

~l21m2!, (108)

where n is the number of zero modes. Note that the
integration over fermions gives a determinant in the nu-
merator. This means that (as m→0) the fermion zero
mode makes the tunneling amplitude vanish and indi-
vidual instantons cannot exist.

We have already seen what the reason for this phe-
nomenon is: During the tunneling event, the axial
charge of the vacuum changes by two units, so instan-
tons have to be accompanied by fermions. Indeed, it was
pointed out by ’t Hooft that the tunneling amplitude is
nonzero in the presence of external quark sources, be-
cause zero modes in the denominator of the quark
propagator may cancel against zero modes in the deter-
minant. This is completely analogous to the situation in

20It is usually argued that the Witten-Veneziano relation is
derived in the large-Nc approximation to QCD and that x top
5O(1) in this limit. That does not really solve the problem,
however. In order to obtain a finite topological susceptibility,
one has to set Nf50, even if Nc→` .

21This means that a priori it is not even defined how the two
numbers should be compared.
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the quantum-mechanical toy model of Sec. II.B. Never-
theless, there are important differences. In particular,
we shall see that, in QCD, chiral symmetry breaking
implies that isolated instantons can have a nonzero am-
plitude (Sec. IV.D).

Consider the fermion propagator in the instanton field

S~x ,y !5
c0~x !c0

1~y !

im
1 (

lÞ0

cl~x !cl
1~y !

l1im
, (109)

where we have written the zero-mode contribution sepa-
rately. Suppose there are Nf light-quark flavors, so that
the instanton amplitude is proportional to mNf (or, more
generally, to P fmf). Instead of the tunneling amplitude,
let us calculate a 2Nf-quark Green’s function
^P fc̄ f(xf)Gc f(yf)& , containing one quark and antiquark
of each flavor. Contracting all the quark fields, we obtain
the Green’s function by multiplying the tunneling ampli-
tude by Nf fermion propagators. Every propagator has a
zero-mode contribution with one power of the fermion
mass in the denominator. As a result, the zero-mode
contribution to the Green’s function is finite in the chiral
limit.22

The result can be written in terms of an effective La-
grangian (’t Hooft, 1976b; see Sec. IV.F, where we give a
more detailed derivation). It is a nonlocal 2Nf-fermion
interaction, where the quarks are emitted or absorbed in
zero-mode wave functions. In general, it has a fairly
complicated structure, but under certain assumptions, it
can be significantly simplified. First, if we limit ourselves
to low momenta, the interaction is effectively local. Sec-
ond, if instantons are uncorrelated, we can average over
their orientation in color space. For SU(3) color and
Nf51, the result is (Shifman, Vainshtein, and Zakharov,
1980c)

LNf515E drn0~r!S mr2
4
3

p2r3q̄RqLD , (110)

where n0(r) is the tunneling rate without fermions.
Note that the zero-mode contribution acts like a mass
term. This is quite natural because, for Nf51, there is
only one chiral U(1)A symmetry, which is anomalous. In
contrast to the case Nf.0, the anomaly can therefore
generate a fermion mass term.

For Nf52, the result is

LNf525E drn0~r!F)
f

S mr2
4
3

p2r3q̄ f ,Rqf ,LD
1

3
32 S 4

3
p2r3D 2S ūRlauLd̄RladL

2
3
4

ūRsmnlauLd̄RsmnladLD G , (111)

22Note that Green’s functions involving more than 2Nf legs
are not singular as m→0. The Pauli principle always ensures
that no more than 2Nf quarks can propagate in zero-mode
states.
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where the la are color Gell-Mann matrices. One can
easily check that the interaction is SU(2)3SU(2) invari-
ant, but U(1)A is broken. This means that the ’t Hooft
Lagrangian provides another derivation of the U(1)A
anomaly. Furthermore, in Secs. III and IV we shall ar-
gue that the importance of this interaction goes far be-
yond the anomaly and that it explains the physics of
chiral symmetry breaking and the spectra of light had-
rons.

Finally, we need to include the effects of nonzero
modes on the tunneling probability. One effect is that
the coefficient in the beta function is changed to b
511Nc/322Nf/3. In addition to that, there is an overall
constant that was calculated by ’t Hooft (1976b) and
Carlitz and Creamer (1979a),

n~r!;1.34~mr!Nf@11Nf~mr!2 log~mr!1¯# , (112)

where we have also specified the next-order correction
in the quark mass. Note that at two-loop order we not
only get the two-loop beta function in the running cou-
pling but also one-loop anomalous dimensions in the
quark masses.

We should emphasize that, in this section, we have
studied the effect of fermions on the tunneling rate only
for widely separated, individual instantons. But light fer-
mions induce strong correlations between instantons,
and the problem becomes very complicated. Many state-
ments that are correct in the case of pure gauge theory,
e.g., the fact that tunneling lowers the ground-state en-
ergy, are no longer obvious in the theory with quarks.
But before we try to tackle these problems, we should
like to review what is known phenomenologically about
instantons in QCD.

III. PHENOMENOLOGY OF INSTANTONS

A. How often does tunneling occur in the QCD vacuum?

In order to assess the importance of instantons in the
QCD vacuum, we have to determine the total tunneling
rate in QCD. Unfortunately, the standard semiclassical
theory discussed in the last section is not able to answer
this question. The problem is related to the presence of
large-size instantons for which the action is of order one.
The naive use of the one-loop running coupling leads to
an infrared divergence in the semiclassical rate, which is
a simple consequence of the Landau pole. Before we
discuss any attempts to improve on the theoretical esti-
mate, we should like to study phenomenological esti-
mates of the instanton density in QCD.

The first attempt along these lines (Shifman,
Vanshtein, and Zakharov, 1978) was based on informa-
tion on properties of the QCD vacuum obtained from
QCD sum rules. We cannot go into details of the sum-
rule method, which is based on using dispersion theory
to match experimental information with the operator
product expansion (OPE) prediction for hadronic corre-
lation functions. See the reviews of Reinders, Rubin-
stein, and Yazaki (1985), Narison (1989), Shifman
(1992). The essential point is that the method provides
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an estimate for the gluon condensate,23 ^0u(Gmn
a )2u0&.

From an analysis of the charmonium spectrum, Shifman
et al. (1979) obtained

^0u~Gmn
a !2u0&.0.5 GeV4. (113)

It is difficult to assess the accuracy of this number. The
analysis has been repeated many times, including many
more channels. Reinders, Rubinstein, and Yazaki (1985)
agree with the value of Eq. (113) and quote an error of
25%. On the other hand, a recent analysis gives
^0u(Gmn

a )2u0&5(1.0260.1) GeV4, about twice the origi-
nal Shifman, Vainshtein, and Zakharov value (Narison,
1996).

The tunneling rate can now be estimated using the
following simple idea. If the nonperturbative fields con-
tributing to the gluon condensate are dominated by
(weakly interacting) instantons, the condensate is simply
proportional to the instantons density, because every
single instanton contributes a finite amount
*d4x(Gmn

a )2532p2. Therefore the value of the gluon
condensate provides an upper limit for the instanton
density,

n5
dNI1A

d4x
<

1
32p2 ^~Gmn

a !2&.1 fm24. (114)

Another estimate of the instanton density can be ob-
tained from the topological susceptibility. This quantity
measures fluctuations of the topological charge in a
four-volume V ,

x top5 lim
V→`

^Q2&
V

. (115)

On average, the topological charge vanishes, ^Q&50,
but generally in a given configuration QÞ0 (see Fig. 7).
Topological fluctuations provide an important character-
istic of the vacuum in pure gauge QCD. However, in the
presence of massless quarks, the topological charge is
screened, and x top50 (see Sec. V.E). The value of x top
in quenched QCD can be estimated using the Witten-
Veneziano relation (106) to give

x top5
f p

2

2Nf
~mh

2 1mh8
2

22mK
2 !5~180 MeV!4. (116)

If one assumes that instantons and anti-instantons are
uncorrelated, the topological susceptibility can be esti-
mated as follows. The topological charge in some vol-
ume V is Q5NI2NA . For a system with Poissonian
statistics, the fluctuations in the particle numbers are
DNI ,A.ANI ,A. This means that for a random system of

23Again, we use conventions appropriate for dealing with
classical fields. In standard perturbative notations, the fields
are rescaled by a factor of g , and the condensate is given by
^0u(gGmn

a )2u0&.
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instantons, we expect x top5N/V . Using the phenomeno-
logical estimate from above, we again get (N/V)
.1 fm24.

How reliable are these estimates? Both methods suf-
fer from uncertainties that are hard to assess. For the
gluon condensate, there is no systematic method of
separating perturbative and nonperturbative contribu-
tions. The sum-rule method effectively determines con-
tributions to the gluon condensate with momenta below
a certain separation scale. This corresponds to instanton
fluctuations above a given size, which in itself is not a
problem, since the rate of small instantons can be deter-
mined perturbatively, but the value of the separation
scale (m;1 GeV) is not very well determined. In any
case, the connection of the gluon condensate with in-
stantons is indirect. Other fluctuations might very well
play a role. The estimate of the instanton density from
the (quenched) topological susceptibility relies on the
assumption that instantons are distributed randomly. In
the presence of light quarks, this assumption is certainly
incorrect (that is why an extrapolation from quenched to
real QCD is necessary).

B. The typical instanton size and the instanton
liquid mode

Next to the tunneling rate, the typical instanton size is
the most important parameter characterizing the instan-
ton ensemble. If instantons are too large, it does not
make any sense to speak of individual tunneling events,
and semiclassical theory is inapplicable. If instantons are
too small, then semiclassical theory is good, but the tun-
neling rate is strongly suppressed. The first estimate of
the typical instanton size was made by Shifman et al.
(1978), based on the estimate of the tunneling rate given
above.

If the total tunneling rate can be calculated from the
semiclassical ’t Hooft formula, we can ask up to what

FIG. 7. Distribution of topological charges for an ensemble of
5000 thermalized configurations in pure gauge SU(3) at b56.1,
from Alles et al., 1997.
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critical size we have to integrate the rate in order to get
the phenomenological instanton density24

E
0

rmax
drn0~r!5nphen . (117)

Using nphen51 fm24, Shifman et al. concluded that rmax
.1 fm. This is a very pessimistic result because it implies
that the instanton action is not large, so the semiclassical
approximation is useless. Also, if instantons are that
large, they overlap strongly, and it makes no sense to
speak of individual instantons.

There are two possible ways in which the semiclassical
approximation can break down as the typical size be-
comes large. One possibility is that (higher-loop) pertur-
bative fluctuations start to grow. We have discussed
these effects in the double-well potential (see Sec.
II.A.4), but in gauge theory, the two-loop @O(1/S0)#
corrections to the semiclassical result are not yet known.
Another possibility is that nonperturbative (multi-
instanton etc.) effects become important. These effects
can be estimated from the gluon condensate. The inter-
action of an instanton with an arbitrary, weak external
field Gmn

a ext is given by (see Sec. IV.A.1)

S int5
2p2r2

g2 h̄mn
a UabGmn

b ext , (118)

where U is the matrix that describes the instanton ori-
entation in color space. This is a dipole interaction, so to
first order it does not contribute to the average action.
To second order in Gmn

a ext , one has (Shifman et al.,
1980b)

n~r!5n0~r!F11
p4r4

2g4 ^~Gmn
a !2&1¯ G . (119)

From our knowledge of the gluon condensate, we can
now estimate for what size nonperturbative effects be-
come important. Using the Shifman, Vainshtein, and
Zakharov value, we see that for r.0.2 fm the interac-
tion with vacuum fields (of whatever origin) is not neg-
ligible. Unfortunately, for r,0.2 fm the total density of
instantons is too small as compared to the phenomeno-
logical estimate.

However, it is important to note the sign of the cor-
rection. The nonperturbative contribution leads to a
tunneling rate that grows even faster than the semiclas-
sical rate. Accounting for higher-order effects by expo-
nentiating the second-order contribution, Shuryak
(1982a) suggested that the critical size be estimated from
the modified condition

E
0

rmax
drn0~r!expFp4r4

2g4 ^~Gamn!2&G5nphen . (120)

24This procedure cannot be entirely consistent, since simply
cutting off the size integration violates many exact relations
such as the trace anomaly (see Sec. IV.C). Nevertheless, given
all the other uncertainties, this method provides a reasonable
first estimate.
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Since the rate grows faster, the critical size is shifted to a
smaller value,

rmax;1/3 fm. (121)

If the typical instanton is indeed small, we obtain a com-
pletely different perspective on the QCD vacuum:

(1) Since the instanton size is significantly smaller than
the typical separation R between instantons, r/R
;1/3, the vacuum is fairly dilute. The fraction of
spacetime occupied by strong fields is only a few
percent.

(2) The fields inside the instanton are very strong, Gmn
@L2. This means that the semiclassical approxima-
tion is valid, and the typical action is large:

S058p2/g2~r!;10215@1. (122)

Higher-order corrections are proportional to 1/S0
and presumably small.

(3) Instantons retain their individuality and are not de-
stroyed by interactions. From the dipole formula,
one can estimate

udSintu;~2 –3 !!S0 . (123)

(1) Nevertheless, interactions are important for the
structure of the instanton ensemble, since

expudSintu;20@1. (124)

This implies that interactions have a significant ef-
fect on correlations among instantons; the instanton
ensemble in QCD is not a dilute gas, but an inter-
acting liquid.

Improved estimates of the instanton size can be ob-
tained from phenomenological applications of instan-
tons. The average instanton size determines the struc-
ture of chiral symmetry breaking, in particular the
values of the quark condensate, the pion mass, its decay
constant, and its form factor. We shall discuss these ob-
servables in greater detail in the next sections.

In particular, the consequences of the vacuum struc-
ture advocated here were studied in the context of the
‘‘random-instanton liquid model.’’ The idea is to fix
N/V51 fm24 and r51/3 fm and add the assumption
that the distribution of instanton positions, as well as
color orientations, is completely random. This is not
necessarily in contradiction with the observation (124)
that interactions are important, as long as they do not
induce strong correlations among instantons. The ran-
dom model is sufficiently simple that one can study a
large number of hadronic observables. The agreement
with experimental results is quite impressive, thus pro-
viding support for the underlying parameters.

C. Instantons on the lattice

1. The topological charge and susceptibility

The most direct way to determine the parameters of
the instanton liquid is provided by numerical simulations
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on the lattice. Before we come to direct instantons
searches, we should like to discuss the determination of
the topological susceptibility, which requires measure-
ments of the total topological charge inside a given vol-
ume. This has become a very technical subject, and we
will not be able to go into much detail [see the nice,
albeit somewhat dated, review by Kronfeld (1988)]. The
standard techniques used to evaluate the topological
charge are the (i) (naive) field-theoretical, (ii) geomet-
ric, and (iii) fermionic methods. Today, these methods
are usually used in conjunction with various improve-
ments, like cooling, blocking, or improved actions.

The field-theoretic method is based on the naive lat-
tice discretization of the topological charge density
GG̃;emnrs tr@UmnUrs# , where Umn is the elementary
plaquette in the mn plane. The method is simple to
implement, but it has no topological meaning, and the
naive topological charge Q is not even an integer. In
addition to that, the topological susceptibility suffers
from large renormalization effects and mixes with other
operators, in particular, the unit operator and the gluon
condensate (Campostrini, DiGiacomo, and Panagopo-
ulos, 1988).

There are a number of ‘‘geometric’’ algorithms that
ensure that Q has topological significance (Luescher,
1982; Woit, 1983; Phillips and Stone, 1986). This means
that Q is always an integer and that the topological
charge can be expressed as a surface integral. All these
methods are based on fixing the gauge and using some
interpolation procedure to reconstruct a smooth gauge
potential from the discrete lattice data. For a finite lat-
tice with the topology of a four-dimensional torus, the
topology of the gauge fields resides in the transition
functions that connect the gauge potential on the bound-
aries. The geometric method provides a well-defined to-
pological charge for almost all gauge configurations. In
the continuum, different topological sectors are sepa-
rated by configurations with infinite action. On the lat-
tice, however, different sectors are separated by excep-
tional finite-action configurations called dislocations.
Although expected to be unimportant for sufficiently
smooth fields, dislocations may spoil the continuum limit
on the lattice (Pugh and Teper, 1989).

Fermionic methods for calculating the topological
charge rely on the connection between instantons and
fermionic zero modes. Exceptionally small eigenvalues
of the Dirac operator on the lattice have been identified
(Smit and Vink, 1987, 1988; Laursen, Smit, and Vink,
1990). Furthermore, it was demonstrated that the corre-
sponding Dirac eigenvectors have the correct chirality
and are spatially correlated with instantons. Fermionic
methods are not sensitive to dislocations, but they suffer
from problems connected with the difficulty of defining
chiral fermions on the lattice. In particular, the (almost)
zero modes connected with instantons are not exactly
chiral, and the topological charge defined through a fer-
mionic expectation value does suffer from renormaliza-
tion (for both Wilson and staggered fermions). For this
reason, fermionic methods have never been pursued
very vigorously [see Vink (1988) for a rare exception].
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Recently, some progress in constructing chiral fermions
on the lattice has been made. See, for example, Kaplan
(1992) and Narayanan and Neuberger (1995). These
methods may provide improved measurements of the
topological susceptibility (Narayanan and Vranas, 1997).

Since most of the difficulties with the field-theoretical
and geometrical algorithms are related to fluctuations on
very short scales, it is natural to supplement these algo-
rithms with some sort of smoothing procedure. The best
known method of this type is cooling (Hoek, 1986;
Hoek, Teper, and Waterhouse, 1987). In the cooling
method, one locally minimizes the action. This operation
quickly eliminates short-range quantum fluctuations and
eventually leads to a smooth configuration, correspond-
ing to the classical content of the original field. It has
been verified that these configurations are indeed domi-
nated by instantons25 (Hoek et al., 1987; Chu et al.,
1994). It has also been checked that in the cooled con-
figurations the field-theoretic definition of the topologi-
cal charge agrees with the more sophisticated, geometri-
cal methods (Alles, DiGiacomo, and Gianetti, 1990;
Wiese, 1990). Unfortunately, the cooling method also
suffers from systematic uncertainties. If the simplest
Wilson action is used, instantons gradually shrink and
finally fall through the lattice. Improved lattice actions
can make instantons stable (de Forcrand, Perez, and
Statamescu, 1995), but instanton anti-instanton pairs still
annihilate during the cooling process.

The study of topological objects on the lattice is part
of a larger effort to find improved or even ‘‘perfect’’
lattice actions and operators.26 An example of such a
method is the ‘‘inverse blocking’’ procedure considered
by Hasenfratz, DeGrand, and Zhu (1996). From the
field configuration on the original coarse lattice, one
constructs a smoother configuration on a finer lattice by
an approximate inverse renormalization-group transfor-
mation. The method has the advantage that it gives a
larger action for dislocations than the standard Wilson
action does, thus suppressing undesirable contributions
to the topological charge. First tests of improved topo-
logical charges are very promising, correctly recovering
instantons with sizes as small as 0.8a . Significantly im-
proved values for the topological susceptibility will
hopefully be forthcoming.

Whatever method is used to define Q and measure
the topological susceptibility on the lattice, one has to
test the behavior of x top as the lattice spacing is taken to
zero, a→0. If the topological susceptibility is a physical
quantity, it has to exhibit scaling towards the continuum
limit. In the geometrical method, Q itself is not renor-
malized, and x top is expected to show logarithmic scaling
(if it were not for the contribution of dislocations). If the

25This ‘‘experimental’’ result also shows that all stable classi-
cal solutions of the Yang-Mills equations are of multi-
instanton type.

26Classically improved (perfect) actions have no discretiza-
tion errors of order an for some (all) n , where a is the lattice
spacing.
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field-theoretic method is used, x top mixes with the unit
operator and the gluon condensate. Early studies of the
scaling behavior of x top can be found in Woit (1983),
Ishikawa et al. (1983), and Fox et al. (1985). A more de-
tailed study of scaling and the role of mixing effects [in
pure gauge SU(2)] was recently carried out by Alles,
Campostrini, and DiGiacomo (1993). These authors use
‘‘heating’’ to investigate the effect of fluctuations on
classical instanton configurations. As quantum fluctua-
tions are turned on, one can study the renormalization
of the topological charge. For comparison, if a configu-
ration with no topology is heated, it is mainly sensitive
to mixing. Alles et al. conclude that in their window, b
5(2/g2)52.4522.525, everything scales correctly and
x top53.5(4)3105LL

4 .(195 MeV)4, where we have used
LLAT58 MeV. For comparison, the result from cooling
is about 30% larger. This discrepancy gives a rough es-
timate of the uncertainty in the calculation.

An example of the use of an improved topological
charge operator is shown in Figs. 7 and 8. Figure 7 shows
the distribution of topological charges in pure gauge
SU(3). As expected, the distribution is a Gaussian with
zero mean. A scaling test of the topological susceptibil-
ity is shown in Fig. 8. The result clearly shows the reduc-
tion in the statistical error achieved using the improved
operator and the quality of the scaling behavior. The
topological susceptibility is x top5@175(5) MeV#4. On
the other hand, the geometric method (and preliminary
results from inverse blocking) gives larger values, for
example x top5(260 MeV)4 in pure-gauge SU(3) simula-
tions (Grandy and Gupta, 1994). We conclude that lat-
tice determinations are consistent with the phenomeno-
logical value of x top , but that the uncertainty is still
rather large. Also, the scaling behavior of the topologi-
cal susceptibility extracted from improved (perfect) op-
erators or fermionic definitions still needs to be estab-
lished in greater detail.

FIG. 8. Scaling test of the topological susceptibility in pure
gauge SU(3), from Alles et al., 1997. The improvement from
QL

(0) to QL
(2) is clearly visible. Inside errors, the results are

independent of the bare charge b56/g2.
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FIG. 9. A typical slice through
a lattice configuration: (a), (b),
before cooling; (c), (d), after 25
cooling sweeps, from Chu et al.,
1994. Figs. (a) and (c) show the
fields strength G2, while Figs.
(b) and (d) show the topologi-
cal charge density GG̃ . The lat-
tice units are a50.16 fm before
and a50.14 fm after 25 cooling
sweeps.
A by-product of the measurements of Alles et al. is a
new determination of the gluon condensate in pure
gauge SU(2),

^G2&5~4p2!30.38~6 !3108LL
4 .1.5 GeV4. (125)

This number is significantly larger than the Shifman,
Vainshtein, and Zakharov value given in the last section,
but it is consistent with other lattice data, for example
those of Campostrini, DiGiacomo, and Gunduc (1989).
However, when comparing the lattice data to the
Shifman-Vainshtein-Zakharov estimate one should keep
in mind that the two results are based on very different
physical observables. While the Shifman-Vainshtein-
Zakharov value is based on the OPE of a hadronic cor-
relator, and the value of the separation scale is fairly
well determined, lattice results are typically based on the
value of the average plaquette, and the separation scale
is not very well defined.

2. The instanton liquid on the lattice

The topological susceptibility provides only a global
characterization of the instanton ensemble. In addition,
we should like to identify individual instantons and
study their properties. This is true in particular for theo-
ries with light quarks, where the total charge is sup-
pressed because of screening effects (see Sec. V.E).

Most studies of instantons on the lattice are based on
the cooling method. As already mentioned, cooling is
not an ideal method for this purpose because instantons
and anti-instantons annihilate during cooling. While this
process does not affect the total charge, it does affect the
density of instantons and anti-instantons. Ultimately,
improved operators are certainly the method of choice.
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
Nevertheless, cooling has the advantage of providing
smooth gauge configurations that are easily interpreted
in terms of continuum fields.

A typical field configuration after the quantum noise
has disappeared is shown in Fig. 9 (Chu et al., 1994). The
left panel shows the field strength on a slice through the
lattice. One can clearly identify individual classical ob-
jects. The right panel shows the distribution of the topo-
logical charge, demonstrating that the classical configu-
rations are indeed instantons and anti-instantons. Fixing
physical units from the (quenched) rho-meson mass,
Chu et al. conclude that the instanton density in pure
gauge QCD is (1.321.6) fm24. This number is indeed
close to the estimate presented above.

The next question concerns the average size of an in-
stanton. A qualitative confirmation of the instanton liq-
uid value r;1/3 fm was first obtained by Polikarpov and
Veselov (1988). More quantitative measurements (Chu
et al., 1994) are based on fitting of the topological charge
correlation function after cooling. The fit is very good
and gives an average size r50.35 fm.

More detail is provided by measurements of the in-
stanton size distribution. Lattice studies of this type
were recently performed for pure gauge SU(2) by
Michael and Spencer (1995) and de Forcrand, Perez,
and Stamatescu (1997). The results obtained by Michael
and Spencer on two different size lattices are shown in
Fig. 10(a). The agreement between the two measure-
ments is best for large instantons, while it is not so good
for small r. That is of course exactly as expected; instan-
tons of size r;a fall through the lattice during cooling.
The most important result is the existence of a relatively
sharp maximum in the size distribution together with a
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strong suppression of large-size instantons. The physical
mechanism for this effect is still not adequately under-
stood. In Fig. 10 we compare the lattice data with an
instanton liquid calculation, in which large instantons
are suppressed by a repulsive core in the instanton in-
teraction (Shuryak, 1995).

In addition to the size distribution, Michael and Spen-
cer (1995) also studied correlations among instantons.
They found that, on average, unlike pairs were closer
than like pairs, ^R(IA)&.0.7^R(II)&. This clearly sug-
gests an attractive interaction between instantons and
anti-instantons. The distribution of pseudoparticle sepa-
rations is shown in Fig. 11. There are very few IA-pairs
with very small separation, because these pairs easily
annihilate during cooling. Like pairs show an enhance-
ment at small R , a feature that is not understood at
present.

After identifying instantons on the lattice, the next
step is to study the importance of instantons for physical
observables. We shall discuss an example of this line of
research in Sec. VI.E, where we present hadronic corre-
lation functions in cooled configurations. Another ex-
ample can be found in Thurner, Feurstein, and Markum
(1997), who show that there is a strong correlation be-
tween the quark condensate and the location of instan-
tons after cooling.

FIG. 10. Instanton size distribution in pure gauge SU(2), from
Michael and Spencer (1995) and Shuryak (1995). The size r is
given in fm, where lattice units have been fixed from the glue-
ball mass m01151.7 GeV: j, 164, 4/g252.4; d, 244, 4/g2

52.5. The dotted and dashed lines simply serve to guide the
eye. The open circles and squares come from an interacting
instanton calculation, while the solid curve corresponds to the
parametrization discussed in the text.
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3. The fate of large-size instantons and the beta function

We have seen that both phenomenology and the
available lattice data suggest that instantons larger than
r.1/3 fm are strongly suppressed in QCD. In Sec. II.C.4
we saw that this result could not be understood from the
leading-order semiclassical formula. This leaves essen-
tially three possibilities: The instanton distribution is
regulated by higher-order quantum effects, by classical
instanton interactions, or by the interaction of instan-
tons with other classical objects (e.g., monopoles or
strings).

The possible role of repulsive interactions between in-
stantons will be discussed in Sec. IV (this is also what
the open dots in Fig. 10 are based on). It is hard to
speculate on the role of other classical fields, although
we shall try to summarize some work in this direction in
the next section. Here, we should like to discuss the pos-
sibility that the size distribution is regulated by quantum
fluctuations (Shuryak, 1995). If this is the case, gross fea-
tures of the size distribution can be studied by consider-
ing a single instanton rather than an interacting en-
semble.

The Gell-Mann–Low beta function is defined as a de-
rivative of the coupling constant g over the logarithm of
the normalization scale m at which g is determined,

b~g !5
]g

] log m
52b

g3

16p2 2b8
g5

~16p2!2 1¯ . (126)

In QCD with Nc colors and Nf light flavors, we have b
511Nc/322Nf/3 and b8534Nc

2/3213NcNf/31Nf /Nc .
Remember that the tunneling amplitude is n(r)
;r25 exp@2(8p2)/g2(r)#. In the weak-coupling domain,
one can use the one-loop running coupling and n(r)
;rb25Lb. This means that the strong growth of the size
distribution in QCD is related to the large value of b
.9.

For pedagogical reasons, we should like to start our
discussion in the domain of the phase diagram where b
is small and this dangerous phenomenon is absent. For
Nc53 colors, b is zero if Nf533/2.16. When b is small
and positive, it turns out that the next coefficient b8 is
negative (Belavin and Migdal, 1974; Banks and Zaks,
1982), and therefore the beta function has a zero at

FIG. 11. The distribution of the separation of like and unlike
instanton pairs in pure gauge SU(2), from Michael and Spen-
cer, 1995. The distance to the closest neighbor (after cooling) is
given in lattice units a.0.08 fm.
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g
*
2

16p2 52
b

b8
. (127)

Since b is small, so is g* , and the perturbative calcula-
tion is reliable. If the beta function has a zero, the cou-
pling constant will first grow as one goes to larger dis-
tances but then stop running (‘‘freeze’’) as the critical
value g* is approached. In this case, the large-distance
behavior of all correlation functions is governed by the
infrared fixed point, and the correlators decay as frac-
tional powers of the distance. In this domain the instan-
ton contribution to the partition function is of the order
exp(216p2/g

*
2 );exp(2ub8/bu), so it is exponentially

small if b is small.27

What happens if Nf is reduced, so that we move away
from the b50 line? The infrared fixed point survives in
some domain (the conformal region), but the value of
the critical coupling grows. Eventually, non-perturbative
effects (instantons in particular) grow exponentially, and
the perturbative result (127) is unreliable. As we shall
discuss in Sec. IX.D, existing lattice data suggest that the
boundary of the conformal domain is around Nf57 for
Nc53 (Iwasaki et al., 1996).

There is no unique way to define the beta function in
the nonperturbative regime. In our context, a preferred
definition is provided by the value of instanton action
S inst58p2/g2(r) as a function of the instanton size. This
quantity can be studied directly on the lattice by heating
(i.e., adding quantum fluctuations to) a smooth instan-
ton of given size. This program is not yet implemented,
but one can get some input from the measured instanton
size distribution. If S inst@1, the semiclassical expression
n(r);r25 exp(2Sinst) should be valid, and we can ex-
tract the effective charge from the measured size distri-
bution.

We have already discussed lattice measurements of
n(r) in Sec. III.B. These results are well reproduced
using the semiclassical size distribution with a modified
running coupling constant (Shuryak, 1995),

8p2

g2~r!
5bL1

b8

b
log L , (128)

where (for Nf50) the coefficients are b511Nc/3, b8
517Nc

2/3 as usual, but the logarithm is regularized ac-
cording to

L5
1
p

logF S 1
rL D p

1CpG . (129)

For small r, Eq. (128) reduces to the perturbative run-
ning coupling, but for large r the coupling stops running
in a manner controlled by the two parameters C and p .
A good description of the measured size distribution can

27Since Nf is large, the vacuum consists of a dilute gas of
instanton/anti-instanton molecules, so the action is twice that
for a single instanton.
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
be obtained with28 L50.66 fm21, p53.5, and C54.8,
shown by the solid line in Fig. 10. In real QCD, the
coupling cannot freeze because the theory certainly has
no infrared fixed point. Nevertheless, in order to make
the instanton density convergent, one does not need the
beta function to vanish. It is sufficient that the coupling
constant runs more slowly, with an effective b,5.

There are some indications from lattice simulations
that this is indeed the case, and that there is a consistent
trend from Nf50 to Nf516. These results are based on
a definition of the nonperturbative beta function based
on pre-asymptotic scaling of hadronic observables. Ide-
ally, the lattice scale is determined by performing simu-
lations at different couplings g , fixing the scale a from
the asymptotic (perturbative) relation g(a). Scaling be-
havior is established by studying many different had-
ronic observables. Although asymptotic scaling is often
violated, a weaker form of scaling might still be present.
In this case, the lattice scale a at a given coupling g is
determined by measuring a hadronic observable in units
of a and then fixing a to give the correct experimental
value. This procedure makes sense as long as the result
is universal (independent of the observable). Performing
simulations at different g , one can determine the func-
tion g(a) and the beta function.

Lattice results for both pure gauge (Gupta, 1992; open
points) and Nf52 (Blum et al., 1995) SU(3) are shown
in Fig. 12. In order to compare different theories, it is
convenient to normalize the beta function to its
asymptotic (g→0) value. The ratio

28The agreement is even more spectacular in the O(3)
model. In this case the instanton size distribution is measured
over a wider range in r and shows a very nice n(r);1/r3

behavior, which is what one would expect if the coupling stops
running.

FIG. 12. Nonperturbative beta function from SU(3) lattice
gauge theory with Wilson action: h , Gupta, 1992; d , Blum
et al., 1995. The solid line shows the fit discussed in the text.
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Rb~g !5
d~1/g2!

d log~a ! S d~1/g2!

d log~a !
U

g→0
D 21

(130)

tends to 1 as g→0 (6/g2→`). The two-loop correction
is positive, so Rb→1 from above. However, in the non-
perturbative region the results show the opposite trend,
with Rb dropping significantly below 1 around (6/g2)
.6. This means that the coupling constant runs slower
than the one-loop formula suggests. At somewhat
smaller 6/g2, Rb displays a rapid upward turn, which is
known as the transition to the strong-coupling regime.
This part of the data is clearly dominated by lattice ar-
tifacts. The significant reduction of the beta function (by
about 50%) observed for intermediate values of g is pre-
cisely what is is needed to explain the suppression of
large-size instantons. Furthermore, the reduction of Rb
is even larger for Nf52. This might very well be a pre-
cursor of the infrared fixed point. At some critical Nf we
expect Rb to touch zero. As Nf is further increased, the
zero should move to weaker coupling (to the right) and
reach infinity at Nf533/2.

D. Instantons and confinement

After the discovery of instantons, it was hoped that
instantons might help us to understand confinement in
QCD. This hope was mainly inspired by Polyakov’s
proof that instantons lead to confinement in three-
dimensional compact QED (Polyakov, 1987). However,
there are important differences between three- and four-
dimensional theories. In three dimensions, the field of
an instanton looks like a magnetic monopole (with B
;1/r2), while in four dimensions it is a dipole field that
falls off as 1/r4.

For a random ensemble of instantons, one can calcu-
late the instanton contribution to the heavy-quark po-
tential. In the dilute gas approximation, the result is de-
termined by the Wilson loop in the field of an individual
instanton (Callan, Dashen, and Gross, 1978b). The cor-
responding potential is V;x2 for small x , but tends to a
constant at large distances. This result was confirmed by
numerical simulations in the random ensemble
(Shuryak, 1989), as well as the mean-field approximation
(Diakonov, Petrov, and Pobylitsa, 1989). The main in-
stanton effect is a renormalization of the heavy-quark
mass dMQ550–70 MeV. The force udV/dxu peaks at x
.0.5 fm, but even at this point it is almost an order of
magnitude smaller than the string tension (Shuryak,
1989).

Later attempts to explain confinement in terms of in-
stantons (or similar objects) fall roughly into three dif-
ferent categories: objects with fractional topological
charge, strongly correlated instantons, and the effects of
very large instantons.

Classical objects with fractional topological charge
were first seriously considered by Callan et al. (1978a),
who proposed a liquid consisting of instantons and
merons. Merons are singular configurations with topo-
logical charge Q51/2 (Alfaro, Fubini, and Furlan, 1976).
Basically, one can interpret merons as the result of split-
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ting the dipole field of an instanton into two halves. This
means that merons have long-range fields.

Another way to introduce fractional charge is by con-
sidering twisted boundary conditions (’t Hooft, 1981a).
In this case, one finds fracton solutions (also known as ’t
Hooft fluxes) with topological charges quantized in units
1/Nc . Gonzales-Arroyo and Montero (1996) suggested
that confinement is produced by an ensemble of these
objects glued together. In order to study this hypothesis,
they measured the string tension in cooled and uncooled
configurations with twisted boundary conditions. They
found that fractionally charged objects could indeed be
identified, and that their number roughly scaled with the
string tension. Clearly, there are many problems that
need to be understood, in particular, what the role of the
boundary condition is and how regions with twisted
boundary conditions can be glued together.

An important attempt at understanding confinement
is based on the role of magnetic monopoles (see below).
One can make monopolelike configuration (more pre-
cisely, dyonlike, since the fields are self-dual) from in-
stantons by lining up identically oriented instantons.29

Another possibility is a chain of strongly correlated in-
stanton anti-instanton pairs, which might create an infi-
nitely long monopole loop. Under normal circum-
stances, however, these objects have very small entropy,
and they are not found in the simulations discussed in
Sec. V.

The possible role of very large instantons was dis-
cussed by Diakonov and Petrov (1996). These authors
propose that instantons can cause confinement if the size
distribution behaves as n(r);1/r3. This can be under-
stood as follows. In Sec. IV.H, we shall show that the
mass renormalization of a heavy quark due to instantons
is DMQ;(N/V)r3. For typical instanton radii this con-
tribution is not very important, but if the size distribu-
tion has a 1/r3 tail, then DMQ is linearly divergent, a
possible signature of confinement. This is very intrigu-
ing, but again, there are a number of open questions.
For one, the 1/r3 distribution implies that the total vol-
ume occupied by instantons is infinite. Very large instan-
tons would also introduce long-range correlations, which
are inconsistent with the expected exponential decay of
gluonic correlation functions.

Whatever the mechanism of confinement may turn
out to be, it is clear that instantons should be affected by
confinement in some way. One example of this line of
reasoning is the idea that confinement might be the rea-
son for the suppression of large-size instantons. A re-
lated, more phenomenological suggestion is that instan-
tons provide a dynamic mechanism for bag formation
(see Shuryak, 1978b; Callan, Dashen, and Gross, 1979).
A lattice measurement of the suppression of instantons
in the field of a static quark was recently performed by
the Vienna group (see Faber et al., 1995, and references
therein). The measured distribution of the topological

29An example for this is the finite-temperature caloron solu-
tion; see Sec. VII.A.1.-
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charge is shown in Fig. 13. The instanton density around
the static charge is indeed significantly suppressed, by
about a factor of two. Since instantons give a vacuum
energy density on the order of 21 GeV/fm3, this effect
alone generates a significant difference in the nonpertur-
bative energy density (bag constant) inside and outside
of a hadron.

A very interesting picture of confinement in QCD is
based on the idea that the QCD vacuum behaves like a
dual superconductor, formed by the condensation of
magnetic monopoles (Mandelstam, 1976). Although the
details of this mechanism lead to many serious questions
(DelDebbio et al., 1997), there is some evidence in favor
of this scenario from lattice simulations. There are no
semiclassical monopole solutions in QCD, but mono-
poles can arise as singularities after imposing a gauge
condition (’t Hooft, 1981b). The number and the loca-
tion of monopole trajectories will then depend on the
gauge choice. In practice, the so-called maximal Abelian
gauge has turned out to be particularly useful (Kronfeld,
Schierholz, and Wiese, 1987). The maximal Abelian
gauge is specified by the condition that the norms of the
off-diagonal components of the gauge fields be minimal,
e.g., tr@(Am

1)21(Am
2 )2#5min in SU(2). This leaves one

U(1) degree of freedom unfixed, so in this preferred
subgroup one can identify magnetic charges, study their
trajectories, and evaluate their contribution to the (Abe-
lian) string tension. The key observations are (a) that
the Abelian string tension (in maximal Abelian gauge) is
numerically close to the full non-Abelian string tension,
and (b) that it is dominated by the longest monopole
loops (Smit and van der Sijs, 1989; Suzuki, 1993).

We can not go into the details of these calculations,
which would require a review in themselves, but only
mention some ideas on how instantons and monopoles
might be correlated. If monopoles are responsible for
color confinement, then their paths should wind around
the color flux tubes, just as electric-current lines wind
around magnetic-flux tubes in ordinary superconductors.
We have already mentioned that color flux tubes expel
topological charges (see Fig. 13). This suggests that in-
stantons and monopoles should be (anti?) correlated.

FIG. 13. Squared topological charge density around a static,
heavy quark-antiquark pair in SU(3) with Nf53, from Faber
et al., 1995. The results were obtained on an 8334 lattice at
6/g255.6. The topological charge was measured after five cool-
ing steps.
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Lattice simulations that combine Abelian projection
with the cooling technique or improved topological
charges have indeed observed a strong positive correla-
tion between monopoles and instantons (Feurstein,
Markum, and Thurner, 1997). In order to understand
this phenomenon in greater detail, a number of authors
have studied monopole trajectories associated with indi-
vidual instantons or instanton pairs (Chernodub and
Gubarev, 1995; Hart and Teper, 1995; Suganuma et al.,
1995). It was observed that each instanton was associ-
ated with a monopole loop. For instanton anti-instanton
pairs, these loops might either form two separate loops
or one common loop, depending on the relative color
orientation of the two instantons. Since then, it has been
shown that the small loops associated with individual
instantons do not correspond to global minima of the
gauge-fixing functional and should be discarded
(Brower, Orginos, and Tan, 1996). On the other hand,
monopole trajectories connecting two or more instan-
tons appear to be physical. The main physical question is
then whether these monopole loops can percolate to
form the long monopole loops responsible for confine-
ment.

IV. TOWARDS A THEORY
OF THE INSTANTON ENSEMBLE

A. The instanton interaction

1. The gauge interaction

In the last section we argued that the density of in-
stantons in the QCD vacuum is quite significant, imply-
ing that interactions among them are essential to an un-
derstanding of the instanton ensemble. In general, it is
clear that field configurations containing both instantons
and anti-instantons are not exact solutions of the equa-
tions of motion and that the action of an instanton/anti-
instanton pair is not equal to twice the single instanton
action. The interaction is defined by

S int5S~Am
IA!22S0 , (131)

where Am
IA is the gauge potential of the instanton/anti-

instanton pair. Since Am
IA is not an exact solution, there

is some freedom in choosing an ansatz for the gauge
field. This freedom corresponds to finding a convenient
parametrization of the field configurations in the vicinity
of an approximate saddle point. In general, we have to
integrate over all field configurations anyway, but the
ansatz determines the way we split coordinates into ap-
proximate zero modes and nonzero modes.

For well separated IA pairs, the fields are not strongly
distorted and the interaction is well defined. For very
close pairs, on the other hand, the fields are strongly
modified and the interaction is not well determined. In
addition to that, if the instanton and anti-instanton begin
to annihilate, the gauge fields become perturbative and
should not be included in semiclassical approximations.
We comment on the present understanding of these
questions below.
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The interaction between instantons at large distances
was derived by Callan, Dashen, and Gross (1978a; see
also Förster, 1977). They began by studying the interac-
tion of an instanton with a weak, slowly varying external
field (Gmn

a )ext . In order to ensure that the gauge field is
localized, the instanton is put in the singular gauge. One
then finds

S int52
2p2

g2 r2h̄mn
a ~Gmn

a !ext . (132)

This result can be interpreted as the external field inter-
acting with the color magnetic ‘‘dipole moment’’
(2p2/g2)r2h̄mn

a of the instanton. Note that the interac-
tion vanishes if the external field is self-dual. If the ex-
ternal field is taken to be an anti-instanton at distance
R , the interaction is

S int51
32p2

g2 rI
2rA

2 h̄mr
a hnr

b Rab
R̂mR̂n

R4 , (133)

where Rab is the relative color orientation matrix Rab

5 1
2 tr(UtaU†tb) and R̂ is the unit vector connecting the

centers of the instanton and anti-instanton. The dipole-
dipole form of the interaction is quite general; the inter-
action of topological objects in other theories, such as
skyrmions or O(3) instantons, is of similar type.

Instead of considering the dipole interaction as a clas-
sical phenomenon, we can also look at the interaction as
a quantum effect, due to gluon exchanges between the
instantons (Zakharov, 1992). The linearized interaction
(132) corresponds to an instanton vertex that describes
the emission of a gluon from the classical instanton field.
The amplitude for the exchange of one gluon between
an instanton and an anti-instanton is given by

4p4

g2 r1
2r2

2RI
abRA

cdhmn
b hab

d ^Gmn
a ~x !Gab

c ~0 !&, (134)

where ^Gmn
a (x)Gab

c (0)& is the free gauge-field propaga-
tor,

^Gmn
a ~x !Gab

c ~0 !&5
2dac

p2x6 ~gnaxmxb1gmbxnxa

2gnbxmxa2gmaxnxb!. (135)

Inserting Eq. (135) into (134) gives the dipole interac-
tion to first order. Summing all n gluon exchanges allows
one to exponentiate the result and reproduce the full
dipole interaction (133).

In order to study this interaction in greater detail, it is
useful to introduce some additional notation. We can
characterize the relative color orientation in terms of the
four-vector um5(1/2i)tr(Utm

1), where tm
15(tW ,2i).

Note that for the gauge group SU(2), um is a real vector
with u251, whereas for SU(N.2), um is complex and
uuu2<1. Also note that, for SU(N.2), the interaction is
completely determined by the upper 232 block of the
SU(N) matrix U . We can define a relative color orien-
tation angle u by

cos2 u5
uu•R̂u2

uuu2 . (136)
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In terms of this angle, the dipole interaction is given by

S int52
32p2

g2

r1
2r2

2

R4 uuu2~1 –4 cos2 u!. (137)

The orientational factor d51 –4 cos2 u varies between 1
and 23. We also observe that the dipole interaction van-
ishes when we average over all angles u.

The dipole interaction is the leading part of the inter-
action at large distances. In order to determine the in-
teraction at intermediate separation, we have to evalu-
ate the total action for an IA pair. This is most easily
done for the so-called sum ansatz

Am
IA5Am

I 1Am
A , (138)

where again both the instanton and the anti-instanton
are in the singular gauge. The action S51/4*d4xG2 can
easily be split into the free part 2S0 and the interaction.
Systematically expanding in 1/R2, one finds (Diakonov
and Petrov, 1984)

S int
IA52

8p2

g2 H ~ uuu224uu•R̂u2!

3F4r1
2r2

2

R4 2
15r1

2r2
2~r1

21r2
2!

2R6 G
1uuu2

9r1
2r2

2~r1
21r2

2!

2R6 1O~R28!J (139)

for the IA interaction and

S int
II 5

8p2

g2 ~913uuu224uuW u2!
r1

2r2
2~r1

21r2
2!

2R6 1O~R28!

(140)

for the instanton-instanton (II) interaction. Here, uW de-
notes the spatial components of the four-vector um . To
first order, we find the dipole interaction in the IA chan-
nel and no interaction between two instantons. To next
order, there is a repulsive interaction for both IA and II.

Clearly, it is important to understand to what extent
this interaction is unique or if it depends on details of
the underlying ansatz for the gauge potential. It was also
realized that the simple sum ansatz leads to certain arti-
facts, for example, that the field strength at the centers
of the two instantons becomes infinite and that there is
an interaction between pseudoparticles of the same
charge. One of us (Shuryak, 1988a) therefore proposed
the ‘‘ratio’’ ansatz

Am
a 5

2RI
abh̄mn

b
rI

2~x2zI!n

~x2zI!
4 12RA

abhmn
b

rA
2 ~x2zA!n

~x2zA!4

11
rI

2

~x2zI!
2 1

rA
2

~x2zA!2

,
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whose form was inspired by ’t Hooft’s exact multi-
instanton solution. This ansatz ensures that the field
strength is regular everywhere and that (at least if they
have the same orientation) there is no interaction be-
tween pseudoparticles of the same charge. Deriving an
analytic expression for the interaction in the ratio ansatz
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is somewhat tedious. Instead, we have calculated the in-
teraction numerically and parametrized the result; see
Shuryak and Verbaarschot (1991) and Fig. 14. We ob-
serve that both the sum and the ratio ansatz lead to the
dipole interaction at large distances, but the amount of
repulsion at short distance is significantly reduced in the
ratio ansatz.

Given these ambiguities, the question is whether one
can find the best possible ansatz for the gauge field of an
IA pair. This question was answered with the introduc-
tion of the streamline or valley method (Balitsky and
Yung, 1986). The basic idea is to start from a well sepa-
rated instanton/anti-instanton pair, which is an approxi-
mate solution of the equations of motion, and then let
the system evolve under the force given by the variation
of the action (Shuryak, 1988b). For a scalar field theory,
the streamline equation is given by

f~l!
df

dl
5

dS

df
, (142)

where l is the collective variable corresponding to the

FIG. 14. Gauge field and fermion interaction for an instanton/
anti-instanton pair: (a) the gluonic interaction in the stream-
line (dash-dotted curve) and ratio ansatz (short-dashed curve).
The interaction is given in units of the single instanton action
S0 for the most attractive (cos u51) and most repulsive
(cos u50) orientations. The solid line shows the original
streamline interaction supplemented by the core discussed in
Sec. V.C. (b) Fermionic overlap matrix element in the stream-
line (solid curve) and ratio ansatz (dotted curve). The matrix
elements are given in units of the geometric mean of the in-
stanton radii.
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evolution of the pair and f(l) is a function that depends
on the parametrization of the streamline. The initial
conditions are f(`)5fc and f8(`)5f0 , where fc is
the classical solution corresponding to a well-separated
instanton/anti-instanton pair and f0 is the translational
zero mode.

In QCD, the streamline equations were solved by
Verbaarschot (1991) using the conformal invariance of
the classical equations of motion. Conformal invariance
implies that an instanton/anti-instanton pair in the sin-
gular gauge at some distance R is equivalent to a
regular-gauge instanton and a singular-gauge anti-
instanton with the same center but different sizes. We
do not want to go into details of the construction, but
refer the reader to the original work. It turns out that
the resulting gauge configurations are very close to the
ansatz originally proposed by Yung (1988),

Am
a 52hmn

a xn

1
x21r2l

12Rabhmn
b xn

r2

l

1
x2~x21r2/l!

,

(143)

where r5Ar1r2 is the geometric mean of the two in-
stanton radii and l is the conformal parameter

l5
R21r1

21r2
2

2r1r2
1S ~R21r1

21r2
2!2

4r1
2r2

2 21 D 1/2

. (144)

Note that it is large not only if the distance R signifi-
cantly exceeds the mean (geometric) size, but also if R is
small and one instanton is much larger than another.
(This latter situation is important when we consider sup-
pression of large-size instantons.)

The interaction for this ansatz is given by (Verbaar-
schot, 1991).

SIA5
8p2

g2

4

~l221 !3 $24„12l414l2log~l!…

3@ uuu224uu•R̂u2#12„12l21~11l2!log~l!…

3@~ uuu224uu•R̂u2!21uuu412~u !2~u* !2#%,

(145)

which is also shown in Fig. 14. For the repulsive orien-
tation, the interaction is similar to the ratio ansatz, and
the average interaction is repulsive. For the most attrac-
tive orientation, however, the interaction approaches
22S0 at short distance, showing that the instanton and
anti-instanton annihilate each other and the total action
of the pair approaches zero.

It is interesting to note that the Yung ansatz, at least
to order 1/R6, leads to the same interaction as the per-
turbative method (134) if carried out to higher order
(Arnold and Mattis, 1991; Balitsky and Schäfer, 1993;
Diakonov and Petrov, 1994). This problem is related to
the calculation of instanton-induced processes at high
energy (like multigluon production in QCD, or the
baryon-number-violating cross section in electroweak
theory). To leading order in E/Msph , where E is the
bombarding energy and Msph the sphaleron barrier (see
Sec. VIII.B), the cross section is given by
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s tot5discE d4Reip•RE E dV1dV2n~r1!n~r2!

3e2S int~R ,V12!, (146)

where V i5(zi ,r i ,Ui) are the collective coordinates as-
sociated with the instanton and anti-instanton, and disc
f(s)5(1/2i)@f(s1ie)2f(s2ie)# denotes the disconti-
nuity of the amplitude after continuation to Minkowski
space, s5p2.0. Given the agreement of the streamline
method and the perturbative calculation to leading and
next-to-leading order, it has been suggested that the be-
havior of s tot at high energy be used to define the inter-
action S int (Diakonov and Polyakov, 1993). The behav-
ior of this quantity is still debated, but it is generally
believed that the baryon-number-violating cross section
does not reach the unitarity bound. In that case, the
interaction would have to have some repulsion at short
distance, unlike the streamline solution.

Another possible way to make sense of the short-
distance part of the IA interaction in the streamline
method is to use analytic continuation in the coupling
constant, as discussed in Sec. II.A. Allowing g2→2g2

gives a new saddle point in the complex g plane at which
the IA interaction is repulsive and the semiclassical
method is under control.

2. The fermionic interaction

In the presence of light fermions, instantons interact
with each other not only through their gauge fields, but
also through fermion exchanges. The basic idea in deal-
ing with the fermionic interaction is that the Dirac spec-
trum can be split into quasizero modes, linear combina-
tions of the zero modes of the individual instantons, and
nonzero modes. Here we shall focus on the interaction
due to approximate zero modes. The interactions due to
nonzero modes and the corrections due to interference
between zero and nonzero modes were studied by
Brown and Creamer (1978) and Lee and Bardeen
(1979).

In the basis spanned by the zero modes, we can write
the Dirac operator as

iD” 5S 0 TIA

TAI 0 D , (147)

where we have introduced the overlap matrix elements
TIA ,

TIA5E d4xc0,I
† ~x2zI!iD” c0,A~x2zA!. (148)

Here, c0,I is the fermionic zero mode (101). The matrix
elements have the meaning of a hopping amplitude for a
quark from one pseudoparticle to another. Indeed, the
amplitude for an instanton to emit a quark is given by
the amputated zero-mode wave function iD” c0,I . This
shows that the matrix element (148) can be written as
two quark-instanton vertices connected by a propagator,
c0,I

† iD” (iD” )21iD” c0,A . At large distance, the overlap
matrix element decreases as TIA;1/R3, which corre-
sponds to the exchange of a massless quark. The deter-
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minant of the matrix (147) can be interpreted as the sum
of all closed diagrams consisting of (zero-mode) quark
exchanges between pseudoparticles. In other words, the
logarithm of the Dirac operator (147) is the contribu-
tions of the ’t Hooft effective interaction to the vacuum
energy.

Due to the chirality of the zero modes, the matrix
elements TII and TAA between instantons of the same
charge vanish. In the sum ansatz, we can use the equa-
tions of motion to replace the covariant derivative in
(148) by an ordinary one. The dependence on the rela-
tive orientation is then given by TIA5(u•R̂)f(R). This
means that, like the gluonic dipole interaction, the fer-
mion overlap is maximal if cos u51. The matrix element
can be parametrized by

TIA5i~u•R !
1

rIrA

4.0

@2.01R2/~rIrA!#2 . (149)

A parametrization of the overlap matrix element for the
streamline gauge configuration can be found in Shuryak
and Verbaarschot (1992). The result is compared with
the sum ansatz in Fig. 14 (for cos u51). We observe that
the matrix elements are very similar at large distance but
differ at short distance.

Using these results, we may write the contribution of
an instanton/anti-instanton pair to the partition function
as

ZIA5V4E d4zdU exp@Nf loguTIA~U ,z !u2

2S int~U ,z !# . (150)

Here, z is the distance between the centers, and U is the
relative orientation of the pair. The fermionic part is
attractive, while the bosonic part is either attractive or
repulsive, depending on the orientation. If the interac-
tion is repulsive, there is a real saddle point for the z
integral, whereas for the attractive orientation there is
only a saddle point in the complex z plane (as in Sec.
II.B).

The calculation of the partition function (150) in the
saddle-point approximation was recently attempted by
Shuryak and Velkovsky (1997). They find that for a
large number of flavors, Nf.5, the ground-state energy
oscillates as a function of Nf . The period of the oscilla-
tion is 4, and the real part of the energy shift vanishes
for even Nf56,8,.. . . The reason for these oscillations is
exactly the same as in the case of supersymmetry quan-
tum mechanics: the saddle point gives a complex contri-
bution with a phase that is proportional to the number
of flavors.

B. Instanton ensembles

In Sec. II.C.4 we studied the semiclassical theory of
instantons, treating them as very rare (and therefore in-
dependent) tunneling events. However, as emphasized
in Sec. III.A, in QCD instantons are not rare, so one
cannot just exponentiate the results obtained for a single
instanton. Before we study the instanton ensemble in
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QCD, we should like to discuss a simple physical anal-
ogy. In this picture, we think of instantons as atoms and
light quarks as valence electrons.

A system like this can exist in many different phases,
e.g., as a gas, liquid, or solid. In theories with massless
quarks, instantons have ‘‘unsaturated bonds’’ and can-
not appear individually. Isolated instantons in the form
of an atomic gas can only exist if there is a nonzero
quark mass. The simplest ‘‘neutral’’ object is an
instanton/anti-instanton (IA) molecule. Therefore, if the
instanton density is low (for whatever reason—high tem-
perature, a large Higgs expectation value, etc.) the sys-
tem should be in a phase consisting of IA molecules.
Below, we shall also argue that this is the case if the
density is not particularly small, but the interactions are
strong and favor the formation of molecules, for ex-
ample, if the number of light quarks Nf exceeds some
critical value. If the instanton ensemble is in the molecu-
lar phase, then quarks are bound to molecules and can-
not propagate over large distances. This means that
there are no eigenmodes with almost zero virtuality, the
‘‘conductivity’’ is zero, or chiral symmetry remains un-
broken.

The liquid phase differs from the gas phase in many
important respects. The density is determined by the in-
teractions and cannot be arbitrarily small. A liquid has a
surface tension, etc. As we shall see below, the instanton
ensemble in QCD has all these properties. In QCD we
also expect that chiral symmetry is spontaneously bro-
ken. This means that in the ground state there is a pre-
ferred direction in flavor space, characterized by the
quark condensate ^q̄q&. This preferred orientation can
only be established if quarks form an infinite cluster. In
terms of our analogy, this means that electrons are de-
localized and the conductivity is nonzero. In the instan-
ton liquid phase, quarks are delocalized because the in-
stanton zero modes become collective.

At very high density, interactions are strong and the
ensemble is expected to form a four-dimensional crystal.
In this case, both Lorentz and gauge invariance would
be broken spontaneously; clearly, this phase is very dif-
ferent from the QCD vacuum. Fortunately, however, ex-
plicit calculations (Diakonov and Petrov, 1984; Shuryak
and Verbaarschot, 1990) show that the instanton liquid
crystallizes only if the density is pushed to about two
orders of magnitude larger than the phenomenological
value. At physical densities, the crystalline phase is not
favored: although the interaction is attractive, the en-
tropy is too small as compared to the random liquid.30

The electronic structure of a crystal consists of several
bands. In our case, the Fermi surface lies between dif-

30Diakonov and Petrov (1984) suggested that the instanton
liquid crystallizes in the limit of a large number of colors, Nc
→` , because the interaction is proportional to the charge
8p2/g2 , which is of order Nc . As long as instantons do not
disappear altogether (the action is of order 1), the interaction
becomes increasingly important. However, little is known
about the structure of large-Nc QCD.
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ferent bands, so the crystal is an insulator. In QCD, this
means that chiral symmetry is not broken.

Another analogy with liquids concerns the question of
density stabilization. In order for the system to saturate,
we need a short-range repulsive force in addition to the
attractive, long-range dipole interaction. We have al-
ready mentioned that the nature of the short-range in-
teraction and the (possibly related) question of the fate
of large instantons in QCD are not well understood.
Lattice simulations indicate that large instantons are
strongly suppressed, but for the moment we have to in-
clude this result in a phenomenological manner.

Let us summarize this qualitative discussion. Depend-
ing on the density, the instanton ensemble is expected to
be in a gas, liquid, or solid phase. The phase boundaries
will in general depend on the number of colors and fla-
vors. Large Nc favors a crystalline phase, while large Nf
favors a molecular gas. Neither case is phenomenologi-
cally acceptable as a description of real QCD, with two
light and one intermediate mass flavor. We therefore
expect (and will show below) that the instanton en-
semble in QCD is in the liquid phase.

C. The mean-field approximation

In order to study the structure of the instanton en-
semble in a more quantitative fashion, we consider the
partition function for a system of instantons in pure
gauge theory,

Z5
1

N1!N2! )
i

N11N2 E @dV i n~r i!#exp~2S int!. (151)

Here, N6 are the numbers of instantons and anti-
instantons, V i5(zi ,r i ,Ui) are the collective coordinates
of the instanton i , n(r) is the semiclassical instanton
distribution function (93), and S int is the bosonic instan-
ton interaction. In general, the dynamics of a system of
pseudoparticles governed by Eq. (151) is still quite com-
plicated, so we have to rely on approximation schemes.
There are a number of techniques well known from sta-
tistical mechanics that can be applied to the problem, for
example, the mean-field approximation or the varia-
tional method. These methods are expected to be reli-
able as long correlations between individual instantons
are weak.

The first such attempt was made by Callan, Dashen,
and Gross (1978a). These authors included only the di-
pole interaction, which, as we noted above, vanishes on
average and produces an attractive interaction to next
order in the density. In this case, there is nothing to
balance the growth n(r);rb25 of the semiclassical in-
stanton distribution. In order to deal with this problem,
Ilgenfritz and Müller-Preußker (1981) introduced an ad
hoc ‘‘hard core’’ in the instanton interaction (see also
Münster, 1982). The hard core automatically excludes
large instantons and leads to a well-behaved partition
function. It is important to note that one cannot simply
cut the size integration at some rc , but has to introduce
the cutoff in a way that does not violate the conformal
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invariance of the classical equations of motion. This
guarantees that the results do not spoil the renormaliza-
tion properties of QCD, most notably the trace anomaly
(see below). In practice, Ilgenfritz and Müller-Preußker
chose

S int5H ` uzI2zAu,~arI
2rA

2 !1/4

0 uzI2zAu.~arI
2rA

2 !1/4, (152)

which leads to an excluded volume in the partition func-
tion, controlled by the dimensionless parameter a .

We do not go into the details of their results, but
present the next development (Diakonov and Petrov,
1984). In this work, the arbitrary core is replaced by the
interaction in the sum ansatz [see Eqs. (139) and Eq.
(140)]. The partition function is evaluated using a trial
distribution function. If we assume that correlations be-
tween instantons are not very important, then a good
trial function is given by the product of single-instanton
distributions m(r),

Z15
1

N1!N2! )
i

N11N2 E dV im~r i!

5
1

N1!N2!
~Vm0!N11N2, (153)

where m05*drm(r). The distribution m(r) is deter-
mined from the variational principle d log Z1 /dm50. In
quantum mechanics a variational wave function always
provides an upper bound on the true ground-state en-
ergy. The analogous statement in statistical mechanics is
known as Feynman’s variational principle. Using con-
vexity

Z5Z1^exp@2~S2S1!#&>Z1 exp~2^S2S1&!, (154)

where S1 is the variational action, one can see that the
variational vacuum energy is always higher than the true
one.

In our case, the single-instanton action is given by S1
5log@m(r)# while ^S& is the average action calculated
from the variational distribution (153). Since the varia-
tional ansatz does not include any correlations, only the
average interaction enters,

^S int&5g2r1
2r2

2 , g25
27
4

Nc

Nc
221

p2 (155)

for both IA and II pairs. Clearly, Eq. (155) is of the
same form as the hard core (152) discussed above, only
the dimensionless parameter g2 is determined from the
interaction in the sum ansatz. Applying the variational
principle, one finds (Diakonov and Petrov, 1984)

m~r!5n~r!expF2
bg2

V
Nr2r2G , (156)

where b5b( r̄) is the average instanton action and r2 is
the average size. We observe that the single-instanton
distribution is cut off at large sizes by the average instan-
ton repulsion. The average size r2 is determined by the
self-consistency condition r25m0

21*drm(r)r2. The re-
sult is
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r25S nV

bg2N D 1/2

, n5
b24

2
, (157)

which determines the dimensionless diluteness of the en-
semble, r4(N/V)5n/(bg2). Using the pure gauge beta
function b511, g2.25 from above and b.15, we get
r4(N/V)50.01, even more dilute than phenomenology
requires. The instanton density can be fixed from the
second self-consistency requirement, (N/V)52m0 (the
factor 2 comes from instantons and anti-instantons). We
get

N

V
5LPV

4 @CNc
b2NcG~n!~bng2!2n/2#2/~21n!, (158)

where CNc
is the prefactor in Eq. (93). The formula

shows that LPV is the only dimensionful parameter. The
final results are

x top.
N

V
5~0.65LPV!4, ~r2!1/250.47LPV

21.
1
3

R ,

b5S0.15, (159)

consistent with the phenomenological values for LPV
.300 MeV. It is instructive to calculate the free energy
as a function of the instanton density. Using F5
2(1/V)log Z, we have

F5
N

V H logS N

2Vm0
D2S 11

n

2 D J . (160)

The instanton density is determined by minimizing the
free energy, ]F/@](N/V)#50. The vacuum energy den-
sity is given by the value of the free energy at the mini-
mum, e5F0 . We find N/V52m0 as above and

e52
b

4 S N

V D . (161)

Estimating the value of the gluon condensate in a dilute
instanton gas, ^G2&532p2(N/V), we see that Eq. (161)
is consistent with the trace anomaly. Note that, for non-
interacting instantons (with the size integration regular-
ized in some fashion), one would expect e.2(N/V),
which is inconsistent with the trace anomaly and shows
the importance of respecting classical scale invariance.

The second derivative of the free energy with respect
to the instanton density, the compressibility of the in-
stanton liquid, is given by

]2F

]~N/V !2 U
n0

5
4
b S N

V D , (162)

where n0 is the equilibrium density. This observable is
also determined by a low-energy theorem based on bro-
ken scale invariance (Novikov et al., 1981),

E d4x^G2~0 !G2~x !&5~32p2!
4
b

^G2& . (163)

Here, the left-hand side is given by an integral over the
field-strength correlator, suitably regularized and with
the constant disconnected term ^G2&2 subtracted. For a
dilute system of instantons, the low-energy theorem
gives
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^N2&2^N&25
4
b

^N&. (164)

Here, ^N& is the average number of instantons in a vol-
ume V . The result (164) shows that density fluctuations
in the instanton liquid are not Poissonian. Using the
general relation between fluctuations and the compress-
ibility gives the result (162). This means that the form of
the free energy near the minimum is determined by the
renormalization properties of the theory. Therefore the
functional form (160) is more general than the mean-
field approximation used to derive it.

How reliable are the numerical results derived from
the mean-field approximation? The accuracy of the
mean-field approximation can be checked by doing sta-
tistical simulations of the full partition function.
(We shall come to this approach in Sec. V.) Another
question concerns the accuracy of the sum ansatz. This
can be checked explicitly by calculating the induced cur-
rent jm5DmGmn

cl in the classical gauge configurations
(Shuryak, 1985). This current measures the failure of the
gauge potential to be a true saddle point. In the sum
ansatz, the induced current gives a sizable contribution
to the action, which means that this ansatz is not a good
starting point for a self-consistent solution.

In principle, this problem is solved in the streamline
method because, by construction, jm is orthogonal to
quantum fluctuations.31 However, applying the varia-
tional method to the streamline configurations (Ver-
baarschot, 1991) is not satisfactory either, because the
ensemble contains too many close pairs and too many
large instantons.

In summary, phenomenology and the lattice seem to
favor a fairly dilute instanton ensemble. This is well re-
produced by the mean-field approximation based on the
sum ansatz, but the results are not really self-consistent.
How to generate a fully consistent ensemble in which
large instantons are automatically suppressed remains
an open problem. Nevertheless, as long as large instan-
tons are excluded in a way that does not violate the
symmetries of QCD, the results are likely to be indepen-
dent of the precise mechanism that leads to the suppres-
sion of large instantons.

D. The quark condensate in the mean-field approximation

Proceeding from pure glue theory to QCD with light
quarks, one has to deal with the much more complicated
problem of quark-induced interactions. Not only does
the fermion determinant induce a very nonlocal interac-
tion, but the very presence of instantons cannot be un-
derstood in the single-instanton approximation. Indeed,
as discussed in Sec. II.D, the semiclassical instanton den-
sity is proportional to the product of fermion masses and
therefore vanishes in the chiral limit m→0. In the QCD

31Except for the soft mode leading to the trivial gauge con-
figuration, but the integration over this mode can be done ex-
plicitly.
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
vacuum, however, chiral symmetry is spontaneously bro-
ken, and the quark condensate ^q̄q& is nonzero. The
quark condensate is the amplitude for a quark to flip its
chirality, so we expect that the instanton density is con-
trolled not by the current masses, but by the quark con-
densate, which does not vanish as m→0.

Given the importance of chiral symmetry breaking,
we shall discuss this phenomenon on a number of differ-
ent levels. In this section, we should like to give a simple
qualitative derivation following (Shuryak, 1982b). Ear-
lier works on chiral symmetry breaking by instantons
are those of Caldi (1977) and Carlitz and Creamer
(1979a, 1979b); see also the review of Diakonov (1995).

The simplest case is QCD with just one light flavor,
Nf51. In this theory, the only chiral symmetry is the
axial U(1)A symmetry, which is broken by the anomaly.
This means that there is no spontaneous symmetry
breaking, and the quark condensate appears at the level
of a single instanton. The condensate is given by

^q̄q&5iE d4x tr@S~x ,x !# . (165)

In the chiral limit, nonzero modes do not contribute to
the quark condensate. Using the zero-mode propagator
S(x ,y)52c0(x)c0

†(y)/(im), we find that the contribu-
tion of a single instanton to the quark condensate is
given by 21/m . Multiplying this result by the density of
instantons, we have ^q̄q&52(N/V)/m . Since the in-
stanton density is proportional to the quark mass m , the
quark condensate is finite in the chiral limit.

The situation is different for Nf.1. The theory still
has an anomalous U(1)A symmetry, which is broken by
instantons. The corresponding order parameter
detf(q̄f,Lqf,R) (where f is the flavor index) appears al-
ready at the one-instanton level. But in addition to that,
there is a chiral SU(Nf)L3SU(Nf)R symmetry that is
spontaneously broken to SU(Nf)V . This effect cannot
be understood on the level of a single instanton: the
contribution to ^q̄q& is still (N/V)/m , but the density of
instantons is proportional to (N/V);mNf.

Spontaneous symmetry breaking has to be a collective
effect involving infinitely many instantons. This effect is
most easily understood in the context of the mean-field
method. For simplicity, we consider small-size instan-
tons. Then the tunneling rate is controlled by the
vacuum expectation value of the 2Nf-fermion operator
(111) in the ’t Hooft effective Lagrangian. This vacuum
expectation value can be estimated using the ‘‘vacuum
dominance’’ (or factorization) approximation,

^c̄G1cc̄G2c&5
1

N2 ~Tr@G1#Tr@G2#2Tr@G1G2# !

3^q̄q&2, (166)

where G1,2 is a spin, isospin, color matrix and N
54NfNc is the corresponding degeneracy factor. Using
this approximation, we find that the factor P fmf in the
instanton density should be replaced by P fmf* , where
the effective quark mass is given by
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mf* 5mf2
2
3

p2r2^q̄ fqf& . (167)

Thus, if chiral symmetry is broken, the instanton density
is O„(m* )Nf

…, finite in the chiral limit.
The next question is whether it is possible to make

this estimate self-consistent and calculate the quark con-
densate from instantons. If we replace the current mass
by the effective mass in the quark propagator,32 the con-
tribution of a single instanton to the quark condensate is
given by 1/m* and, for a finite density of instantons, we
expect

^q̄q&52
~N/V !

m*
. (168)

This equation, taken together with Eq. (167), gives a
self-consistent value for the quark condensate,

^q̄q&52
1

pr
A3N/2V . (169)

Using the phenomenological values (N/V)51 fm24 and
r50.33 fm, we get ^q̄q&.2(215 MeV)3, quite consis-
tent with the experimental value ^q̄q&.2(230 MeV)3.
The effective quark mass is given by m*
5pr(2/3)1/2(N/V)1/2.170 MeV. The self-consistent
pair of equations (167), (168) has the general form of a
gap equation. We shall provide a more formal derivation
of the gap equation in Sec. IV.F.

E. Dirac eigenvalues and chiral symmetry breaking

In this section we shall get a different and more mi-
croscopic perspective on the formation of the quark con-
densate. The main idea is to study the motion of quarks
in a fixed gauge field and then average over all gauge-
field configurations. This approach is quite natural from
the point of view of the path integral (and lattice gauge
theory). Since the integral over the quark fields can al-
ways be performed exactly, quark observables are deter-
mined by the exact quark propagator in a given gauge
configuration, averaged over all gauge fields.

In a given gauge-field configuration, we can determine
the spectrum of the Dirac operator iD” 5@ i]m
1Am(x)#gm ,

iD” cl5lcl , (170)

where cl is an eigenstate with ‘‘virtuality’’ l. In terms of
the spectrum, the quark propagator S(x ,y)5
2^xuiD” 21uy& is given by

S~x ,y !52(
l

cl~x !cl
†~y !

l1im
. (171)

Using the fact that the eigenfunctions are normalized,
we obtain the quark condensate,

32We shall give a more detailed explanation for this approxi-
mation in Sec. VI.C.2.
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iE d4x tr@S~x ,x !#52i(
l

1
l1im

. (172)

We can immediately make a few important observations
concerning the spectrum of the Dirac operator:

(1) Since the Dirac operator is Hermitian, the eigenval-
ues l are real. The inverse propagator (iD”
1im)21, on the other hand, consists of a Hermitian
and an anti-Hermitian piece.

(2) For every nonzero eigenvalue l with eigenvector
cl , there is another eigenvalue 2l with eigenvec-
tor g5cl .

(3) This implies that the fermion determinant is posi-
tive: combining the nonzero eigenvalues in pairs, we
get

)
lÞ0

~il2m!5)
l>0

~il2m!~2il2m!5)
l>0

~l21m2!.

(173)
(4) Only zero modes can be unpaired. Since g5c05

6c0 , zero-mode wave functions have to have a
definite chirality. We have already seen this in the
case of instantons, where the Dirac operator has a
left-handed zero mode.

Using the fact that nonzero eigenvalues are paired, we
can write the trace of the quark propagator as

iE d4x tr@S~x ,x !#52 (
l>0

2m

l21m2 . (174)

We have excluded zero modes since they do not contrib-
ute to the quark condensate in the limit m→0 (for Nf
.1). In order to determine the average quark conden-
sate, we introduce the spectral density r(n)5@(ld(n
2l)# . We then have

^q̄q&52E
0

`

dlr~l!
2m

l21m2 . (175)

This result shows that the order in which we take the
chiral and thermodynamic limits is crucial. In a finite
system, the integral is well behaved in the infrared, and
the quark condensate vanishes in the chiral limit. This is
consistent with the observation that there is no sponta-
neous symmetry breaking in a finite system. A finite spin
system, for example, cannot be magnetized if there is no
external field. If the energy barrier between states with
different magnetization is finite and there is no external
field that selects a preferred magnetization, the system
will tunnel between these states and the average magne-
tization is zero. Only in the thermodynamic limit can the
system develop a spontaneous magnetization.

However, if we take the thermodynamic limit first, we
can have a finite density of eigenvalues arbitrarily close
to zero. In this case, the l integration is infrared diver-
gent as m→0, and we get a finite quark condensate,

^q̄q&52pr~l50 !, (176)

a result known as the Banks-Casher relation (Banks and
Casher, 1980). This expression shows that quark conden-
sation is connected with quark states of arbitrarily small
virtuality.
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Studying chiral symmetry breaking requires an under-
standing of quasizero modes, the spectrum of the Dirac
operator near l50. If there is only one instanton, the
spectrum consists of a single zero mode plus a continu-
ous spectrum of nonzero modes. If there is a finite den-
sity of instantons, the spectrum is complicated, even if
the ensemble is very dilute. In the chiral limit, fluctua-
tions of the topological charge are suppressed, so one
can think of the system as containing as many instantons
as anti-instantons. The zero modes are expected to mix,
so that the eigenvalues spread over some range of virtu-
alities Dl. If chiral symmetry is broken, the natural value
of the quark condensate is of order (N/V)/Dl .

There is a useful analogy from solid-state physics. In
condensed matter, atomic bound states may become de-
localized and form a band. The material is a conductor if
the Fermi surface lies inside a band. Such zones also
exist in disordered systems like liquids, but in this case
they do not have a sharp boundary.

In the basis spanned by the zero modes of the indi-
vidual instantons the Dirac operator reduces to the ma-
trix

iD” 5S 0 TIA

TAI 0 D , (177)

already introduced in Sec. IV.A.2. The width of the
zero-mode zone in the instanton liquid is governed by
the off-diagonal matrix elements TIA of the Dirac opera-
tor. The matrix elements depend on the relative color
orientation of the pseudoparticles. If the interaction be-
tween instantons is weak, the matrix elements are dis-
tributed randomly with zero average, but their variance
is nonzero. Averaging TIATIA* over the positions and
orientations of a pair of pseudoparticles, one gets

^uTIAu2&5
2p2

3Nc

Nr2

V
. (178)

If the matrix elements are distributed according to a
Gaussian unitary ensemble,33 the spectral density is a
semicircle,

r~l!5
N

psV S 12
l2

4s2D 1/2

. (179)

From the Casher-Banks formula, we then get the follow-
ing result for the quark condensate:

^q̄q&52
1

pr S 3Nc

2
N

V D 1/2

.2~240 MeV!3, (180)

33In the original work (Diakonov and Petrov, 1985) from
which these arguments are taken, it was assumed that the spec-
trum had a Gaussian shape, with the width given above. How-
ever, for a random matrix the correct result is a semicircle. In
reality, the spectrum of the Dirac operator for a system of
randomly distributed instantons is neither a semicircle nor a
Gaussian; it has a nonanalytic peak at l50 (Shuryak and Ver-
baarschot, 1990). This does not qualitatively change estimate
for the quark condensate.
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which has the same parametric dependence on (N/V)
and r as the result in the previous section, only the co-
efficient is slightly different. In addition to that, we can
identify the effective mass m* introduced in the previ-
ous section with a weighted average of the eigenvalues,
(m* )215N21(l21.

It is very interesting to study the spectral density of
the Dirac operator at small virtualities. Similar to the
density of states near the Fermi surface in condensed-
matter problems, this quantity controls the low-energy
excitations of the system. If chiral symmetry is broken,
the spectral density at l50 is finite. In addition, chiral
perturbation theory predicts the slope of the spectrum
(Smilga and Stern, 1993),

r~l!52
1
p

^q̄q&1
^q̄q&2

32p2fp
4

Nf
224

Nf
ulu1¯ , (181)

which is valid for Nf>2. The second term is connected
with the fact that for Nf.2 there is a Goldstone boson
cut in the scalar-isovector (d-meson) correlator, while
the decay d→pp is not allowed for two flavors. The
result implies that the spectrum is flat for Nf52 but has
a cusp for Nf.2.

F. Effective interaction between quarks
and the mean-field approximation

In this section we should like to discuss chiral symme-
try breaking in terms of an effective, purely fermionic
theory that describes the effective interaction between
quarks generated by instantons (Diakonov and Petrov,
1986). For this purpose, we shall have to reverse the
strategy used in the last section and integrate over the
gauge field first. This will leave us with an effective
theory of quarks that can be treated with standard
many-body techniques. Using these methods allows us
to study not only chiral symmetry breaking, but also the
formation of quark-antiquark bound states in the instan-
ton liquid.

For this purpose we rewrite the partition function of
the instanton liquid

Z5
1

N1!N2! )
i

N11N2 E @dV in~r i!#

3exp~2S int!det~D” 1m !Nf (182)

in terms of a fermionic effective action

Z5E dcdc† expS E d4xc†~ i]”1im !c D
3K)

I ,f
~QI2imf!)

A ,f
~QA2imf!L , (183)

QI ,A5E d4x„c†~x !i]”fI ,A~x2zI ,A!…
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3E d4y„fI ,A
† ~y2zI ,A!i]”c~y !…, (184)

which describes quarks interacting via the ’t Hooft ver-
tices QI ,A . The expectation value ^•& corresponds to an
average over the distribution of instanton collective co-
ordinates. Formally, Eq. (183) can be derived by ‘‘fermi-
onizing’’ the original action (see Nowak, 1991). In prac-
tice, it is easier to check the result by performing the
integration over the quark fields and verifying that one
recovers the fermion determinant in the zero-mode ba-
sis.

Here, however, we want to use a different strategy
and exponentiate the ’t Hooft vertices QI ,A in order to
derive the effective quark interaction. For this purpose
we calculate the average in Eq. (183) with respect to the
variational single-instanton distribution (156). There are
no correlations, so only the average interaction induced
by a single instanton enters. For simplicity, we only av-
erage over the position and color orientation and keep
the average size r5 r̄ fixed,

Y65E d4zE dU)
f

QI ,A . (185)

In order to exponentiate Y6 , we insert factors of unity
*dG6*db6 /(2p)exp@ib6(Y62G6)# and integrate over
G6 using the saddle-point method to obtain

Z5E dcdc† expS E d4xc†i]”c D E db6

2p

3exp~ ib6Y6!expFN1S logS N1

ib1V D21 D
1~1↔2 !G ,

where we have neglected the current quark mass. In this
partition function, the saddle-point parameters b6 play
the role of an activity for instantons and anti-instantons.

1. The gap equation for Nf51

The form of the saddle-point equations for b6 de-
pends on the number of flavors. The simplest case is
Nf51, where the Grassmann integration is quadratic.
The average over the ’t Hooft vertex is most easily per-
formed in momentum space:

Y65E d4k

~2p!4 E dU

3c†~k !@k” fI ,A~k !fI ,A
† ~k !k” #c~k !, (186)

where f(k) is the Fourier transform of the zero-mode
profile (see Appendix A.2). Performing the average over
the color orientation, we get

Y65E d4k

~2p!4

1
Nc

k2w82~k !c†~k !g6c~k !, (187)

where g65(16g5)/2 and w8(k) is defined in the Ap-
pendix. Clearly, the saddle-point equations are symmet-
ric in b6 , so that the average interaction is given by
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Y11Y2 , which acts like a mass term. This can be seen
explicitly by first performing the Grassmann integration

Z5E db6

2p
expFN6S log

N6

ib6V
21 D

1NcVE d4k

~2p!4 tr logS k” 1g6b6

k2w82~k !

Nc
D G
(188)

and then doing the saddle-point integral. Varying with
respect to b5b6 gives the gap equation (Diakonov and
Petrov, 1986)

E d4k

~2p!4

M2~k !

k21M2~k !
5

N

4NcV
, (189)

where M(k)5bk2w82(k)/Nc is the momentum-
dependent effective quark mass. The gap equation de-
termines the effective constituent mass M(0) in terms of
the instanton density N/V . For the parameters (159),
the effective mass is M.350 MeV. We can expand the
gap equation in the instanton density (Pobylitsa, 1989).
For small N/V , one finds M(0);r(N/2VNc)1/2, which
parametrically behaves like the effective mass m* intro-
duced above. Note that a dynamic mass is generated for
arbitrarily small values of the instanton density. This is
expected for Nf51, since there is no spontaneous sym-
metry breaking and the effective mass is generated by
the anomaly at the level of an individual instanton.

2. The effective interaction for two or more flavors

In the context of QCD, the more interesting case is
the one of two or more flavors. For Nf52, the effective
’t Hooft vertex is a four-fermion interaction

Y65F )
i51,4

E d4ki

~2p!4 kiw8~ki!G
3~2p!4d4S (

i
kiD 1

4~Nc
221 !

3S 2Nc21
2Nc

~c†g6ta
2c!2

1
1

8Nc
~c†g6smnta

2c!2D , (190)

where ta
25(tW ,i) is an isospin matrix and we have sup-

pressed the momentum labels on the quark fields. In the
long-wavelength limit k→0, the ’t Hooft vertex (190)
corresponds to a local four-quark interaction34

L5b~2pr!4
1

4~Nc
221 !

S 2Nc21
2Nc

@~c†ta
2c!2

34The structure of this interaction is identical to that one
given in Eq. (111), as one can check using Fierz identities. The
only new ingredient is that the overall constant b is determined
self-consistently from a gap equation.-
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1~c†g5ta
2c!2#1

1
4Nc

~c†smnta
2c!2D . (191)

This Lagrangian is of the type first studied by Nambu
and Jona-Lasinio (1961). It is widely used as a model for
chiral symmetry breaking and as an effective description
for low-energy chiral dynamics (see the reviews of Vogl
and Weise, 1991; Klevansky, 1992; Hatsuda and Kuni-
hiro, 1994).

Unlike the Nambu–Jona-Lasinio model, however, the
interaction has a natural cutoff parameter L;r21, and
the coupling constants in Eq. (191) are determined in
terms of a physical parameter, the instanton density
(N/V). The interaction is attractive for quark-antiquark
pairs with the quantum numbers of the p and s meson.
If the interaction is sufficiently strong, the vacuum is
rearranged, quarks condense, and a light (Goldstone)
pion is formed. The interaction is repulsive in the
pseudoscalar-isoscalar [the SU(2) singlet h8] and scalar-
isovector d channel, showing the effect of the U(1)A
anomaly. Note that, to first order in the instanton den-
sity, there is no interaction in the vector r ,v ,a1 ,f1 chan-
nels. We shall explore the consequences of this interac-
tion in much greater detail below.

In the case of two (or more) flavors the Grassmann
integration cannot be done exactly, since the effective
action is more than quadratic in the fermion fields. In-
stead, we perform the integration over the quark fields
in mean-field approximation. This procedure is consis-
tent with the approximations used to derive the effective
interaction (185). The mean-field approximation is most
easily derived by decomposing fermion bilinears into a
constant and a fluctuating part. The integral over the
fluctuations is quadratic and can be done exactly. Tech-
nically, this can be achieved by introducing auxiliary sca-
lar fields La ,Ra into the path integral35 and then shifting
the integration variables in order to linearize the inter-
action. Using this method, the four-fermion interaction
becomes

~c†ta
2g2c!2→2~c†ta

2g2c!La2LaLa , (192)

~c†ta
2g1c!2→2~c†ta

2g1c!Ra2RaRa . (193)

In the mean-field approximation, the La ,Ra integration
can be done using the saddle-point method. Since
isospin and parity are not broken, only s5L45R4 can
have a nonzero value. At the saddle point, the free en-
ergy F52(1/V)log Z is given by

F54NcE d4k

~2p!4 log@k21bsk2w82~k !#

22
2Nc~Nc

221 !

2Nc21
bs22

N

V
logS bV

N D . (194)

35In the mean-field approximation, we do not need to intro-
duce auxiliary fields Tmn in order to linearize the tensor part of
the interaction, since Tmn cannot have a vacuum expectation
value.
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Varying with respect to bs gives the same gap equation
as in the Nf51 case, now with M(k)5bsk2w82(k). We
also find (N/V)52 fs2b where f52Nc(Nc

221)/(2Nc

21). Expanding everything in (N/V), one can show
that M(0);(N/V)1/2, s;(N/V)1/2, and b;const.

The fact that the gap equation is independent of Nf is
a consequence of the mean-field approximation. It im-
plies that even for Nf52 chiral symmetry is spontane-
ously broken for arbitrarily small values of the instanton
density. As we shall see in the next section, this is not
correct if the full fermion determinant is included. If the
instanton density is too small, the instanton ensemble
forms a molecular gas, and chiral symmetry is unbroken.
However, as we shall show in Sec. V, the mean-field
approximation is quite useful for physically interesting
values of the instanton density.

The quark condensate is given by

^q̄q&524NcE d4k

~2p!4

M~k !

M2~k !1k2 . (195)

Solving the gap equation numerically, we get ^q̄q&.
2(255 MeV)3. It is easy to check that ^q̄q&
;(N/V)1/2r21, in agreement with the results obtained
in Secs. IV.D and IV.E. The relation (195) was first de-
rived by Diakonov and Petrov using somewhat different
techniques see (Sec. VI.B.3).

The procedure for three flavors is very similar, so we
do not need to go into detail here. Let us simply quote
the effective Lagrangian for Nf53 (Nowak, Verbaar-
schot, and Zahed, 1989a),

L5b~2pr!6
1

6Nc~Nc
221 !

e f1f2f3
eg1g2g3

3S 2Nc11
2Nc14

~c f1

† g1cg1
!~c f2

† g1cg2
!~c f3

† g1cg3
!

1
3

8~Nc12 !
~c f1

† g1cg1
!~c f2

† g1smncg2
!

3~c f3

† g1smncg3
!1~1↔2 ! D , (196)

which was first derived in slightly different form by Shif-
man et al. (1980c). So far, we have neglected the current
quark mass dependence and considered the SU(Nf)
symmetric limit. Real QCD is intermediate between the
Nf52 and Nf53 cases. Flavor mixing in the instanton
liquid with realistic values of quark masses was studied
by Nowak et al. (1989a) to which we refer the reader for
more details.

Before we discuss the spectrum of hadronic excita-
tions let us briefly summarize the last three subsections.
A random system of instantons leads to spontaneous
chiral symmetry breaking. If the system is not only ran-
dom, but also sufficiently dilute, this phenomenon is
most easily studied using the mean-field approximation.
We have presented the mean-field approximation in
three slightly different versions: one using a schematic
model in Sec. IV.D, one using random matrix arguments
in Sec. IV.E, and one using an effective quark model in
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this section. The results are consistent and illustrate the
phenomenon of chiral symmetry breaking in comple-
mentary ways. Of course, the underlying assumptions of
randomness and diluteness have to be checked. We shall
come back to this problem in Sec. V.

G. Bosonization and the spectrum
of pseudoscalar mesons

We have seen that the ’t Hooft interaction leads to the
spontaneous breakdown of chiral symmetry and gener-
ates a strong interaction in the pseudoscalar meson
channels. We shall discuss mesonic correlation functions
in great detail in Sec. VI and now consider only the
consequences for the spectrum of pseudoscalar mesons.
The pseudoscalar spectrum is most easily obtained by
bosonizing the effective action. In order to describe the
U(1)A anomaly and the scalar s channel correctly, one
has to allow for fluctuations of the number of instantons.
The fluctuation properties of the instanton ensemble can
be described by the following ‘‘coarse-grained’’ partition
function (Nowak, Verbaarschot, and Zahed, 1989b):

Seff5
b

4 E d4z@n1~z !1n2~z !#F logS n1~z !1n2~z !

n0
D21 G

1
1

2n0
E d4z@n1~z !2n2~z !#2

1E d4z@c†~ i]”1im !c2n1~z !Q̄I~z !

2n2~z !Q̄A~z !# , (197)

where n6(z) is the local density of instantons/anti-
instantons and Q̄I ,A(z) is the ’t Hooft interaction (184)
averaged over the instanton orientation. This partition
function reproduces the low-energy theorem (164) as
well as the relation x top5(N/V) expected for a dilute
system in the quenched approximation. In addition to
that, the divergence of the flavor-singlet axial current is
given by ]mjm

5 52Nf@n1(z)2n2(z)# , consistent with the
axial U(1)A anomaly.

Again, the partition function can be bosonized by in-
troducing auxiliary fields, linearizing the fermion inter-
action, and performing the integration over the quarks.
In addition to that, we expand the fermion determinant
in derivatives of the meson fields in order to recover
kinetic terms for the meson fields. This procedure gives
the standard nonlinear s-model Lagrangian. To leading
order in the quark masses, the pion and kaon masses
satisfy the Gell-Mann, Oakes, Renner relations

fp
2 mp

2 522m^q̄q&, (198)

fK
2 mK

2 52~m1ms!^q̄q&, (199)

with the pion-decay constant

fp
2 54NcE d4k

~2p!4

M2~k !

@k21M2~k !#2 .~100 MeV!2.

(200)
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
To this order in the quark masses, fK
2 5fp

2 . The mass
matrix in the flavor singlet and octet sector is more com-
plicated. One finds

V5
1
2 S 4

3
mK

2 2
1
3

mp
2 Dh8

21
1
2 S 2

3
mK

2 1
1
3

mp
2 Dh0

2

1
1
2

4&
3

~mp
2 2mK

2 !h0h81
Nf

fp
2 S N

V Dh0
2 . (201)

The last term gives the anomalous contribution to the h8
mass. It agrees with the effective Lagrangian originally
proposed by Veneziano (1979) and leads to the Witten-
Veneziano relation [with x top.(N/V)]

fp
2 ~mh8

2
1mh

2 22mK
2 !52Nf~N/V !. (202)

Diagonalizing the mass matrix for m55 MeV and ms
5120 MeV, we find mh5527 MeV, mh851172 MeV,
and a mixing angle u5211.5°. The h8 mass is somewhat
too heavy, but given the crude assumptions, the result is
certainly not bad. One should also note that the result
corresponds to an ensemble of uncorrelated instantons.
In full QCD, however, the topological susceptibility is
zero and correlations between instantons have to be
present (see Sec. V.E).

H. Spin-dependent interactions induced by instantons

The instanton-induced effective interaction between
light quarks produces large spin-dependent effects. In
this section, we wish to compare these effects with other
spin-dependent interactions in QCD and study the effect
of instantons on spin-dependent forces in heavy-quark
systems. In QCD, the simplest source of spin-dependent
effects is the hyperfine interaction generated by the one-
gluon exchange potential

Vij
OGE52

as

mimj

p

6
~l i

al j
a!~sW isW j!d

3~rW !. (203)

This interaction has at least two phenomenologically im-
portant features: (a) The (sW sW )(lala) term is twice as
large in mesons as it is in baryons, and (b) the ratio of
spin-dependent forces in strange and nonstrange system
is controlled by the inverse (constituent) quark mass.

For comparison, the nonrelativistic limit of the
’t Hooft effective interaction is

Vij
inst52

p2r2

6
~m* !2

mi* mj*
S 11

3
32

~113sW isW j!l i
al j

aD
3S 12t i

at j
a

2 D d3~rW !. (204)

The spin-dependent part of V inst clearly shares the at-
tractive features mentioned above. The dependence on
the effective mass comes from having to close two of the
external legs in the three-flavor interaction (196). How-
ever, there are important differences in the flavor de-
pendence of the one-gluon exchange and instanton in-
teractions. In particular, there is no ’t Hooft interaction
between quarks of the same flavor (uu , dd , or ss). Nev-
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ertheless, as shown by Shuryak and Rosner (1989), the
potential provides a description of spin splittings in the
octet and decuplet that is as good as the one-gluon ex-
change. The instanton-induced potential has two addi-
tional advantages over the one-gluon-exchange potential
(Dorokhov et al., 1992). First, we do not have to use an
uncomfortably large value of the strong-coupling con-
stant as , and the instanton potential does not have a
(phenomenologically unwanted) large spin-orbit part.

In addition to that, instantons provide genuine three-
body forces. These forces act only in uds singlet states,
like the flavor singlet L [usually identified with the
L(1405)] or the hypothetical dilambda (H-dibaryon).36

Another interesting question concerns instanton-
induced forces between heavy quarks (Callan et al.,
1978b). For heavy quarks, the dominant part of the in-
teraction is due to nonzero modes, which we have com-
pletely neglected in the discussion above. These effects
can be studied using the propagator of an infinitely
heavy quark,

S~x !5
11g4

2
d3~rW !Q~t!P expS iE Amdxm D , (205)

in the field of an instanton. Here, P denotes a path-
ordered integral, and we have eliminated the mass of the
heavy quark using a Foldy-Wouthuysen transformation.
The phase accumulated by a heavy quark in the field of
a single instanton (in singular gauge) is

U~rW !5P expS iE
2`

`

A4dx4D
5cos@F~r !#1irW•tW sin@F~r !# , with

F~r !5pS 12
r

Ar21r2D , (206)

where rW is the spatial distance between the instanton and
the heavy quark, and r5urWu. From this result, we can
determine the mass renormalization of the heavy quark
due to the interaction with instantons in the dilute-gas
approximation (Callan et al., 1978b; Diakonov et al.,
1989; Chernyshev, Nowak, and Zahed, 1996):

DMQ5
16p

Nc
S N

V D r330.552.70 MeV. (207)

In a similar fashion, one can determine the spin-
independent part of the heavy-quark potential (for color
singlet q̄q systems),

VQQ~rW i ,rW j!5E drn~r!E d3r
1
3

Tr@U~rW i2rW !

3U†~rW j2rW !21# . (208)

The potential (208) rises quadratically at short distance
but levels off at a value of 2DMQ for r.5r . This is a

36Takeuchi and Oka (1991) found that instanton-induced
forces made the H unbound, a quite welcome conclusion, since
so far it has eluded all searches.
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reflection of the fact that dilute instantons do not con-
fine. Also, the magnitude of the potential is on the order
of 100 MeV, too small to be of much importance in char-
monium or bottonium systems. The spin-dependent part
of the heavy-quark potential is

VQQ
ss ~rW i ,rW j!52

1
4MiMj

~sW i¹W i!~sW j¹W j!V~rW i2rW j!, (209)

and it, too, is too small to be important phenomenologi-
cally. More important is the instanton-induced interac-
tion in heavy-light systems. This problem was studied in
some detail by Chernyshev et al. (1996). The effective
potential between the heavy and the light quark is given
by

VqQ~rW !5
DMQmq*

2~N/V !Nc
F S 11

lQ
a lq

a

4 D
2

DMQ
spin

DMQ
sW qsW Q

lQ
a lq

a

4 Gd3~rW !, (210)

where DMQ is the mass renormalization of the heavy
quark and

DMQ
spin5

16p

Nc
S N

V D r2

MQ
30.193 (211)

controls the hyperfine interaction. This interaction gives
very reasonable results for spin splittings in heavy-light
mesons. In addition to that, instantons generate many-
body forces which might be important in heavy-light
baryons. We conclude that instantons can account for
spin-dependent forces required in light-quark spectros-
copy without the need for large hyperfine interactions.
Instanton-induced interactions are not very important in
heavy-quark systems, but may play a role in heavy-light
systems.

V. THE INTERACTING INSTANTON LIQUID

A. Numerical simulations

In the last section we discussed an analytic approach
to the statistical mechanics of the instanton ensemble
based on the mean-field approximation. This approach
provides important insights into the structure of the in-
stanton ensemble and the qualitative dependence on the
interaction. However, the method ignores correlations
among instantons, which are important for a number of
phenomena, such as topological charge screening (Sec.
V.E), chiral symmetry restoration (Sec. VII.B), and had-
ronic correlation functions (Sec. VI).

In order to go beyond the mean-field approximation
and study the instanton liquid with the ’t Hooft interac-
tion included to all orders, we have performed numeri-
cal simulations of the interacting instanton liquid
(Shuryak, 1988a; Shuryak and Verbaarschot, 1990;
Nowak et al., 1989a; Schäfer and Shuryak, 1996a). In
these simulations, we make use of the fact that the
quantum-field-theory problem is analogous to the statis-
tical, mechanics of a system of pseudoparticles in four
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dimensions. The distribution of the 4NcN collective co-
ordinates associated with a system of N pseudoparticles
can be studied using standard Monte Carlo techniques
(e.g., the Metropolis algorithm), originally developed for
simulations of statistical systems containing atoms or
molecules.

These simulations have a number of similarities to lat-
tice simulations of QCD [see the textbooks of Creutz
(1983), Rothe (1992), and Montvay and Münster
(1995)]. As in lattice gauge theory, we consider systems
in a finite four-dimensional volume, subject to periodic
boundary conditions. This means that both approaches
share finite-size problems, especially the difficulty of
working with realistic quark masses. Both methods are
also formulated in Euclidean space, which means that it
is difficult to extract real-time (in particular nonequilib-
rium) information. However, in contrast to the lattice,
spacetime is continuous, so we have no problems with
chiral fermions. Furthermore, the number of degrees is
drastically reduced, and meaningful (unquenched) simu-
lations of the instanton ensemble can be performed in a
few minutes on an average workstation. Finally, using
the analogy with an interacting liquid, it is easier to de-
velop an intuitive understanding of the numerical simu-
lations.

The instanton ensemble is defined by the partition
function

Z5 (
N1 ,N2

1
N1!N2! E )

i

N11N2

@dV in~r i!#

3exp~2S int!)
f

Nf

det~D” 1mf!, (212)

describing a system of pseudoparticles interacting via
the bosonic action and the fermionic determinant. Here,
dV i5dUid

4zidr i is the measure in the space of collec-
tive coordinates (color orientation, position, and size)
associated with a single instanton, and n(r) is the single-
instanton density [Eq. (93)].

The gauge interaction between instantons is approxi-
mated by a sum of pure two-body interactions S int
5 1

2 (IÞJS int(VIJ). Genuine three-body effects in the in-
stanton interaction are not important as long as the en-
semble is reasonably dilute. This part of the interaction
is fairly easy to deal with. The computational effort is
similar to that for a statistical system with long-range
forces.

The fermion determinant, however, introduces nonlo-
cal interactions among many instantons. Changing the
coordinates of a single instanton requires the calculation
of the full N-instanton determinant, not just N two-body
interactions. Evaluating the determinant exactly is a
quite formidable problem. In practice we proceed as in
Sec. IV.F and factorize the determinant into a low- and
a high-momentum part,

det~D” 1mf!5S )
i

N11N2

1.34r iD det~TIA1mf!, (213)
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where the first factor, the high-momentum part, is the
product of contributions from individual instantons cal-
culated in the Gaussian approximation, whereas the
low-momentum part associated with the fermionic zero
modes of individual instantons is calculated exactly. TIA
is the N13N2 matrix of overlap matrix elements intro-
duced in Sec. IV.A.2. As emphasized before, this deter-
minant contains the ’t Hooft interaction to all orders.

In practice, it is simpler to study the instanton en-
semble for a fixed particle number N5N11N2 . This
means that instead of the grand-canonical partition func-
tion (212), we consider the canonical ensemble

ZN5
1

N1!N2! )
i

N11N2

@dV in~r i!#

3exp~2S int!)
f

Nf

det~D” 1mf! (214)

for different densities and determine the ground state by
minimizing the free energy F521/V log ZN of the sys-
tem. Furthermore, we shall consider only ensembles
with no net topology. The two constraints N/V5const
and Q5N12N250 do not affect the results in the
thermodynamic limit. The only exceptions are of course
fluctuations of Q and N , the topological susceptibility
and the compressibility of the instanton liquid, respec-
tively. In order to study these quantities, one has to con-
sider appropriately chosen subsystems (see Sec. V.E).

In order to simulate the partition function (214), we
generate a sequence $V i% j (i51,.. . ,N ; j51,.. . ,Nconf) of
configurations according to the weight function
p($V i%);exp(2S), where

S52 (
i51

N11N2

log@n~r i!#1S int1tr log~D” 1mf! (215)

is the total action of the configuration. This is most eas-
ily accomplished using the Metropolis algorithm: a new
configuration is generated using some microreversible
procedure $V i% j→$V i% j11 . The configuration is always
accepted if the new action is smaller than the old one,
and it is accepted with the probability exp(2DS) if the
new action is larger. Alternatively, one can generate the
ensemble using other techniques, e.g., the Langevin
(Nowak et al., 1989a), heat bath, or microcanonical
methods.

B. The free energy of the instanton ensemble

Using the sequence of configurations generated by the
Metropolis algorithm, it is straightforward to determine
expectation values by averaging measurements in many
configurations,

^O&5 lim
N→`

1
N (

j51

N

O~$V i%!. (216)

This is how the quark and gluon condensates, as well as
the hadronic correlation functions discussed in this and
the following section, have been determined. However,
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more work is required to determine the partition func-
tion, which gives the overall normalization of the instan-
ton distribution. The knowledge of the partition func-
tion is necessary in order to calculate the free energy
and the thermodynamics of the system. In practice, the
partition function is most easily evaluated using the
thermodynamic integration method (Kirkwood, 1931).
For this purpose we write the total action as

S~a!5S01aDS , (217)

which interpolates between a solvable action S0 and the
full action S(a51)5S01DS . If the partition function
for the system governed by the action S0 is known, the
full partition function can be determined from

log Z~a51 !5log Z~a50 !2E
0

1
da8^0uDSu0&a8 ,

(218)

where the expectation value ^0u•u0&a depends on the
coupling constant a. The obvious choice for decompos-
ing the action of the instanton liquid would be to use the
single-instanton action, S05( i log@n(ri)#, but this does
not work since the r integration in the free partition
function is not convergent. We therefore consider the
following decomposition:

S~a!5 (
i51

N11N2 S 2log@n~r i!#1~12a!n
r i

2

r 2̄D
1a„S int1tr log~D” 1mf!…, (219)

where n5(b24)/2 and r2 is the average size squared of
the instantons with the full interaction included. The r i

2

term serves to regularize the size integration for a50. It
does not affect the final result for a51. The specific
form of this term is irrelevant; our choice here is moti-
vated by the fact that S(a50) gives a single-instanton
distribution with the correct average size r2. The a50
partition function corresponds to the variational single-
instanton distribution

Z05
1

N1!N2!
~Vm0!N11N2,

m05E
0

`

drn~r!expS 2n
r2

r 2̄D , (220)

where m0 is the normalization of the one-body distribu-
tion. The full partition function obtained from integrat-
ing over the coupling a is

log Z5log~Z0!1NE
0

1
da8

3^0un
r2

r 2̄
2

1
N

@S int1tr log~D” 1mf!#u0&a8 ,

(221)
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where N5N11N2 . The free-energy density is finally
given by F52(1/V)log Z, where V is the four-volume
of the system. The pressure and the energy density are
related to F by p52F and e5Tdp/dT2p .

C. The instanton ensemble

If correlations among instantons are important, the
variational (or mean-field) partition function Z0 is not
expected to provide an accurate estimate for the parti-
tion function. This is certainly the case in the presence of
light fermions, in particular at finite temperature. In this
section we want to present numerical results obtained
from simulations of the instanton liquid at zero tempera-
ture.

As discussed in Sec. IV.A.1, a general problem in the
interacting instanton model is the treatment of very
close instanton anti-instanton pairs. In practice, we have
decided to deal with this difficulty by introducing a phe-
nomenological short-range repulsive core,

Score5
8p2

g2

A

l4 uuu2,
(222)

l5
R21rI

21rA
2

2rIrA
1S ~R21rI

21rA
2 !2

4rI
2rA

2 21 D 1/2

,

into the streamline interaction. Here, l is the conformal
parameter (144) and A controls the strength of the core.
This parameter essentially governs the dimensionless di-
luteness f5r4(N/V) of the ensemble. The second pa-
rameter of the instanton liquid is the scale LQCD in the
instanton size distribution, which fixes the absolute
units.

We have defined the scale parameter by fixing the
instanton density to be N/V51 fm24. This means that,
in our units, the average distance between instantons is 1
fm by definition. Alternatively, one can proceed as in
lattice gauge simulations and use an observable such as
the r meson mass to set the scale. Using N/V is very
convenient and, as we shall see in the next section, using
the r or nucleon mass would not make much of a differ-
ence. We use the same scale-setting procedure for all
QCD-like theories, independent of Nc and Nf . This pro-
vides a simple prescription for comparing dimensional
quantities in theories with different matter content.

The remaining free parameter is the (dimensionless)
strength of the core A , which determines the (dimen-
sionless) diluteness of the ensemble. In Schäfer and
Shuryak (1996a), we chose A5128, which gives f
5 r̄4(N/V)50.12 and r̄50.43 fm. As a result, the en-
semble is not quite as dilute as phenomenology seems to
demand [(N/V)51 fm24 and r̄50.33 fm] but compa-
rable to the lattice result (N/V)5(1.4–1.6) fm24 and r̄
50.35 fm (Chu et al., 1994). The average instanton ac-
tion is S.6.4, while the average interaction is S int /N
.1.0, showing that the system is still semiclassical and
that interactions among instantons are important, but
not dominant.
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Detailed simulations of the instanton ensemble in
QCD are discussed by Schäfer and Shuryak (1996a). As
an example, we show the free energy versus the instan-
ton density in pure gauge theory (without fermions) in
Fig. 15. At small density the free energy is roughly pro-
portional to the density, but at larger densities repulsive
interactions become important, leading to a well-defined
minimum. We also show the average action per instan-
ton as a function of density. The average action controls
the probability exp(2S) to find an instanton, but has no
minimum in the range of densities studied. This shows
that the minimum in the free energy is a compromise
between maximum entropy and minimum action.

Fixing the units such that N/V51 fm24, we have L
5270 MeV, and the vacuum energy density generated
by instantons is e52526 MeV/fm3. We have already
stressed that the vacuum energy is related to the gluon
condensate by the trace anomaly. Estimating the gluon
condensate from the instanton density, we have e5
2b/4(N/V)52565 MeV/fm3, which is in good agree-
ment with the direct determination of the energy den-
sity. Not only the depth of the free energy, but also its
curvature (the instanton compressibility) is fixed from
the low-energy theorem (162). The compressibility de-
termined from Fig. 15 is 3.2(N/V)21, which can be com-
pared with 2.75(N/V)21 from the low-energy theorem.

FIG. 15. Free energy, average instanton action, and quark con-
densate as a function of the instanton density in the pure gauge
theory, from Schäfer and Shuryak, 1996a. All dimensionful
quantities are given in units of the scale parameter LQCD .
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At the minimum of the free energy we can also deter-
mine the quark condensate [see Fig. 15(c)]. In quenched
QCD, we have ^q̄q&52(251 MeV)3, while a similar
simulation in full QCD gives ^q̄q&52(216 MeV)3, in
good agreement with the phenomenological value.

D. Dirac spectra

We have already emphasized that the distribution of
eigenvalues of the Dirac operator iD” cl5lcl is of great
interest for many phenomena in QCD. In this section,
we wish to study the spectral density of iD” in the instan-
ton liquid for different numbers of flavors. Before we
present the results, let us review a few general argu-
ments. First, since the weight function contains the fer-
mion determinant detf(iD” )5(Pili)

Nf, it is clear that small
eigenvalues will be suppressed if the number of flavors is
increased. This can also be seen from the Smilga-Stern
result [Eq. (181)]. For Nf52 the spectral density at l
50 is flat, while for Nf.2 the slope of spectrum is posi-
tive.

In general, one might therefore expect that there is a
critical number of flavors (smaller than Nf517, where
asymptotic freedom is lost) for which chiral symmetry is
restored. There are a number of arguments that this in-
deed happens in non-Abelian gauge theories (see Sec.
IX.D). Let us only mention the simplest one here. The
number of quark degrees of freedom is Nq54NcNf ,
while, if chiral symmetry is broken, the number of low-
energy degrees of freedom (‘‘pions’’) is Np5Nf

221. If
chiral symmetry is still broken for Nf.12, this leads to
the unusual situation that the effective number of de-
grees of freedom at low energy is larger than the num-
ber of elementary degrees of freedom at high energy. In
this case it is hard to see how one could ever have a
transition to a phase of weakly interacting quarks and
gluons, since the pressure of the low-temperature phase
is always bigger.

In Fig. 16 we show the spectrum of the Dirac operator
in the instanton liquid for Nf50,1,2,3 light flavors (Ver-
baarschot, 1994a). Clearly, the results are qualitatively
consistent with the Smilga-Stern theorem37 for Nf>2. In
addition to that, the trend continues for Nf,2, where
the result is not applicable. We also note that for Nf
53 (massless) flavors, a gap starts to open up in the
spectrum. In order to check whether this gap indicates
chiral symmetry restoration in the infinite-volume limit,
one has to investigate finite-size scaling. The problem
was studied in more detail by Schäfer and Shuryak
(1996a), who concluded that chiral symmetry was re-
stored in the instanton liquid between Nf54 and Nf
55. Another interesting problem is the dependence on
the dynamic quark mass in the chirally restored phase
Nf.Nf

crit . If the quark mass is increased, the influence
of the fermion determinant is reduced, and eventually

37Numerically, the slope in the Nf53 spectrum appears to be
too large, but it is not clear how small l has to be for the
theorem to be applicable.
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‘‘spontaneous’’ symmetry breaking is recovered. As a
consequence, QCD has an interesting phase structure as
a function of the number of flavors and their masses,
even at zero temperature.

E. Screening of the topological charge

Another interesting phenomenon associated with dy-
namical quarks is topological charge screening. This ef-
fect is connected with properties of the h8 meson, strong
CP violation, and the structure of QCD at finite u angle.

Topological charge screening can be studied in a num-
ber of complementary ways. Historically, it was first dis-
cussed on the basis of Ward identities associated with
the anomalous U(1)A symmetry (Veneziano, 1979). Let
us consider the flavor singlet correlation function Pmn

5^q̄gmg5q(x)q̄gng5q(0)&. Taking two derivatives and
using the anomaly relation (95), we can derive the low-
energy theorem

x top5E d4x^Q~x !Q~0 !&52
m^q̄q&

2Nf

1
m2

4Nf
2 E d4x^q̄g5q~x !q̄g5q~0 !&. (223)

Since the correlation function on the right-hand side
does not have any massless poles in the chiral limit, the
topological susceptibility x top;m as m→0. More gener-
ally, x top vanishes if there is at least one massless quark
flavor.

Alternatively, we can use the fact that the topological
susceptibility is the second derivative of the vacuum en-
ergy with respect to the u angle. Writing the QCD par-
tition function as a sum over all topological sectors and
extracting the zero modes from the fermion determi-
nant, we have

FIG. 16. Spectrum of the Dirac operator for different values of
the number of flavors Nf , from Verbaarschot, 1994b. The ei-
genvalue is given in units of the scale parameter LQCD and the
distribution function is normalized to one.
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Z5(
n

eiunE
n
dAme2S detf~D” 1mf!

5(
n

~eiu det M!nE
n
dAme2S) 8

n ,f
~ln

21mf
2!. (224)

Here, n is the winding number of the configuration,M is
the mass matrix, and P8 denotes the product of all ei-
genvalues with the zero modes excluded. The result
shows that the partition function depends on u only
through the combination eiu detM, so the vacuum en-
ergy is independent of u if one of the quark masses van-
ishes.

The fact that x top vanishes implies that fluctuations in
the topological charge are suppressed, so instantons, and
anti-instantons have to be correlated. Every instanton is
surrounded by a cloud of anti-instantons which com-
pletely screens its topological charge, analogous to De-
bye screening in ordinary plasmas. This fact can be seen
most easily by using the bosonized effective Lagrangian
(201). For simplicity we consider instantons to be point-
like, but, in contrast to the procedure in Sec. IV.G, we
do allow the positions of the pseudoparticles to be cor-
related. The partition function is given by Nowak et al.,
1989b; Kikuchi and Wudka, 1992; Dowrick and McDou-
gall, 1993; and Shuryak and Verbaarschot, 1995 as

Z5 (
N1 ,N2

m0
N11N2

N1!N2! )
i

N11N2

d4zi exp~2Seff!, (225)

where m0 is the single-instanton normalization (153) and
the effective action is given by

Seff5iE d4x
A2Nf

fp
h0Q1E d4xL~h0 ,h8!. (226)

Here, the topological charge density is Q(x)5(Qid(x
2zi), and L(h0 ,h8) is the nonanomalous part of the
pseudoscalar meson Lagrangian with the mass terms
given in Eq. (201). We can perform the sum in Eq. (225)
and, keeping only the quadratic terms, integrate out the
meson fields and determine the topological charge cor-
relator in this model. The result is

^Q~x !Q~0 !&5S N

V D H d4~x !2
2Nf

fp
2

N

V
@cos2~f!D~mh8 ,x !

1sin2~f!D~mh ,x !#J , (227)

where D(m ,x)5m/(4p2x)K1(mx) is the (Euclidean)
propagator of a scalar particle and f is the h2h8 mixing
angle. The correlator (227) has an obvious physical in-
terpretation. The local terms is the contribution from a
single instanton located at the center, while the second
term is the contribution from the screening cloud. One
can easily check that the integral of the correlator is of
order mp

2 , so x top;m in the chiral limit. We also ob-
serve that the screening length is given by the mass of
the h8.
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Detailed numerical studies of topological charge
screening in the interacting instanton model were per-
formed by Shuryak and Verbaarschot (1995). The au-
thors verified that complete screening took place if one
of the quark masses went to zero and that the screening
length was consistent with the h8 mass. They also ad-
dressed the question of how the h8 mass could be ex-
tracted from topological charge fluctuations. The main
idea was not to study the limiting value of ^Q2&/V for
large volumes but to determine its dependence on V for
small volumes V,1 fm4. In this case, one has to worry
about possible surface effects. It is therefore best to con-
sider the topological charge in a segment H(l4)
5l43L3 of the torus L4 (a hypercube with periodic
boundary conditions). This construction ensures that the
surface area of H(l4) is independent of its volume. Us-
ing the effective meson action introduced above, we ex-
pect (in the chiral limit)

KP~ l4![^Q~ l4!2&5L3S N

V D 1
mh8

~12e2mh8l4!. (228)

Numerical results for KP(l4) are shown in Fig. 17. The
solid line shows the result for a random system of instan-
tons with a finite topological susceptibility x top
.(N/V), and the dashed curve is a fit using the param-
etrization (228). Again, we clearly observe topological
charge screening. Furthermore, the h8 mass extracted
from the fit is mh85756 MeV (for Nf52), quite consis-
tent with what one would expect. The figure also shows
the behavior of the scalar correlation function, related to
the compressibility of the instanton liquid. The instanton
number N5N11N2 is of course not screened, but the
fluctuations in N are reduced by a factor 4/b due to the
interactions [see Eq. (162)]. For a more detailed analysis
of the correlation function, see Shuryak and Verbaar-
schot (1995).

We conclude that the topological charge in the instan-
ton liquid is completely screened in the chiral limit. The
h8 mass is not determined by the topological suscepti-
bility, but by fluctuations of the charge in small subvol-
umes.

VI. HADRONIC CORRELATION FUNCTIONS

A. Definitions and generalities

In a relativistic field theory, current correlation func-
tions determine the spectrum of hadronic resonances. In
addition to that, hadronic correlation functions provide
a bridge between hadronic phenomenology, the under-
lying quark-gluon structure, and the structure of the
QCD vacuum. The available theoretical and phenom-
enological information was recently reviewed by
Shuryak (1993), so we give only a brief overview here.

In the following, we consider hadronic point-to-point
correlation functions,

Ph~x !5^0ujh~x !jh~0 !u0&. (229)
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Here, jh(x) is a local operator with the quantum num-
bers of a hadronic state h . We shall concentrate on me-
sonic and baryonic currents of the type

jmes~x !5dabc̄a~x !Gcb~x !, (230)

jbar~x !5eabc@caT~x !CGcb~x !#G8cc~x !. (231)

Here, a ,b ,c are color indices and G ,G8 are isospin and
Dirac matrices. At zero temperature, we shall focus ex-
clusively on correlators for spacelike (or Euclidean)
separation t5A2x2. The reason is that spacelike corr-
elators are exponentially suppressed rather than oscilla-
tory at large distance. In addition, most theoretical ap-
proaches, like the operator product expansion (OPE),
lattice calculations, or the instanton model deal with Eu-
clidean correlators.

Hadronic correlation functions are completely deter-
mined by the spectrum (and the coupling constants) of
the physical excitations with the quantum numbers of
the current jh . For a scalar correlation function, we have

FIG. 17. Pseudoscalar and scalar correlators KP ,S(l4) as a
function of the length l4 of the subvolume l43L3, from
Shuryak and Verbaarschot, 1995. Screening implies that the
correlator depends only on the surface, not on the volume of
the torus. This means that in the presence of screening, the
correlator goes to a constant. The results were obtained for
Nc53 and mu5md510 MeV and ms5150 MeV. The upper
solid line corresponds to a random system of instantons, while
the other solid line shows the parametrization discussed in the
text (the dashed line in the upper panel shows a slightly more
sophisticated parametrization). Note the qualitative difference
between the data for topological (upper panel) and number
fluctuations (lower panel). The topological charge correlator is
flat, corresponding to charge screening, while the number fluc-
tuations are only reduced in size as compared to the random
ensemble.
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the standard dispersion relation

P~Q2!5
~2Q2!n

p E ds
Im P~s !

sn~s1Q2!

1a01a1Q21¯ , (232)

where Q252q2 is the Euclidean momentum transfer
and we have indicated possible subtraction constants ai .
The spectral function r(s)5(1/p)Im P(s) can be ex-
pressed in terms of physical states,

r~s52q2!5~2p!3(
n

d4~q2qn!^0ujh~0 !un&

3^nujh
†~0 !u0&, (233)

where un& is a complete set of hadronic states. Correla-
tion functions with nonzero spin can be decomposed
into Lorentz-covariant tensors and scalar functions.
Fourier-transforming Eq. (232) gives a spectral repre-
sentation of the coordinate-space correlation function

P~t!5E ds r~s !D~As ,t!. (234)

Here, D(m ,t) is the Euclidean propagator of a scalar
particle with mass m ,

D~m ,t!5
m

4p2t
K1~mt!. (235)

Note that, except for possible contact terms, subtraction
constants do not affect the coordinate-space correlator.
For large arguments, the correlation function decays ex-
ponentially, P(t);exp(2mt), where the decay is gov-
erned by the lowest pole in the spectral function. This is
the basis of hadronic spectroscopy on the lattice. In
practice, however, lattice simulations often rely on more
complicated sources in order to improve the suppression
of excited states. While useful in spectroscopy, these
correlation functions mix short- and long-distance ef-
fects and are not as interesting theoretically.

Correlation functions of currents built from quark
fields only (like the meson and baryon currents intro-
duced above) can be expressed in terms of the full quark
propagator. For an isovector meson current jI515ūGd
(where G is only a Dirac matrix), the correlator is given
by the ‘‘one-loop’’ term

PI51~x !5^Tr@Sab~0,x !GSba~x ,0!G#&. (236)

The averaging is performed over all gauge configura-
tions, with the weight function det(D” 1m)exp(2S). Note
that the quark propagator is not translation invariant
before the vacuum average is performed, so the propa-
gator depends on both arguments. Also note that while
Eq. (236) has the appearance of a one-loop (perturba-
tive) graph, it includes arbitrarily complicated, multi-
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loop, gluon exchanges as well as nonperturbative effects.
All of these effects are hidden in the vacuum average.
Correlators of isosinglet meson currents jI50

5(1/&)(ūGu1d̄Gd) receive an additional two-loop, or
disconnected, contribution

PI50~x !5^Tr@Sab~0,x !GSba~x ,0!G#&

22^Tr@Saa~0,0!G#Tr@Sbb~x ,x !G#&. (237)

In an analogous fashion, baryon correlators can be ex-
pressed as vacuum averages of three-quark propagators.

At short distance, asymptotic freedom implies that the
correlation functions are determined by free-quark
propagation. The free-quark propagator is given by

S0~x !5
i

2p2

g•x

x4 . (238)

This means that mesonic and baryonic correlation func-
tions at short distance behave as Pmes;1/x6 and Pbar
;1/x9, respectively. Deviations from asymptotic free-
dom at intermediate distances can be studied using the
operator product expansion. The basic idea (Wilson,
1969) is to expand the product of currents in Eq. (229)
into a series of coefficient functions cn(x) multiplied by
local operators On(0)

P~x !5(
n

cn~x !^On~0 !& . (239)

From dimensional considerations it is clear that the most
singular contributions correspond to operators of the
lowest possible dimension. Ordinary perturbative contri-
butions are contained in the coefficient of the unit op-
erator. The leading nonperturbative corrections are con-
trolled by the quark and gluon condensates of
dimension three and four.

In practice, the OPE for a given correlation function
is most easily determined using the short-distance ex-
pansion of the propagator in external, slowly varying
quark and gluon fields (Novikov, et al., 1985b),38

Sf
ab~x !5

idab

2p2

g•x

x4 2
dab

4p2

mf

x2 1qa~0 !q̄b~0 !

2
i

32p2 ~lk!abGab
k g•xsab1sabg•x

x2 1¯ .

(240)

The corrections to the free propagator have an obvious
interpretation in terms of the interaction of the quark
with the external quark and gluon fields. There is an
enormous literature about QCD sum rules based on the
OPE. See the reviews of Reinders et al. (1985), Narison

38This expression was derived in the Fock-Schwinger gauge
xmAm

a 50. The resulting hadronic correlation functions are of
course gauge invariant.



374 T. Schäfer and E. V. Shuryak: Instantons in QCD
(1989), and Shifman (1992). The general idea is easily
explained. If there is a window in which the OPE [Eq.
(239)] has reasonable accuracy and the spectral repre-
sentation [Eq. (234)] is dominated by the ground state,
one can match the two expressions in order to extract
ground-state properties. In general, the two require-
ments are in conflict with each other, so the existence of
a sum-rule window has to be established in each indi-
vidual case.

The main sources of phenomenological information
about the correlation functions are summarized as fol-
lows (Shuryak, 1993):

(1) Ideally, the spectral function is determined from an
experimentally measured cross section using the op-
tical theorem. This is the case, for example, in the
vector-isovector (rho-meson) channel, where the
necessary input is provided by the ratio

R~s!5
s„e1e2→~I51 hadrons!…

s~e1e2→m1m2!
, (241)

where s is the invariant mass of the lepton pair.
Similarly, in the axial-vector (a1 meson channel) the
spectral function below the t mass can be deter-
mined from the hadronic decay width of the t lepton
G(t→nt1hadrons).

(2) In some cases, the coupling constants of a few reso-
nances can be extracted indirectly, for example us-
ing low-energy theorems. In this way, the approxi-
mate shape of the pseudoscalar p ,K ,h ,h8 and some
glueball correlators can be determined.

(3) Ultimately, the best source of information about
hadronic correlation functions is the lattice. At
present most lattice calculations use complicated
nonlocal sources. Exceptions can be found
in Chu et al. (1993a, 1993b) and Leinweber (1995a,
1995b). So far, all results have been obtained in the
quenched approximation.

In general, given the fundamental nature of hadronic
correlators, all models of hadronic structure or the QCD
vacuum should be tested against the available informa-
tion on the correlators. We shall discuss some of these
models as we go along.

B. The quark propagator in the instanton liquid

As we have emphasized above, the complete informa-
tion about mesonic and baryonic correlation functions is
encoded in the quark propagator in a given gauge-field
configuration. Interactions among quarks are repre-
sented by the failure of expectation values to factorize,
e.g., ^S(t)2&Þ^S(t)&2. In the following, we shall con-
struct the quark propagator in the instanton ensemble,
starting from the propagator in the background field of a
single instanton.

From the quark propagator, we calculate the
ensemble-averaged meson and baryon correlation func-
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tions. However, it is also interesting to study the vacuum
expectation value of the propagator39

^S~x !&5SS~x !1g•xSV~x !. (242)

From the definition of the quark condensate, we have
^q̄q&5SS(0), which means that the scalar component of
the quark propagator provides an order parameter for
chiral symmetry breaking. To obtain more information,
we can define a gauge-invariant propagator by adding a
Wilson line,

S inv~x !5K c~x !P expS E
0

x
Am~x8!dxm8 D c̄~0 !L . (243)

This object has a direct physical interpretation because
it describes the propagation of a light quark coupled to
an infinitely heavy, static source (Shuryak, 1982a;
Shuryak and Verbaarschot, 1993b; Chernyshev et al.,
1996). It therefore determines the spectrum of heavy-
light mesons (with the mass of the heavy quark sub-
tracted) in the limit where the mass of the heavy quark
goes to infinity.

1. The propagator in the field of a single instanton

The propagators of massless scalar bosons, gauge
fields, and fermions in the background field of a single
instanton can be determined analytically40 (Brown et al.,
1978; Levine and Yaffe, 1979). We do not go into details
of the construction, which is quite technical, but only
provide the main results.

We have already seen that the quark propagator in
the field of an instanton is ill behaved because of the
presence of a zero mode. Of course, the zero mode does
not cause any harm, since it is compensated by a zero in
the tunneling probability. The remaining non-zero-mode
part of the propagator satisfies the equation

iD” Snz~x ,y !5d~x2y !2c0~x !c0
†~y !, (244)

which ensures that all modes in Snz are orthogonal to
the zero mode. Formally, this equation is solved by

Snz~x ,y !5D”W xD~x ,y !S 11g5

2 D1D~x ,y !D”Q yS 12g5

2 D ,

(245)
where D(x ,y) is the propagator of a scalar quark in the
fundamental representation, 2D2D(x ,y)5d(x ,y).

39The quark propagator is of course not a gauge-invariant
object. Here, we imply that a gauge has been chosen or the
propagator is multiplied by a gauge string. Also note that, be-
fore averaging, the quark propagator has a more general Dirac
structure, S(x)5E1Pg51Vmgm1Amgmg51Tmnsmn . This de-
composition, together with positivity, is the basis of a number
of exact results about correlation functions (Weingarten, 1983;
Vafa and Witten, 1984).

40The result is easily generalized to ’t Hooft’s exact multi-
instanton solution, but much more effort is required to con-
struct the quark propagator in the most general (Atiyah,
Hitchin, Drinfeld, and Manin, 1977) instanton background
(Corrigan, Goddard, and Templeton, 1979).
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Equation (245) is easily checked using the methods we
employed in order to construct the zero-mode solution;
see Eq. (102). The scalar propagator does not have any
zero modes, so it can be constructed using standard
techniques. The result (in singular gauge) is (Brown
et al., 1978)

D~x ,y !5
1

4p2~x2y !2

1

A11r2/x2

1

A11r2/y2

3S 11
r2t2

•xt1
•y

x2y2 D . (246)

For an instanton located at z , one has to make the ob-
vious replacements x→(x2z) and y→(y2z). The
propagator in the field of an anti-instanton is obtained
by interchanging t1 and t2. If the instanton is rotated
by the color matrix Rab, then t6 has to be replaced by
(Rabtb,7i).

Using the result for the scalar quark propagator and
the representation (245) of the spinor propagator intro-
duced above, the non-zero-mode propagator is given by

Snz~x ,y !5
1

A11r2/x2

1

A11r2/y2 FS0~x ,y !

3S 11
r2t2

•xt1
•y

x2y2 D2D0~x ,y !
r2

x2y2

3S t2
•xt1

•gt2
•~x2y !t1

•y

r21x2 g1

1
t2

•xt1
•~x2y !t2

•gt1
•y

r21x2 g2D G , (247)

where g65(16g5)/2. The propagator can be general-
ized to arbitrary instanton positions and color orienta-
tions in the same way as the scalar quark propagator
discussed above.

At short distances, as well as far away from the instan-
ton, the propagator reduces to the free one. At interme-
diate distances, the propagator is modified due to gluon
exchanges with the instanton field,

Snz~x ,y !52
g•~x2y !

2p2~x2y !4 2
1

16p2~x2y !2

3~x2y !mgng5G̃mn1¯ . (248)

This result is consistent with the OPE of the quark
propagator in a general background field [see Eq. (240)].
It is interesting to note that all the remaining terms are
regular as (x2y)2→0. This has important consequences
for the OPE of hadronic correlators in a general, self-
dual background field (Dubovikov and Smilga, 1981).

Finally, we need the quark propagator in the instan-
ton field for small but nonvanishing quark mass. Ex-
panding the quark propagator for small m , we get
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S~x ,y !5
1

iD” 1im
5

c0~x !c0
†~y !

m
1Snz~x ,y !

1mD~x ,y !1¯ . (249)

2. The propagator in the instanton ensemble

In this section we extend the results of the last section
to the more general case of an ensemble consisting of
many pseudoparticles. The quark propagator in an arbi-
trary gauge field can always be expanded as

S5S01S0A” S01S0A” S0A” S01¯ , (250)

where the individual terms have an obvious interpreta-
tion as arising from multiple gluon exchanges with the
background field. If the gauge field is a sum of instanton
contributions, Am5(IAIm , then Eq. (250) becomes

S5S01(
I

S0A” IS01(
I ,J

S0A” IS0A” JS01¯ (251)

5S01(
I

~SI2S0!1(
IÞJ

~SI2S0!S0
21~SJ2S0!

1 (
IÞJ ,JÞK

~SI2S0!S0
21~SJ2S0!S0

21~SK2S0!

1¯ . (252)

Here, I ,J ,K , . . . refer to both instantons and anti-
instantons. In the second line, we have resummed the
contributions corresponding to an individual instanton.
SI refers to the sum of zero and non-zero-mode compo-
nents. At large distances from the center of the instan-
ton, SI approaches the free propagator S0 . Thus Eq.
(252) has a nice physical interpretation: Quarks propa-
gate by jumping from one instanton to the other. If
ux2zIu!rI , and uy2zIu!rI for all I , the free propaga-
tor dominates. At large distances, terms involving more
and more instantons become important.

In the QCD ground state, chiral symmetry is broken.
The presence of a condensate implies that quarks can
propagate over large distances. Therefore we cannot ex-
pect that truncating the series (252) will provide a useful
approximation to the propagator at low momenta. Fur-
thermore, we know that spontaneous symmetry break-
ing is related to small eigenvalues of the Dirac operator.
A good approximation to the propagator is obtained by
assuming that (SI2S0) is dominated by fermion zero
modes,

~SI2S0!~x ,y !.
cI~x !cI

†~y !

im
. (253)

In this case, the expansion (252) becomes
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S~x ,y !.S0~x ,y !

1(
I

cI~x !cI
†~y !

im
1(

IÞJ

cI~x !

im

3S E d4rcI
†~r !~2i]”2im !cJ~r ! D cJ

†~y !

im
1¯ ,

(254)

which contains the overlap integrals TIJ defined in Eq.
(148). This expansion can easily be summed to give

S~x ,y !.S0~x ,y !

1(
I ,J

cI~x !
1

TIJ1imDIJ2imdIJ
cJ

†~y !. (255)

Here, DIJ5*d4rcI
†(r)cJ(r)2dIJ arises from the restric-

tion IÞJ in the expansion (252). The quantity mDIJ is
small in both the chiral expansion and the packing frac-
tion of the instanton liquid and will be neglected in what
follows. Comparing the resummed propagator (255)
with the single-instanton propagator (253) shows the im-
portance of chiral symmetry breaking. While Eq. (253)
is proportional to 1/m , the diagonal part of the full
propagator is proportional to (T21)II51/m* .

The result (255) can also be derived by inverting the
Dirac operator in the basis spanned by the zero modes
of the individual instantons:

S~x ,y !.S0~x ,y !1(
I ,J

uI&^Iu
1

iD” 1im
uJ&^Ju. (256)

The equivalence of Eqs. (255) and (256) can be easily
seen using the fact that, in the sum ansatz, the derivative
in the overlap matrix element TIJ can be replaced by a
covariant derivative.

The propagator (255) can be calculated either numeri-
cally or using the mean-field approximation introduced
in Sec. IV.F. We shall discuss the mean-field propagator
in the following section. For our numerical calculations,
we have improved the zero-mode propagator by adding
the contributions from nonzero modes to first order in
the expansion (252). The result is

S~x ,y !5S0~x ,y !1SZMZ~x ,y !

1(
I

@SI
NZM~x ,y !2S0~x ,y !# . (257)

How accurate is this propagator? We have seen that the
propagator agrees with the general OPE result at short
distance. We also know that it accounts for chiral sym-
metry breaking and spontaneous mass generation at
large distances. In addition to that, we have performed a
number of checks on the correlation functions that are
sensitive to the degree to which (257) satisfies the equa-
tions of motion, for example, by testing whether the vec-
tor correlator is transverse (the vector current is con-
served).

3. The propagator in the mean-field approximation

In order to understand the propagation of quarks in
the ‘‘zero-mode zone’’ it is very instructive to construct
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the propagator in the mean-field approximation. The
mean-field propagator can be obtained in several ways.
Most easily, we can read off the propagator directly
from the effective partition function (188). We find

S~p !5
p” 1iM~p !

p21M2~p !
(258)

with the momentum-dependent effective quark mass

M~p !5
b

2Nc

N

V
p4w82~p !. (259)

Here, b is the solution of the gap equation (189). Origi-
nally, the result (258) was obtained by Diakonov and
Petrov from the Dyson-Schwinger equation for the
quark propagator in the large-Nc limit (Diakonov and
Petrov, 1986). At small momenta, chiral sym-
metry breaking generates an effective mass M(0)
5(b/2Nc)(N/V)(2pr)2. The quark condensate was al-
ready given in Eq. (195). At large momenta, we have
M(p);1/p6 and constituent quarks become free current
quarks.

For comparison with our numerical results, it is useful
to determine the mean-field propagator in coordinate
space. Fourier-transforming the result (258) gives

SV~x !5
1

4p2x E dp
p4

p21M2~p !
J2~px !, (260)

SS~x !5
1

4p2x E dp
p3M~p !

p21M2~p !
J1~px !. (261)

The result is shown in Fig. 18. The scalar and vector
components of the propagator are normalized to the
free propagator. The vector component of the propaga-
tor is exponentially suppressed at large distance, show-

FIG. 18. Scalar and vector components of the quark propaga-
tor, normalized to the free vector propagator. The dashed lines
show the result of the mean-field approximation, while the
data points were obtained in different instanton ensembles.
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ing the formation of a constituent mass. The scalar com-
ponent again shows the breaking of chiral symmetry. At
short distances, the propagator is consistent with the
coordinate-dependent quark mass m5p2/3•x2^c̄c& in-
ferred from the OPE equation (240). At large distances
the exponential decay is governed by the constituent
mass M(0).

For comparison, we also show the quark propagator
in different instanton ensembles. The result is very simi-
lar to the mean-field approximation; the differences are
mainly due to different values of the quark condensate.
The quark propagator is not very sensitive to correla-
tions in the instanton liquid. In Shuryak and Verbaar-
schot (1993b), and Chernyshev et al. (1996), the quark
propagator was also used to study heavy-light mesons in
the 1/MQ expansion. The results are very encouraging,
and we refer the reader to the original literature for
details.

C. Mesonic correlators

1. General results and the operator product expansion

A large number of mesonic correlation functions have
been studied in the instanton model, and clearly this is
not the place to list all of them. Instead, we have decided
to discuss three examples that are illustrative of the
techniques and the most important effects. We shall con-
sider the p, r, and h8 channels, related to the currents

FIG. 19. Pion correlation function in various approximations
and instanton ensembles. Upper panel: solid curve, the phe-
nomenological expectation; short-dashed curve, the operator
product expansion; dotted curve, the single instanton; long-
dashed curve, the mean-field approximation; h, data in the
random instanton ensemble. Lower panel: comparison of dif-
ferent instanton ensembles; h, random; d, quenched; j, un-
quenched; m, ratio ansatz; star, lattice; crown, interacting.
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jp5q̄tag5q , jr5q̄
ta

2
gmq , jhns

5q̄g5q , (262)

where q5(u ,d). Here, we consider only the nonstrange
h8 and refer the reader to Schäfer (1996), and Shuryak
and Verbaarschot (1993a) for a discussion of SU(3) fla-
vor symmetry breaking and h2h8 mixing. The three
channels discussed here are instructive because the
instanton-induced interaction is attractive for the pion
channel, repulsive for the h8, and (to first order in the
instanton density) does not affect the r meson. The p, r,
and h8 are therefore representative of a much larger set
of correlation functions. In addition, these three mesons
have special physical significance. The pion is the light-
est hadron, connected with the spontaneous breakdown
of SU(Nf)L3SU(Nf)R chiral symmetry. The h8 is sur-
prisingly heavy, a fact related to the anomalous U(1)A
symmetry. The r meson, finally, is the lightest non-
Goldstone particle and the first pp resonance.

Phenomenological predictions for the correlation
functions are shown in Figs. 19–21 (Shuryak, 1993). All
correlators are normalized to the free ones, R(t)
5PG(t)/PG

0 (t), where PG
0 (t)5Tr@GS0(t)GS0(2t)# .

At short distances, asymptotic freedom implies that this
ratio approaches one. At large distances, the correlators
are exponential and R is small. At intermediate dis-
tances, R depends on the quark-quark interaction in
that channel. If R.1, we shall refer to the correlator as
attractive, while R,1 implies repulsive interactions.
The normalized pion correlation function Rp is signifi-
cantly larger than one, showing a strongly attractive in-
teraction and a light bound state. The rho-meson cor-
relator is close to one out to fairly large distances x
.1.5 fm, a phenomenon referred to as ‘‘superduality’’
by Shuryak (1993). The h8 channel is strongly repulsive,

FIG. 20. Eta-prime meson correlation functions. The various
curves and data sets are labeled as in Fig. 19.
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showing an enhancement only at intermediate distances
due to mixing with the h.

Theoretical information about the short-distance be-
havior of the correlation functions comes from the op-
erator product expansion (Shifman et al., 1979). For the
p and r channels, we have

Pp
OPE~x !5Pp

0 ~x !S 11
11
3

as~x !

p
2

p2

3
m^q̄q&x4

1
1

384 ^G2&x41
11p3

81
as~x !

3^c̄c&2 log~x2!x61••• D , (263)

Pr
OPE~x !5Pr

0~x !S 11
as~x !

p
2

p2

4
m^q̄q&x4

2
1

384 ^G2&x41
7p3

81
as~x !

3^c̄c&2 log~x2!x61¯ D , (264)

where we have restricted ourselves to operators of di-
mension up to six and the leading-order perturbative
corrections. We have also used the factorization hypoth-
esis for the expectation value of four-quark operators.
Note that, to this order, the nonstrange eta-prime, and
pion correlation functions are identical. This result
shows that QCD sum rules cannot account for the
U(1)A anomaly.

The OPE predictions [Eqs. (263) and (264)] are also
shown in Figs. 19–21. The leading quark and gluon

FIG. 21. Rho-meson correlation functions. The various curves
and data sets are labeled as in Fig. 19. The dashed squares
show the noninteracting part of the rho meson correlator in
the interacting ensemble.
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power corrections in the p channel are both attractive,
so the OPE prediction has the correct tendency, but un-
derpredicts the rise for x.0.25 fm. In the r-meson chan-
nel, the leading corrections have a tendency to cancel
each other, in agreement with the superduality phenom-
enon mentioned above.

2. The single-instanton approximation

After this prelude we come to the instanton model.
We start by considering instanton contributions to the
short-distance behavior of correlation functions in the
single-instanton approximation41 (Shuryak, 1983). The
main idea is that if x2y is small compared to the typical
instanton separation R , we expect that the contribution
from the instanton I5I* closest to the points x and y
will dominate over all others. For the propagator in the
zero-mode zone, this implies

S~x ,y !5(
IJ

cI~x !S 1
T1im D

IJ

cJ
†~y !

.cI
*
~x !S 1

T1im D
I
*

I
*

cI
*

† ~y !.
cI

*
~x !cI

*

† ~y !

m*
,

(265)

where we have approximated the diagonal matrix ele-
ment by its average, (T1im)I

*
I
*

21 .N21(I(T1im)II
21 ,

and introduced the effective mass m* defined in Sec.
IV.E, (m* )215N21(l21. In the following we shall use
the mean-field estimate m* 5pr(2n/3)1/2. As a result,
the propagator in the single-instanton approximation
looks like the zero-mode propagator of a single instan-
ton, but for a particle with an effective mass m* .

The p and h8 correlators receive zero-mode contribu-
tions. In the single-instanton approximation, we find
(Shuryak, 1983)

Pp ,h8
SIA

~x !56E drn~r!
6r4

p2

1

~m* !2

]2

]~x2!2

3H 4j2

x4 S j2

12j2 1
j

2
log

11j

12j D J , (266)

where j25x2/(x214r2). There is also a non-zero-mode
contribution to these correlation functions. It was calcu-
lated by Shuryak (1989), but numerically it is not very
important.

We show the result [Eq. (266)] in Fig. 19. For simplic-
ity, we have chosen n(r)5n0d(r2r0) with the standard
parameters n051 fm24 and r050.33 fm. The pion cor-
relator is similar to the OPE prediction at short dis-
tances, x&0.25 fm, but follows the phenomenological

41We should like to distinguish this method from the dilute-
gas approximation. In the dilute-gas approximation, we sys-
tematically expand the correlation functions in terms of the
one- (two-, three-, etc.) instanton contribution. In the presence
of light fermions (for Nf.1), however, this method is useless
because there is no zero-mode contribution to chirality-
violating operators from any finite number of instantons.
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result out to larger distances, x.0.4 fm. In particular,
we find that even at very short distances, x.0.3 fm, the
regular contributions to the correlator coming from in-
stanton zero modes are larger than the singular contri-
butions included in the OPE. The fact that nonperturba-
tive corrections not accounted for in the OPE are
particularly large in spin-zero channels (p, h8, s, and
scalar glueballs) was first emphasized by Novikov et al.
(1981). For the h8, the instanton contribution is strongly
repulsive. This means that, in contrast to the OPE, the
single-instanton approximation at least qualitatively ac-
counts for the U(1)A anomaly. The single-instanton ap-
proximation was extended to the full pseudoscalar nonet
by Shuryak (1983). It was shown that the substitution
m*→m* 1ms gives a good description of SU(3) flavor
symmetry breaking and the p ,K ,h correlation functions.

In the r-meson correlator, zero modes cannot contrib-
ute since the chiralities do not match. Nonvanishing con-
tributions come from the non-zero-mode propagator
(247) and from interference between the zero-mode part
and the leading mass correction in Eq. (249):

Pr
SIA~x ,y !5Tr@gmSnz~x ,y !gmSnz~y ,x !#

12 Tr@gmc0~x !c0
†~y !gmD~y ,x !# . (267)

The latter term survives even in the chiral limit because
the factor m in the mass correction is cancelled by the
1/m from the zero mode. Also note that the result cor-
responds to the standard dilute-gas approximation, so
true multi-instanton effects are not included. After aver-
aging over the instanton coordinates, we find42 (Andrei
and Gross, 1978)

Pr
SIA~x !5Pr

01E drn~r!
12
p2

r4

x2

]

]~x2!

3H j

x2 log
11j

12j J . (268)

The result is also shown in Fig. 21. As in the OPE, the
correlator is attractive at intermediate distances. The
correlation function does not go down at larger dis-
tances, since the dilute-gas approximation does not ac-
count for a dynamically generated mass. It is very in-
structive to compare the result to the OPE in greater
detail. Expanding Eq. (268), we get

Pr
SIA~x !5Pr

0~x !S 11
p2x4

6 E drn~r! D . (269)

This agrees exactly with the OPE, provided we use the
average values of the operators in the dilute-gas ap-
proximation,

^G2&532p2E drn~r!, and

m^q̄q&52E drn~r!. (270)

42There is a mistake by an overall factor of 3/2 in the original
work.
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Note that the value of m^q̄q& is ‘‘anomalously’’ large in
the dilute-gas limit. This means that the contribution
from dimension-four operators is attractive, in contra-
diction with the OPE prediction based on the canonical
values of the condensates.

An interesting observation is the fact that Eq. (269) is
the only singular term in the dilute-gas approximation
correlation function. In fact, the OPE of any mesonic
correlator in any self-dual field contains only dimension-
four operators (Dubovikov and Smilga, 1981). This
means that for all higher-order operators, either the Wil-
son coefficient vanishes [as it does, for example, for the
triple gluon condensate ^fabcGmn

a Gnr
b Grm

c &] or the matrix
elements of various operators of the same dimension
cancel each other.43 This is a very remarkable result be-
cause it helps to explain the success of QCD sum rules
based on the OPE in many channels. In the instanton
model, the gluon fields are very inhomogeneous, so one
would expect the OPE to fail for x.r . The Dubovikov-
Smilga result shows that quarks can propagate through
very strong gauge fields (as long as they are self-dual)
without suffering strong interactions.

3. The random-phase approximation

The single-instanton approximation clearly improves
on the short-distance behavior of the p ,h8 correlation
functions as compared to the OPE. However, in order to
describe a true pion bound state one has to resum the
attractive interaction generated by the ’t Hooft vertex.
This is most easily accomplished using the random-
phase approximation (RPA), which corresponds to iter-
ating the average ’t Hooft vertex in the s channel (see
Fig. 2). The solution of the Bethe-Salpeter equation can
be written as (Diakonov and Petrov, 1986; Hutter, 1995;
Kacir, Prakash, and Zahed, 1996)

Pp
RPA~x !5Pp

MFA~x !1Pp
int , (271)

Pr
RPA~x !5Pr

MFA~x !.

Here, PG
MFA denotes the mean-field (noninteracting)

part of the correlation functions

PG
MFA~x !5Tr@ S̄~x !GS̄~2x !G# , (272)

where S̄(x) is the mean-field propagator discussed in
Sec. VI.B.3. In the r-meson channel, the ’t Hooft vertex
vanishes and the correlator is given by the mean-field
contribution only. The interacting part of the p ,h8 cor-
relation functions is given by

Pp ,h8
int

~x !5E d4qeiq•xG5~q !
61

17C5~q !
G5~q !, (273)

where the elementary loop function C5 and the vertex
function G5 are given by

43Here, we do not consider radiative corrections like as^c̄c&2

because we evaluate the OPE in a fixed (classical) background
field without taking into account radiative corrections to the
background field.
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C5~q !54NcS V

N D E d4p

~2p!4

M1M2~M1M22p1•p2!

~M1
21p1

2!~M2
21p2

2!
,

(274)

G5~q !54E d4p

~2p!4

AM1M2~M1M22p1•p2!

~m1
21p1

2!~M2
21p2

2!
. (275)

Here, p15p1q/2, p25p2q/2, and M1,25M(p1,2) are
the momentum-dependent effective quark masses. We
have already stressed that in the long-wavelength limit,
the effective interaction between quarks is of the
Nambu–Jona-Lasinio type. Indeed, the pion correlator
in the random-phase approximation to the Nambu–
Jona-Lasinio model is given by

Pp
NJL~x !5E d4qeiq•x

J5~q !

12GJ5~q !
, (276)

where J5(q) is the pseudoscalar loop function

J5~q !54NcEL d4p

~2p!4

~M22p1•p2!

~M21p1
2!~M21p2

2!
, (277)

G is the four-fermion coupling constant and the
(momentum-independent) constituent mass M is the so-
lution of the Nambu–Jona-Lasinio gap equation. The
loop function (277) is divergent and is regularized using
a cutoff L.

Clearly, the RPA correlation functions (273) and
(276) are very similar; the only difference is that in the
instanton liquid both the quark mass and the vertex are
momentum dependent. The momentum dependence of
the vertex ensures that no regulator is required. The
loop integral is automatically cut off at L;r21. We also
note that the momentum dependence of the effective
interaction at the mean-field level is very simple; the
vertex function is completely separable.

The mean-field correlation functions are shown in
Figs. 19–21. The coordinate-space correlators are easily
determined by Fourier-transforming the result (273).
We also show the Nambu–Jona-Lasinio result for the
pion correlation function. In this case, the correlation
function at short distances is not very meaningful, since
the cutoff L eliminates all contributions to the spectral
function above that scale.

The pion correlator nicely reproduces the phenom-
enological result. The h8 correlation function has the
correct tendency at short distances but becomes un-
physical for x.0.5 fm. The result in the r-meson chan-
nel is also close to phenomenology, despite the fact that
it corresponds to two unbound constituent quarks.

4. The interacting instanton liquid

What is the quality and the range of validity of the
random-phase approximation? The RPA is usually mo-
tivated by the large- Nc approximation, and the dimen-
sionless parameter that controls the expansion is
r4(N/V)/(4Nc). This parameter is indeed very small,
but in practice there are additional parameters that de-
termine the size of corrections to the RPA.
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
First of all, r4(N/V) is a useful expansion parameter
only if the instanton liquid is random and the role of
correlations is small. As discussed in Sec. IV.B, if the
density is very small, the instanton liquid is in a molecu-
lar phase, while it is in a crystalline phase if the density is
large. Clearly, the RPA is expected to fail in both of
these limits. In general, the RPA corresponds to using
linearized equations for the fluctuations around a mean-
field solution. In our case, low-lying meson states are
collective fluctuations of the chiral order parameter. For
isovector scalar mesons, the RPA is expected to be good
because the scalar mean field (the condensate) is large
and the masses are light. For isosinglet mesons, the fluc-
tuations are much larger, and the RPA is likely to be
less useful.

In the following we shall therefore discuss results
from numerical calculations of hadronic correlators in
the instanton liquid. These calculations go beyond the
RPA in two ways: (i) the propagator includes genuine
many-instanton effects and non-zero-mode contribu-
tions; and (ii) the ensemble is determined using the full
(fermionic and bosonic) weight function, so it includes
correlations among instantons. In addition, we shall also
consider baryonic correlators and three-point functions
that are difficult to handle in the RPA.

We discuss correlation function in three different en-
sembles, the random, the quenched, and the fully inter-
acting instanton ensembles. In the random model, the
underlying ensemble is the same as in the mean-field
approximation, only the propagator is more sophisti-
cated. In the quenched approximation, the ensemble in-
cludes correlations due to the bosonic action, while the
fully interacting ensemble also includes correlations in-
duced by the fermion determinant. In order to check the
dependence of the results on the instanton interaction,
we study correlation functions in two different, un-
quenched ensembles, one based on the streamline inter-
action (with a short-range core) and one based on the
ratio ansatz interaction. The bulk parameters of these
ensembles are compared in Table II. We note that the
ratio ansatz ensemble is denser than the streamline en-
semble.

We are interested not only in the behavior of the cor-
relation functions, but also in numerical results for the
ground-state masses and coupling constants. For this
purpose we have fitted the correlators using a simple
‘‘pole-plus-continuum’’ model for the spectral functions.
In the case of the pion, this leads to the following pa-
rametrization of the correlation function:

Pp~x !5lp
2 D~mp ,x !1

3
8p2 E

s0

`

dssD~As ,x !, (278)

where lp is the pion coupling constant defined in Table
III and s0 is the continuum threshold. Physically, s0
roughly represents the position of the first excited state.
Resolving higher resonances requires high-quality data
and more sophisticated techniques. The model spectral
function used here is quite popular in connection with
QCD sum rules. It provides a surprisingly good descrip-
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TABLE II. Bulk parameters density n5N/V , average size r̄ , diluteness r̄4(N/V), and quark con-
densate ^q̄q& in the different instanton ensembles. RILM5random instanton liquid model. We also
give the value of the Pauli-Vilars scale parameter L4 that corresponds to our choice of units, n
[1 fm24.

Unquenched Quenched RILM Ratio ansatz (unquenched)

N/V 0.174L4 0.303L4 1.0 fm4 0.659L4

r̄ 0.64L21 0.58L21 0.33 fm 0.66L21

(0.42 fm) (0.43 fm) (0.59 fm)
r̄4(N/V) 0.029 0.034 0.012 0.125
^q̄q& 0.359L3 0.825L3 (264 MeV)3 0.882L3

(219 MeV)3 (253 MeV)3 (213 MeV)3

L 306 MeV 270 MeV - 222 MeV
tion of all measured correlation functions, not only in
the instanton model but also on the lattice (Chu et al.,
1993b; Leinweber, 1995a).

Correlation functions in the different instanton en-
sembles were calculated by Shuryak and Verbaarschot
(1993a), Schäfer et al. (1994), and Schäfer and Shuryak
(1996a), to whose articles we refer the reader for more
details. The results are shown in Figs. 19–21 and sum-
marized in Table IV. The pion correlation functions in
the different ensembles are qualitatively very similar.
The differences are mostly due to different values of the
quark condensate (and the physical quark mass) in the
different ensembles. Using the Gell-Mann, Oaks, Ren-
ner relation, one can extrapolate the pion mass to the
physical value of the quark masses (see Table IV). The
results are consistent with the experimental value in the
streamline ensemble (both quenched and unquenched)
but clearly too small in the ratio ansatz ensemble. This is
a reflection of the fact that the ratio ansatz ensemble is
not sufficiently dilute.

In Fig. 21 we also show the results in the r channel.
The r-meson correlator is not affected by instanton zero
modes to first order in the instanton density. The results
in the different ensembles are fairly similar to each other
., Vol. 70, No. 2, April 1998
and all fall somewhat short of the phenomenological re-
sult at intermediate distances x.1 fm. We have deter-
mined the r-meson mass and coupling constant from a
fit similar to Eq. (278). The results are given in Table IV.
The r-meson mass is somewhat too heavy in the random
and quenched ensembles but in good agreement with
the experimental value mr5770 MeV in the un-
quenched ensemble.

Since there are no interactions in the r-meson channel
to first order in the instanton density, it is important to
study whether the instanton liquid provides any signifi-
cant binding. In the instanton model, there is no confine-
ment, and mr is close to the two- (constituent) quark
threshold. In QCD, the r meson is also not a true bound
state but a resonance in the 2p continuum. To deter-
mine whether the continuum contribution in the instan-
ton liquid is predominantly from two-pion or two-quark
states would require the determination of the corre-
sponding three-point functions, which has not yet been
done. Instead, we have compared the full correlation
function with the noninteracting (mean-field) correlator
(272), where we use the average (constituent-quark)
propagator determined in the same ensemble (see Fig.
21). This comparison provides a measure of the strength
TABLE III. Definition of various currents and hadronic matrix elements referred to in this work.

Channel Current Matrix element Experimental value

p jp
a 5q̄g5taq ^0ujp

a upb&5dablp lp.(480 MeV)3

jm5
a 5q̄gmg5

ta

2
q ^0ujm5

a upb&5dabqmfp fp593 MeV

d jd
a5q̄taq ^0ujd

audb&5dabld

s js5q̄q ^0ujsus&5ls

hns jhns
5q̄g5q ^0ujhns

uhns&5lhns

r jm
a 5q̄gm

ta

2
q ^0ujm

a urb&5dabem

mr
2

gr

gr55.3

a1
jm5
a 5q̄gmg5

ta

2
q ^0ujm5

a ua1
b&5dabem

ma1

2

ga1

ga1
59.1

N h15eabc(uaCgmub)g5gmdc ^0uh1uN(p ,s)&5l1
Nu(p ,s)

N h25eabc(uaCsmnub)g5smndc ^0uh2uN(p ,s)&5l2
Nu(p ,s)

D hm5eabc(uaCgmub)uc ^0uhmuN(p ,s)&5lDum(p ,s)
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of the interaction. We observe that there is an attractive
interaction generated in the interacting liquid due to
correlated instanton/anti-instanton pairs [see the discus-
sion in Sec. VII.B.2, in particular, Eq. (332)]. This is
consistent with the fact that the interaction is consider-
ably smaller in the random ensemble. In the random
model, the strength of the interaction grows as the en-
semble becomes more dense. However, the interaction
in the full ensemble is significantly larger than in the
random model at the same diluteness. Therefore most of
the interaction is due to dynamically generated pairs.

The situation is drastically different in the h8 channel.
Among the ;40 correlation functions calculated in the
random ensemble, only the h8 and the isovector-scalar d
discussed in the next section, are completely unaccept-
able. The correlation function decreases very rapidly
and becomes negative at x;0.4 fm. This behavior is in-
compatible with the positivity of the spectral function.
The interaction in the random ensemble is too repulsive,
and the model ‘‘overexplains’’ the U(1)A anomaly.

The results in the unquenched ensembles (closed and
open points) significantly improve the situation. This is
related to dynamic correlations between instantons and
anti-instantons (topological charge screening). The
single-instanton contribution is repulsive, but the contri-
bution from pairs is attractive (Schäfer et al., 1995). Only
if correlations among instantons and anti-instantons are
sufficiently strong will the correlators be prevented from
becoming negative. Quantitatively, the d and hns masses
in the streamline ensemble are still heavier than their
experimental values. In the ratio ansatz, on the other
hand, the correlation functions even show an enhance-
ment at distances on the order of 1 fm, and the fitted
masses are too light. This shows that the h8 channel is
very sensitive to the strength of correlations among in-
stantons.

In summary, pion properties are mostly sensitive to

TABLE IV. Meson parameters in the different instanton en-
sembles. RILM5random instanton liquid model. All quanti-
ties are given in units of GeV. The current quark mass is mu
5md50.1L . Except for the pion mass, no attempt has been
made to extrapolate the parameters to physical values of the
quark mass.

Unquenched Quenched RILM
Ratio ansatz

(unquenched)

mp 0.265 0.268 0.284 0.128

mp (extr.) 0.117 0.126 0.155 0.067

lp 0.214 0.268 0.369 0.156

fp 0.071 0.091 0.091 0.183

mr 0.795 0.951 1.000 0.654

gr 6.491 6.006 6.130 5.827

ma1
1.265 1.479 1.353 1.624

ga1
7.582 6.908 7.816 6.668

ms 0.579 0.631 0.865 0.450

md 2.049 3.353 4.032 1.110
mhns 1.570 3.195 3.683 0.520
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global properties of the instanton ensemble, in particu-
lar its diluteness. Good phenomenology demands r̄4n
.0.03, as originally suggested by Shuryak (1982c). The
properties of the r meson are essentially independent of
the diluteness but show sensitivity to IA correlations.
These correlations become crucial in the h8 channel.

Finally, we compare the correlation functions in the
instanton liquid to lattice measurements reported by
Chu et al. (1993a, 1993b; see Sec. VI.E). These correla-
tion functions were measured in quenched QCD, so they
should be compared to the random or quenched instan-
ton ensembles. The results agree very well in the pion
channel, while the lattice correlation function in the rho-
meson channel is somewhat more attractive than the
correlator in the instanton liquid.

5. Other mesonic correlation functions

After discussing the p ,r ,h8 in some detail we com-
ment only briefly on other correlation functions. The re-
maining scalar states are the isoscalar s and the isovec-
tor d (the f0 and a0 according to the notation of the
Particle Data Group). The sigma correlator has a dis-
connected contribution, which is proportional to ^q̄q&2

at large distances. In order to determine the lowest reso-
nance in this channel, the constant contribution has to
be subtracted, which makes it difficult to obtain reliable
results. Nevertheless, we find that the instanton liquid
favors a (presumably broad) resonance around 500–600
MeV. The isovector channel is in many ways similar to
the h8. In the random ensemble, the interaction is too
repulsive, and the correlator becomes unphysical. This
problem is solved in the interacting ensemble, but the d
is still very heavy, md.1 GeV.

The remaining nonstrange vectors are the a1 , v, and
f1 . The a1 mixes with the pion, which allows a determi-
nation of the pion decay constant fp (as does a direct
measurement of the p2a1 mixing correlator). In the in-
stanton liquid, disconnected contributions in the vector
channels are small. This is consistent with the fact that
the r and the v, as well as the a1 and the f1 , are almost
degenerate.

Finally, we can also include strange quarks. SU(3) fla-
vor breaking in the ’t Hooft interaction nicely accounts
for the masses of the K and the h. More difficult is a
correct description of h-h8 mixing, which can only be
achieved in the full ensemble. The random ensemble
also has a problem with the mass splittings among the
vectors r, K* , and f (Shuryak and Verbaarschot,
1993a). This is related to the fact that flavor symmetry
breaking in the random ensemble is so strong that the
strange and nonstrange constituent-quark masses are al-
most degenerate. This problem is improved (but not
fully solved) in the interacting ensemble.

D. Baryonic correlation functions

After discussing quark-antiquark systems in the last
section, we now proceed to three-quark (baryon) chan-
nels. As emphasized by Shuryak and Rosner (1989), the
existence of a strongly attractive interaction in the pseu-
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TABLE V. Definition of nucleon and delta correlation functions.

Correlator Definition Correlator Definition

P1
N(x) ^tr„h1(x)h̄1(0)…& P1

D(x) ^tr„hm(x)h̄m(0)…&

P2
N(x) ^tr„g• x̂h1(x)h̄1(0)…& P2

D(x) ^tr„g• x̂hm(x)h̄m(0)…&

P3
N(x) ^tr„h2(x)h̄2(0)…& P3

D(x) ^tr„x̂mx̂nhm(x)h̄n(0)…&

P4
N(x) ^tr„g• x̂h2(x)h̄2(0)…& P4

D(x) ^tr„g• x̂ x̂mx̂nhm(x)h̄n(0)…&

P5
N(x) ^tr„h1(x)h̄2(0)…&

P6
N(x) ^tr„g• x̂h1(x)h̄2(0)…&
doscalar quark-antiquark (pion) channel also implies an
attractive interaction in the scalar quark-quark (di-
quark) channel. This interaction is phenomenologically
very desirable because it explains not only why the spin-
1/2 nucleon is lighter than the spin-3/2 delta but also why
lambda is lighter than sigma.

1. Nucleon correlation functions

The proton current can be constructed by coupling a
d quark to a uu diquark. The diquark has the structure
eabcubCGuc , which requires that the matrix CG be sym-
metric. This condition is satisfied for the V and T
gamma matrix structures. The two possible currents
(with no derivatives and the minimum number of quark
fields) with positive parity and spin 1/2 are given by
(Ioffe, 1981)

h15eabc~uaCgmub!g5gmdc,

h25eabc~uaCsmnub!g5smndc. (279)

It is sometimes useful to rewrite these currents in terms
of scalar and pseudoscalar diquarks,

h1,25~2,4!$eabc~uaCdb!g5uc7eabc~uaCg5db!uc%.
(280)

Nucleon correlation functions are defined by Pab
N (x)

5^ha(0)h̄b(x)&, where a,b are the Dirac indices of the
nucleon currents. In total, there are six different nucleon
correlators: the diagonal h1h̄1 , diagonal h2h̄2 , and off-
diagonal h1h̄2 correlators, each contracted with either
the identity or g•x (see Table V). Let us focus on the
first two of these correlation functions. For more detail,
we refer the reader to Schäfer et al. (1994) and refer-
ences therein. The OPE predicts (Belyaev and Ioffe,
1982)

P1
N

P2
N0 5

p2

12
u^q̄q&ut3, (281)

P2
N

P2
N0 511

1
768 ^G2&t41

p4

72
u^q̄q&u2t6. (282)

The vector components of the diagonal correlators re-
ceive perturbative quark-loop contributions, which are
., Vol. 70, No. 2, April 1998
dominant at short distances. The scalar components of
the diagonal correlators, as well as the off-diagonal cor-
relation functions, are sensitive to chiral symmetry
breaking, and the OPE starts at order ^q̄q& or higher.
Single-instanton corrections to the correlation functions
were calculated by Dorokhov and Kochelev (1990), and
Forkel and Banerjee (1993).44 Instantons introduce ad-
ditional, regular contributions in the scalar channel and
violate the factorization assumption for the four-quark
condensates. As in the pion case, both of these effects
increase the attraction already seen in the OPE.

The correlation function P2
N in the interacting en-

semble is shown in Fig. 22. There is a significant en-
hancement over the perturbative contribution which
corresponds to a tightly bound nucleon state with a large
coupling constant. Numerically, we find45 mN51.019
GeV (see Table VI). In the random ensemble, we have
measured the nucleon mass at smaller quark masses and
found mN50.96060.30 GeV. The nucleon mass is fairly
insensitive to the instanton ensemble. However, the
strength of the correlation function depends on the in-
stanton ensemble. This is reflected by the value of the
nucleon coupling constant, which is smaller in the inter-
acting model.

Figure 22 also shows the nucleon correlation function
measured in a quenched lattice simulation (Chu et al.,
1993b). The agreement with the instanton liquid results
is quite impressive, especially given the fact that, before
the lattice calculations were performed, there was no
phenomenological information on the value of the
nucleon coupling constant and the behavior of the cor-
relation function at intermediate and large distances.

The fitted position of the threshold is E0.1.8 GeV,
larger than the mass of the first nucleon resonance, the
Roper N* (1440), and above the pD threshold E0
51.37 GeV. This might indicate that the coupling of the
nucleon current to the Roper resonance is small. In the
case of the pD continuum, this can be checked directly
using the phenomenologically known coupling con-
stants. The large value of the threshold energy also im-
plies that there is little strength in the (unphysical)
three-quark continuum. The fact that the nucleon is

44The latter paper corrects a few mistakes in the original
work by Dorokhov and Kochelev.

45Note that this value corresponds to a relatively large cur-
rent quark mass, m530 MeV.-
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deeply bound can also be demonstrated by comparing
the full nucleon correlation function with that of three
noninteracting quarks (see Fig. 22). The full correlator is
significantly larger than the noninteracting (mean-field)
result, indicating the presence of a strong, attractive in-
teraction.

Some of this attraction is due to the scalar diquark
content of the nucleon current. This raises the question
whether the nucleon (in our model) is a strongly bound
diquark very loosely coupled to a third quark. In order
to check this, we have decomposed the nucleon correla-
tion function into quark and diquark components. Using
the mean-field approximation, that means treating the
nucleon as a noninteracting quark-diquark system, for
which we get the correlation function labeled (dq)(q)
in Fig. 22. We observe that the quark-diquark model
explains some of the attraction seen in P2

N but falls
short of the numerical results. This means that, while
diquarks may play some role in making the nucleon
bound, there are substantial interactions in the quark-
diquark system. Another hint of the qualitative role of
diquarks is provided by the values of the nucleon cou-
pling constants lN

1,2 . Using Eq. (280), we can translate
these results into the coupling constants lN

s ,p of nucleon
currents built from scalar or pseudoscalar diquarks. We
find that the coupling to the scalar diquark current hs
5eabc(uaCg5db)uc is an order of magnitude larger than
the coupling to the pseudoscalar current hp
5eabc(uaCdb)g5uc. This is in agreement with the idea
that the scalar diquark channel is very attractive and
that these configurations play an important role in the
nucleon wave function.

2. Delta correlation functions

In the case of the delta resonance, there exists only
one independent current, given by (for the D11)

FIG. 22. Nucleon and delta correlation functions P2
N and P2

D .
Curves labeled as in Fig. 19.
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hm
D5eabc~uaCgmub!uc. (283)

However, the spin structure of the correlator
Pmn ;ab

D (x)5^hma
D (0)h̄nb

D (x)& is much richer. In general,
there are ten independent tensor structures, but the
Rarita-Schwinger constraint, gmhm

D50, reduces this
number to four; see Table V. The OPE predicts

P1
D

P2
D0 54

p2

12
u^q̄q&ut3, (284)

P2
D

P2
D0 512

25
18

1
768 ^G2&t416

p4

72
u^q̄q&u2t6, (285)

which implies that power corrections, in particular those
due to the quark condensate, are much larger for the
delta than for the nucleon. On the other hand, nonper-
turbative effects due to instantons are much smaller.
The reason is that, while there are large, direct instanton
contributions in the nucleon, there are none in the delta.

The delta correlation function in the instanton liquid
is shown in Fig. 22. The result is qualitatively different
from that for the nucleon channel: the correlator at in-
termediate distance, x.1 fm, is significantly smaller and
close to perturbation theory. This is in agreement with
the results of the lattice calculation (Chu et al., 1993b).
Note that, again, this is a quenched result, which should
be compared to the predictions of the random instanton
model.

The mass of the delta resonance is too large in the
random model, but closer to experiment in the un-
quenched ensemble. Note that just as for the nucleon,
part of this discrepancy is due to the value of the current
mass. Nevertheless, the delta-nucleon mass splitting in
the unquenched ensemble is mD2mN5409 MeV, still
too large as compared to the experimental value 297
MeV. Just as for the r meson, there is no interaction in
the delta channel to first order in the instanton density.
However, if we compare the correlation function with
the mean-field approximation based on the full propaga-
tor (see Fig. 22), we find evidence for substantial attrac-
tion between the quarks. Again, more detailed checks,
for example, concerning the coupling to the pN con-
tinuum, are necessary.

E. Correlation functions on the lattice

The study of hadronic (point-to-point) correlation
functions on the lattice was pioneered by the MIT group

TABLE VI. Nucleon and delta parameters in the different
instanton ensembles. RILM5random instanton liquid model.
All quantities are given in units of GeV. The current quark
mass is mu5md50.1L .

Unquenched Quenched RILM
Ratio ansatz

(unquenched)

mN 1.019 1.013 1.040 0.983
lN

1 0.026 0.029 0.037 0.021
lN

2 0.061 0.074 0.093 0.048
mD 1.428 1.628 1.584 1.372
lD 0.027 0.040 0.036 0.026
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(Chu et al., 1993a, 1993b), who measured correlation
functions of the p, d, r, a1 , N , and D in quenched QCD.
The correlation functions were calculated on a 163324
lattice at 6/g255.7, corresponding to a lattice spacing of
a.0.17 fm. A more detailed investigation of baryonic
correlation functions on the lattice was subsequently
carried out by Leinweber (1995a, 1995b). We have al-
ready shown some of the results of the MIT group in
Figs. 19–22. The correlators were measured for dis-
tances up to ;1.5 fm. Using the parametrization intro-
duced above, they extracted ground-state masses and
coupling constants and found good agreement with phe-
nomenological results. What is even more important,
they found the full correlation functions to agree with
the predictions of the instanton liquid, even in channels
(like the nucleon and delta) where no phenomenological
information was available.

In order to check this result in greater detail, they also
studied the behavior of the correlation functions under
cooling (Chu et al., 1994). The cooling procedure was
monitored by studying a number of gluonic observables,
like the total action, the topological charge, and the Wil-
son loop. From these observables, the authors concluded
that the configurations were dominated by interacting
instantons after ;25 cooling sweeps. Instanton/anti-
instanton pairs were continually lost during cooling, and
after ;50 sweeps the topological charge fluctuations
were consistent with a dilute gas. The characteristics of
the instanton liquid have already been discussed in Sec.
III.C.2. After 50 sweeps the action was reduced by a
factor ;300, while the string tension (measured from
734 Wilson loops) had dropped by a factor of 6.

The behavior of the pion and nucleon correlation
functions under cooling is shown in Fig. 23. The behav-
ior of the r and D correlators is quite similar. During the
cooling process, the scale was readjusted by keeping the
nucleon mass fixed. This introduced only a small uncer-
tainty; the change in scale was ;16%. We observe that
the correlation functions are stable under cooling. They
agree almost within error bars. This can also be seen
from the extracted masses and coupling constants. While
mN and mp are stable by definition, mr and gr change
by less than 2%, lp by 7%, and lN by 1%. Only the
delta mass is too small after cooling; it changes by 27%.

F. Gluonic correlation functions

One of the most interesting problems in hadronic
spectroscopy is whether one can identify glueballs,
bound states of pure glue, among the spectrum of ob-
served hadrons. This question has two aspects. In pure
glue theory, stable glueball states exist, and they have
been studied for a number of years in lattice simulations.
In full QCD, glueballs mix with quark states, making it
difficult to identify glueball candidates unambiguously.

Even in pure gauge theory, lattice simulations still re-
quire large numerical efforts. Nevertheless, a few results
appear to be firmly established (Weingarten, 1994): (i)
The lightest glueball is the scalar 011, with a mass in the
1.5–1.8 GeV range. (ii) The tensor glueball is signifi-
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cantly heavier, m211 /m011.1.4, and the pseudoscalar
is heavier still, m021 /m01151.5–1.8 (Bali et al., 1993).
(iii) The scalar glueball is much smaller than other glue-
balls. The size of the scalar is r011.0.2 fm, while r211

.0.8 fm (de Forcrand and Liu, 1992). For comparison, a
similar measurement for the p and r mesons gives 0.32
fm and 0.45 fm, indicating that spin-dependent forces
are stronger between gluons than between quarks.

Gluonic currents with the quantum numbers of the
lowest glueball states are the field strength squared (S
5011), the topological charge density (P5021), and
the energy-momentum tensors (T5211):

jS5~Gmn
a !2, jP5

1
2

emnrsGmn
a Grs

a ,

jT5
1
4

~Gmn
a !22G0a

a G0a
a . (286)

The short-distance behavior of the corresponding corre-
lation functions is determined by the OPE (Novikov
et al., 1980): to give

PS ,P~x !5PS ,P
0 S 16

p2

192g2 ^fabcGmn
a Gnb

b Gbm
c &x61¯ D

(287)

PT~x !5PT
0 S 11

25p2

9216g2 ^2O12O2&log~x2!x81¯ D ,

(288)
where we have defined the operators O1
5(fabcGma

b Gna
c )2, and O25(fabcGmn

b Gab
c )2, and the

free correlation functions are given by

PS ,P~x !5~6 !
384g4

p4x8 , PT~x !5
24g4

p4x8 . (289)

FIG. 23. Behavior of pion (P) and nucleon (N) correlation
functions under cooling, from Chu et al., 1994: Left panels,
results in the original ensemble; center panels, after 25 cooling
sweeps; right panels, after 50 cooling sweeps. The solid lines
show fits to the data based on a pole-plus-continuum model for
the spectral function. The dotted and dashed lines show the
individual contributions from the pole and the continuum
parts.
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Power corrections in the glueball channels are remark-
ably small. The leading-order power correction
O(^Gmn

2 &/x4) vanishes,46 while radiative corrections of
the form as log(x2)^Gmn

2 &/x4 [not included in Eq. (287)],
or higher-order power corrections like
^fabcGmn

a Gnr
b Grm

c &/x2, are very small.
On the other hand, there is an important low-energy

theorem that controls the large-distance behavior of the
scalar correlation function (Novikov et al., 1979),

E d4xPS~x !5
128p2

b
^G2&, (290)

where b denotes the first coefficient of the beta function.
In order to make the integral well defined, we have to
subtract the constant term ;^G2&2 as well as singular
(perturbative) contributions to the correlation function.
Analogously, the integral over the pseudoscalar correla-
tion functions is given by the topological suscepti-
bility *d4xPP(x)5x top . In pure gauge theory x top
.(32p2)^G2&, while in unquenched QCD x top5O(m)
(see Sec. V.E). These low-energy theorems indicate the
presence of rather large nonperturbative corrections in
the scalar glueball channels. This can be seen as follows:
We can incorporate the low-energy theorem into the
sum rules by using a subtracted dispersion relation

P~Q2!2P~0 !

Q2 5
1
p E ds

Im P~s !

s~s1Q2!
. (291)

In this case, the subtraction constant acts like a power
correction. In practice, however, the subtraction con-
stant totally dominates ordinary power corrections. For
example, using pole dominance, the scalar glueball cou-
pling lS5^0ujSu011& is completely determined by the
subtraction, lS

2 /mS
2.(128p2/b)^G2&.

For this reason, we expect instantons to give a large
contribution to scalar glueball correlation functions. Ex-
panding the gluon operators around the classical fields,
we have

PS~x ,y !5^0uG2 cl~x !G2 cl~y !u0&1^0uGmn
a ,cl~x !

3@Dm
x Da

y Dnb~x ,y !#abGab
b ,cl~y !u0&1¯ ,

(292)

where Dmn
ab (x ,y) is the gluon propagator in the classical

background field. If we insert the classical field of an
instanton, we find (Novikov et al., 1979; Shuryak, 1982c;
Schäfer and Shuryak, 1995a)

PS ,P
SIA~x !5E drn~r!

8192p2

r4

]3

]~x2!3

3H j6

x6 S 1026j2

~12j2!2 1
3
j

log
11j

12j D J , (293)

where j is defined as in Eq. (266). There is no classical
contribution in the tensor channel, since the stress ten-

46There is a ^Gmn
2 &d4(x) contact term in the scalar glueball

correlators which, depending on the choice of sum rule, may
enter momentum space correlation functions.
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
sor in the self-dual field of an instanton is zero. Note
that the perturbative contributions in the scalar and
pseudoscalar channels have opposite sign, while the clas-
sical contribution has the same sign. We therefore find,
to first order in the instanton density, the three scenarios
discussed in Sec. VI.C: attraction in the scalar channel,
repulsion in the pseudoscalar, and no effect in the tensor
channel. The single-instanton prediction is compared
with the OPE in Fig. 24. We can clearly see that classical
fields are much more important than the power correc-
tions.

Quantum corrections to this result can be calculated
from the second term in Eq. (292), using the gluon
propagator in the instanton field (L. S. Brown et al.,
1978; Levine and Yaffe, 1979). The singular contribu-
tions correspond to the OPE in the instanton field.
There is an analog of the Dubovikov-Smilga result for
glueball correlators: In a general self-dual background
field, there are no power corrections to the tensor cor-
relator (Novikov et al., 1980). This is consistent with the
result (288), since the combination ^2O12O2& vanishes
in a self-dual field. Moreover, the sum of the scalar and
pseudoscalar glueball correlators does not receive any
power corrections, while the difference does, starting at
O(G3).

Numerical calculations of glueball correlators in dif-
ferent instanton ensembles were performed by Schäfer
and Shuryak (1995a). At short distances, the results
were consistent with the single-instanton approximation.
At larger distances, the scalar correlator was modified
due to the presence of the gluon condensate. This means
that (like the s meson), the correlator has to be sub-
tracted, and the determination of the mass is difficult. In
the pure gauge theory we find m011.1.5 GeV and
l01151662 GeV3. While the mass is consistent with
QCD sum-rule predictions, the coupling is much larger

FIG. 24. Scalar and pseudoscalar glueball correlation func-
tions. Curves labeled as in Fig. 19.
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than would be expected from calculations that do not
enforce the low-energy theorem (Narison, 1984; Bagan
and Steele, 1990).

In the pseudoscalar channel the correlator is very re-
pulsive, and there is no clear indication of a glueball
state. In the full theory (with quarks) the correlator is
modified due to topological charge screening. The non-
perturbative correction changes sign and a light (on the
glueball mass scale) state, the h8, appears. Nonpertur-
bative corrections in the tensor channel are very small.
Isolated instantons and anti-instantons have a vanishing
energy-momentum tensor, so the result is entirely due to
interactions.

In Schäfer and Shuryak (1995a) we also measured
glueball wave functions. The most important result is
that the scalar glueball is indeed small, r01150.2 fm,
while the tensor is much bigger, r21150.6 fm. The size
of the scalar is determined by the size of an instanton,
whereas in the case of the tensor the scale is set by the
average distance between instantons. This number is
comparable to the confinement scale, so the tensor wave
function is probably not very reliable. On the other
hand, the scalar is much smaller than the confinement
scale, so the wave function of the 011 glueball may pro-
vide an indication of the importance of instantons in
pure gauge theory.

G. Hadronic structure and n-point correlators

So far, we have focused on two-point correlation in
the instanton liquid. However, in order to study had-
ronic properties like decay widths, form, structure func-
tions, etc., we have to calculate n-point correlators.
There is no systematic study of these objects in the lit-
erature. In the following, we discuss two exploratory at-
tempts and point out a number of phenomenologically
interesting questions.

Both of our examples are related to the question of
hadronic sizes. Hadronic wave functions (or Bethe-
Salpeter amplitudes) are defined by three-point correla-
tors of the type

Pp~x ,y !5^0uT~ d̄~x !Pei*x
x1yA~x8!dx8g5u~x1y !

3d̄~0 !g5u~0 !)u0&

→
x→`

c~y !e2mpx. (294)

These wave functions are not directly accessible to ex-
periment, but they have been studied in a number of
lattice gauge simulations, both at zero (Velikson and
Weingarten, 1985; Chu, Lissia, and Negele, 1991; Hecht
and DeGrand, 1992; Gupta, Daniel, and Grandy, 1993)
and at finite temperature (Bernard et al., 1992; Schramm
and Chu, 1993). In the single-instanton approximation,
we find that light states (like the pion or the nucleon)
receive direct instanton contributions, so their size is
controlled by the typical instanton size. Particles like the
r or the D, on the other hand, are not sensitive to direct
instantons and are therefore less bound and larger in
size.
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This can be seen from Fig. 25, where we show results
obtained in the random instanton ensemble (Schäfer
and Shuryak, 1995a). In particular, we observe that the
pion and the proton, as well as the r and the D, have
essentially the same size. In the case of the pion and the
proton, this is in agreement with lattice data reported by
Chu et al. (1991). These authors also find that the r me-
son is significantly larger (they did not study the D).

A more detailed comparison with the lattice data re-
veals some of the limitations of the instanton model.
Lattice wave functions are linear at the origin, not qua-
dratic as in the instanton liquid. Presumably, this is due
to the lack of a perturbative Coulomb interaction be-
tween the quarks in the instanton model. Also, lattice
wave functions decay faster at large distances, which
might be related to the absence of a string potential in
the instanton liquid.

Let us now focus on another three-point function that
is more directly related to experiment. The pion electro-
magnetic form factor is determined by the correlation
function

Gm~x ,y !5^j5
1~2x/2!jm

3 ~y !j5
2~x/2!&, (295)

where j5
6 are the pseudoscalar currents of the charged

pion and jm
3 is the third component of the isovector-

vector current. In this case, the correlator is completely
determined by the triangle diagram. In the context of
QCD sum rules, the pion form factor is usually analyzed
using a three-point function built from axial-vector cur-
rents (because the pseudoscalar sum rule is known to be
unreliable). In the single-instanton approximation, the
problem was recently studied by Forkel and Nielsen
(1995), where it was shown that, when direct instantons

FIG. 25. Hadronic wave functions of the pion, rho meson, pro-
ton, and delta resonances in the random instanton ensemble.
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are included (as in Sec. VI.C.2), the pion form factor can
also be extracted from the pseudoscalar correlator (295).
Using the standard instanton liquid parameters, these
authors calculated the pion form factor for Q2

;1 GeV, obtaining good agreement with experimental
data.

Recently, the three-point function (295) in the instan-
ton liquid was also calculated numerically (Blotz and
Shuryak, 1997). In this case, one can go to arbitrarily
large distances and determine the pion form factor at
small momentum. In this regime, the pion form factor
has a simple monopole shape, Fp(Q2)5M2/(Q2

1M2), with a characteristic mass close to the rho-meson
mass. However, at intermediate momenta, Q2;1, the
pion form factor is less sensitive to the meson cloud and
largely determined by the quark-antiquark interaction
inside the pion. In the instanton model, the interaction is
dominated by single-instanton effects, and the range is
controlled by the instanton size. This can be seen from
Fig. 26, where we show the fitted monopole mass as a
function of the instanton size. Clearly, the two are
strongly correlated, and the instanton model reproduces
the experimental value of the monopole mass if the
mean instanton size is r.0.35 fm.

Finally, let us mention a few experimental observables
that might be interesting in connection with instanton
effects in hadronic structure. These are observables that
are sensitive to the essential features of the ’t Hooft
interaction, the strong correlation between quark and
gluon polarization and flavor mixing. The first is the fla-
vor singlet axial coupling constant of the nucleon gA

0 ,
which is a measure of the quark contribution to the
nucleon spin. This quantity can be determined in polar-
ized, deep-inelastic scattering and was found to be unex-

FIG. 26. The size of the pion, determined from the inverse
monopole mass in the pion electromagnetic form, as a function
of the instanton size in the random instanton ensemble, from
Blotz and Shuryak, 1997. The horizontal lines show the experi-
mental uncertainty.
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pectedly small, gA
0 .0.35. The quark model suggests gA

0

.1, a discrepancy which is known as the ‘‘proton spin
crisis.’’

Since gA
0 is defined by a matrix element of the flavor

singlet current, one might suspect that the problem is
somehow related to the anomaly. In fact, if it were not
for the anomaly, one could not transfer polarization
from quarks to gluons and gA

0 could not evolve. All this
suggests that instantons might be crucial in understand-
ing the proton spin structure. While some attempts in
this direction have been made (Forte and Shuryak, 1991;
Dorokhov, Kochelev, and Zubov, 1993), a realistic cal-
culation is still lacking.

Another question concerns the flavor structure of the
unpolarized quark sea in the nucleon. From measure-
ments of the Gottfried sum rule, the quark sea is known
to be flavor asymmetric; there are more d than u quarks
in the proton sea. From a perturbative point of view this
is puzzling because gluons are flavor blind, so a radia-
tively generated sea is flavor symmetric. However, as
pointed out by Dorokhov and Kochelev (1993), quark
pairs produced by instantons are flavor asymmetric. For
example, a valence u quark generates d̄d , s̄s sea, but no
ūu pairs. Since a proton has two valence u quarks, this
gives the right sign of the observed asymmetry.

VII. INSTANTONS AT FINITE TEMPERATURE

A. Introduction

1. Finite-temperature field theory and the caloron solution

In the previous sections we have shown that the in-
stanton liquid model provides a mechanism for chiral
symmetry breaking and describes a large number of
hadronic correlation functions. Clearly, it is of interest
to generalize the model to finite temperature and/or
density. This will allow us to study the behavior of had-
rons in matter, the mechanism of the chiral phase tran-
sition, and possible nonperturbative effects in the high-
temperature/density phase. Extending the methods
described in the last three sections to nonzero tempera-
ture is fairly straightforward. In Euclidean space, finite
temperature corresponds to periodic boundary condi-
tions on the fields. Basically, all we have to do is replace
all the gauge potentials and fermionic wave functions by
their TÞ0 periodic counterparts. Nevertheless, doing so
leads to a number of interesting and very nontrivial phe-
nomena, which we describe in detail below. Extending
the instanton model to finite density is more difficult. In
Euclidean space a finite chemical potential corresponds
to a complex weight in the functional integral, so apply-
ing standard methods from statistical mechanics is less
straightforward. While some work on the subject has
been done (Carvalho, 1980; Chemtob, 1981; Shuryak,
1982d; Abrikosov, 1983), many questions remain to be
understood.

Before we study the instanton liquid at TÞ0, we
should like to give a very brief introduction to finite-
temperature field theory in Euclidean space (Shuryak,
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1980; Gross, Pisarski, and Yaffe, 1981; McLerran, 1986;
Kapusta, 1989). The basic object is the partition function

Z5Tr~e2bH!, (296)

where b51/T is the inverse temperature, H is the
Hamiltonian, and the trace is performed over all physi-
cal states. In Euclidean space, the partition function can
be written as a functional integral,

Z5E
per

DAmE
aper

Dc̄Dc expS 2E
0

b

dtE d3xLD ,

(297)

where the gauge fields and fermions are subject to
periodic/antiperiodic boundary conditions

Am~rW ,b!5Am~rW ,0 !, (298)

c~rW ,b!52c~rW ,0 !, c̄~rW ,b!52c̄~rW ,0!. (299)

The boundary conditions imply that the fields can be
expanded in a Fourier series f(rW ,t)5eivntfn(rW), where
vn52pnT and vn5(2n11)pT are the Matsubara fre-
quencies for boson and fermions.

As an example, it is instructive to consider the free
propagator of a massless fermion at finite temperature.
Summing over all Matsubara frequencies we get

ST~r ,t!5
i

4p2 g•](
n

~21 !n

r21~t2nb!2 . (300)

The sum can easily be performed, and in the spatial di-
rection one finds

ST~r ,0!5
igW •rW

2p2r4 z exp~2z !

3
~z11 !1~z21 !exp~22z !

@11exp~22z !#2 , (301)

where z5prT . This result shows that, at finite tempera-
ture, the propagation of massless fermions in the spatial
direction is exponentially suppressed. The screening
mass m5pT is the lowest Matsubara frequency for fer-
mions at finite temperature.47 The energy pT acts like a
(chiral) mass term for spacelike propagation. For
bosons, on the other hand, the wave functions are peri-
odic, the lowest Matsubara frequency is zero, and the
propagator is not screened. The propagator in the tem-
poral direction is given by

ST~0,t!5
ig4

2p2t3

y3

2
11cos2~y !

sin3~y !
, (302)

with y5ptT . Clearly, there is no suppression factor for
propagation in the temporal direction.

47Let us mention another explanation for this fact which does
not use the Matsubara formalism. In the real-time formalism,
ST(r ,0) is the spatial Fourier transform of @1/22nf(Ek)# ,
where nf is the Fermi-Dirac distribution. For small momenta,
k,T , the two terms cancel and there is no power-law decay.
In other words, the 1/r3 behavior disappears because the con-
tributions from real and virtual fermions cancel each other.
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Periodic instanton configurations can be constructed
by lining up zero-temperature instantons along the
imaginary time direction with the period b. Using
’t Hooft’s multi-instanton solution (A7), the explicit ex-
pression for the gauge field is given by Harrington and
Shepard (1978)

Am
a 5h̄mn

a P~x !]nP21~x !, (303)

where

P~x !511
pr2

br

sinh~2pr/b!

cosh~2pr/b!2cos~2pt/b!
. (304)

Here, r denotes the size of the instanton. The solution
(303) is sometimes referred to as the caloron. It has to-
pological charge Q51 and action S58p2/g2 indepen-
dent of temperature.48 A caloron with Q521 can be
constructed by making the replacement h̄mn

a →hmn
a . Of

course, as T→0 the caloron field reduces to the field of
an instanton. In the high-temperature limit Tr@1, how-
ever, the field looks very different (Gross et al., 1981). In
this case, the caloron develops a core of size O(b)
where the fields are very strong, Gmn;O(b2). In the
intermediate regime, O(b),r,O(r2/b), the caloron
looks like a (T-independent) dyon with unit electric and
magnetic charges,

Ei
a5Bi

a.
r̂ar̂ i

r2 . (305)

In the far region, r.O(r2/b), the caloron resembles a
three-dimensional dipole field, Ei

a5Bi
a;O(1/r3).

At finite temperature, tunneling between degenerate
classical vacua is related to the anomaly in exactly the
same way as it is at T50. This means that, during tun-
neling, the fermion vacuum is rearranged and the Dirac
operator in the caloron field has a normalizable left-
handed zero mode. This zero mode can be constructed
from the zero modes of the exact n-instanton solution
(Grossman, 1977). The result is

c i
a5

1

2&pr
AP~x !]mS F~x !

P~x ! D S 12g5

2
gmD

ij

eaj , (306)

where F(x)5(P(x)21)cos(pt/b)/cosh(pr/b). Note
that the zero-mode wave function also shows an expo-
nential decay exp(2prT) in the spatial direction, despite
the fact the eigenvalue of the Dirac operator is exactly
zero. This will have important consequences for instan-
ton interactions at nonzero temperature.

2. Instantons at high temperature

At finite temperature, just as at T50, the instanton
density is controlled by fluctuations around the classical

48The topological classification of smooth gauge fields at finite
temperature is more complicated than at T50 (Gross et al.,
1981). The situation simplifies in the absence of magnetic
charges. In this case topological charge is quantized just as it is
at zero temperature.
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caloron solution. In the high-temperature plasma phase,
the gluoelectric fields in the caloron are Debye screened,
so we expect that instantons are strongly suppressed at
high temperature (Shuryak, 1978b). The perturbative
Debye mass in the quark-gluon plasma is (Shuryak,
1978a)

mD
2 5~Nc/31Nf/6!g2T2. (307)

Normal O(1) electric fields are screened at distances
1/(gT), while the stronger O(1/g) nonperturbative
fields of the instantons should be screened for sizes r
.T21. An explicit calculation of the quantum fluctua-
tions around the caloron was performed by Pisarski and
Yaffe (1980). Their result is

n~r ,T !5n~r ,T50 !

3expS 2
1
3

~2Nc1Nf!~prT !22B~l! D
with

B~l!5S 11
Nc

6
2

Nf

6 D
3F2logS 11

l2

3 D1
0.15

~110.15l23/2!8G (308)

where l5prT . As expected, large instantons, r@1/T ,
are exponentially suppressed. This means that the in-
stanton contribution to physical quantities like the en-
ergy density (or pressure, etc.) is of the order

e~T !;E
0

1/T dr

r5 ~rL!b;T4~L/T !b. (309)

At high temperature, this is small compared to the en-
ergy density of an ideal gas, e(T)SB;T4.

It was emphasized by Shuryak and Velkovsky (1994)
that, although the Pisarski-Yaffe result contains only
one dimensionless parameter l, its applicability is con-
trolled by two separate conditions:

r!1/L , T@L . (310)

The first condition ensures the validity of the semiclas-
sical approximation, while the second justifies the per-
turbative treatment of the heat bath. In order to illus-
trate this point, we should like to discuss the derivation
of the semiclassical result [Eq. (308)] in somewhat
greater detail. Our first point is that the finite-
temperature correction to the instanton density can be
split into two parts of different physical origin. For this
purpose, let us consider the determinant of a scalar field
in the fundamental representation.49 The temperature-
dependent part of the one-loop effective action

log detS 2D2

2]2 D U
T

5log detS 2D2

2]2 D U
T50

1d (311)

49The quark and gluon (non-zero-mode) determinants can be
reduced to the determinant of a scalar field in the fundamental
and adjoint representation (Gross et al., 1981).
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can be split into two pieces, d5d11d2 , where

d15TrT logS 2D2
„A~r!…

2]2 D2Tr logS 2D2
„A~r!…

2]2 D , (312)

d25TrT logS 2D2
„A~r ,T !…

2]2 D2TrT logS 2D2
„A~r!…

2]2 D .

(313)
Here TrT includes an integration over R33@0,b# , and
A(r ,T) and A(r) are the gauge potentials of the cal-
oron and the instanton, respectively. The two terms d1
and d2 correspond to the two terms in the exponent in
the semiclassical result (308).

It was shown by Shuryak (1982d) that the physical
origin of the first term is scattering of particles in the
heat bath on the instanton field. The forward scattering
amplitude T(p ,p) of a scalar quark can be calculated
using the standard Lehmann-Symanzik-Zimmermann
reduction formula

Tr„T~p ,p !…5E d4xd4yeip•~x2y ! Tr~]x
2D~x ,y !]y

2!,

(314)

where D(x ,y) is the scalar quark propagator introduced
in Sec. VI.B.1. By subtracting the trace of the free
propagator and going to the physical pole p250, one
gets a very simple answer,

Tr„T~p ,p !…524p2r2. (315)

Since the result is just a constant, there is no problem
with analytic continuation to Minkowski space. Integrat-
ing the result over a thermal distribution, we get

d15E d3p

~2p!3

1
2p~exp~p/T !21 !

Tr„T~p ,p !…

52
1
6

~prT !252
1
6

l2. (316)

The constants appearing in the result are easily inter-
preted: r2 comes from the scattering amplitude, while
the temperature dependence enters via the integral over
the heat bath. Note also that the scattering amplitude
has the same origin (and the same dependence on
Nc ,Nf) as the Debye mass.

Formally, the validity of this perturbative calculation
requires that g(T)!1, but in QCD this criterion is sat-
isfied only at extremely high temperatures. We would
argue, however, that the accuracy of the calculation is
controlled by the same effects that determine the valid-
ity of the perturbative result for the Debye mass. Avail-
able lattice data (Irback et al., 1991) suggest that screen-
ing sets in right after the phase transition, and that the
perturbative prediction for the Debye mass works to
about 10% accuracy for T.3Tc.500 MeV. Near the
critical temperature one expects that the Debye mass
becomes small; screening disappears together with the
plasma. Below Tc the instanton density should be deter-
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mined by the scattering of hadrons, not quarks and glu-
ons, on the instanton. We shall return to this point in the
next section.

The second term in the finite-temperature effective
action [Eq. (313)] has a different physical origin. It is
determined by quantum corrections to the colored cur-
rent (Brown and Creamer, 1978), multiplied by the
T-dependent variation of the instanton field, the differ-
ence between the caloron and the instanton. For l small,
the correction is given by

d252
1
36

l21O~l3!. (317)

The result has the same sign and the same dependence
on the parameters as d1 , but a smaller coefficient. Thus
finite-T effects not only lead to the appearance of the
usual (perturbative) heat bath, they also modify the
strong O(1/g) classical gauge field of the instanton. In
Euclidean space, we can think of this effect as arising
from the interaction of the instanton with its periodic
‘‘mirror images’’ along the imaginary-time direction.
However, below Tc , gluon correlators are exponentially
suppressed since glueballs states are very heavy. There-
fore we expect that for T,Tc the instanton field is not
modified by the boundary conditions. Up to effects of
the order O@exp(2M/T)#, where M is the mass of the
lowest glueball, there is no instanton suppression due to
the change in the classical field below Tc .
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3. Instantons at low temperature

The behavior of the instanton density at low tempera-
ture was studied by Shuryak and Velkovsky (1994). At
temperatures well below the phase transition the heat
bath consists of weakly interacting pions. The interac-
tion of the pions in the heat bath with instantons can be
determined from the effective Lagrangian (111). For
two flavors, this Lagrangian is a product of certain four-
fermion operators and the semiclassical single-instanton
density. In the last section, we argued that the semiclas-
sical instanton density is not modified at small tempera-
tures. The temperature dependence is then determined
by the T dependence of the vacuum expectation value
of the four-fermion operators. For small T , the situation
can be simplified even further because the wavelength of
the pions in the heat bath is large, and the four-fermion
operators can be considered local.

The temperature dependence of the expectation value
of a general four-fermion operator ^(q̄Aq)(q̄Bq)& can
be determined using soft-pion techniques (Gerber and
Leutwyler, 1989). To order T2/fp

2 the result is deter-
mined by the matrix element of the operator between
one-pion states, integrated over a thermal pion distribu-
tion. The one-pion matrix element can be calculated us-
ing the reduction formula and current-algebra commu-
tators. These methods allow us to prove the general
formula (Eletsky, 1993)
^~ q̄Aq !~ q̄Bq !&T5^~ q̄Aq !~ q̄Bq !&02
T2

96fp
2 ^~ q̄$G5

a ,$G5
a ,A%%q !~ q̄Bq !&0 (318)

2
T2

96fp
2 ^~ q̄Aq !~ q̄$G5

a ,$G5
a ,B%%q !&02

T2

48fp
2 ^~ q̄$G5

a ,A%q !~ q̄$G5
a ,B%q !&0 , (319)
where A ,B are arbitrary flavor-spin-color matrices and
G5

a5tag5 . Using this result, we obtain the instanton
density at low temperature

n~r ,T !5n~r!S 4
3

p2r3D 2F ^K1&0

1
4 S 12

T2

6fp
2 D

2^K2&0

1
12 S 11

T2

6fp
2 D G , (320)

where we have defined the two operators (t are isospin
matrices)

K15q̄LqLq̄LqL1
3
32

q̄LlaqLq̄LlaqL

2
9

128
q̄LsmnlaqLq̄LsmnlaqL , (321)
K25q̄Lt iqLq̄Lt iqL1
3
32

q̄Lt ilaqLq̄Lt ilaqL

2
9

128
q̄Lsmnt ilaqLq̄Lsmnt ilaqL . (322)

Although the vacuum expectation values of these two
operators are unknown, it is clear that (barring unex-
pected cancellations) the T dependence should be
rather weak, most likely inside the range n5n0„1
6T2/(6fp

2 )…. Furthermore, if one estimates the expecta-
tion values using the factorization assumption (166), the
T dependence cancels to order T2/fp

2 .
Summarizing the last two sections, we conclude that

the instanton density is expected to be essentially con-
stant below the phase transition, but exponentially sup-
pressed at large temperature. We shall explore the
physical consequences of this result in the remainder of
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this section. Numerical evidence for our conclusions that
comes from lattice simulations will be presented in Sec.
VII.D.

4. Instanton interaction at finite temperature

In order to study an interacting system of instantons
at finite temperature, we need to determine the bosonic
and fermionic interaction between instantons at TÞ0.
This subject was studied by Diakonov and Mirlin (1988)
and later, in much greater detail, by Shuryak and Ver-
baarschot (1991), whom we follow here. As for T50,
the gluonic interactions between an instanton and an
anti-instanton is defined as S int5S@AIA#22S0 , where
we have to specify an ansatz AIA for the gauge potential
of the IA configuration. The main difficulty at TÞ0 is
that Lorenz invariance is lost, and the interaction de-
pends on more variables: the spatial and temporal sepa-
ration r ,t of the instantons, the sizes rI ,rA , the relative
orientation matrix U , and the temperature T . There are
also more invariant structures that can be constructed
from the relative orientation vector um . In the case of
color SU(2), we have

SIA5s01s1~u•R̂ !21s2~u•R̂ !4

1s3„u22~u•R̂ !22u4
2
…

1s4„u22~u•R̂ !22u4
2
…

2

1s5~u•R̂ !2
„u22~u•R̂ !22u4

2
…, (323)

where si5si(r ,t ,rI ,rA ,b). Because of the reduced
symmetry of the problem, it is difficult to implement the
streamline method. Instead, we shall study the interac-
tion in the ratio ansatz. The gauge-field potential is
given by a straightforward generalization of Eq. (141).
Except for certain limits, the interaction cannot be ob-
tained analytically. We therefore give a parametrization
of the numerical results obtained by Shuryak and Ver-
baarschot (1991):

SIA5
8p2

g2 H 4.0

~r212.0!2

b2

b215.21
uuu2

2F 1.66

~111.68r2!3 1
0.72 log~r2!

~110.42r2!4G b2

b210.75
uuu2

1F2
16.0

~r212.0!2 1
2.73

~110.33r2!3G
3

b2

b210.24111.50r2/~111.14r2!
uu•R̂u2

10.36 logS 11
b

r D 1

~110.013r2!4

1
b211.73

3~ uuu22uu•R̂u22uu4u2!J . (324)

This parametrization is shown in Fig. 27. We observe
that the qualitative form of the interaction does not
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change, but it becomes more short range as the tempera-
ture increases. This is a consequence of the core in the
instanton gauge field discussed above. At temperatures
T,1/(3r) the interaction is essentially isotropic. As we
shall see below, this is not the case for the fermionic
matrix elements.

The fermion determinant is calculated from the over-
lap matrix elements TIA with the finite-temperature,
zero-mode wave functions. Again, the orientational de-
pendence is more complicated at TÞ0. We have

TIA5u4f11uW • r̂ f2 (325)

where f i5f i(r ,t ,rI ,rA ,b). The asymptotic form of TIA
for large temperatures b→0,R→` can be determined
analytically. The result is (Khoze and Yung, 1991;
Shuryak and Verbaarschot, 1991)

f1
as5i

p2

b
sinS pt

b D expS 2
pr

b D , (326)

f2
as5i

p2

b
cosS pt

b D expS 2
pr

b D . (327)

FIG. 27. Instanton/anti-instanton interaction at finite tempera-
ture: (a), the pure gauge interaction in units of S0 as a function
of the spatial separation in units of r. The temperature is given
in MeV for r50.33 fm. (b) the fermionic overlap matrix ele-
ment TIA for spatial separation r ; (c) same element for tem-
poral separation t.
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A parametrization of the full result is shown in Fig. 27
(Schäfer and Shuryak, 1996b). The essential features of
the result can be seen from the asymptotic form [Eqs.
(326) and (327)]: At large temperature, TIA is very an-
isotropic. The matrix element is exponentially sup-
pressed in the spatial direction and periodic along the
temporal axis. The exponential decay in the spatial di-
rection is governed by the lowest Matsubara frequency
pT . The qualitative behavior of TIA has important con-
sequences for the structure of the instanton liquid at T
Þ0. In particular, the overlap matrix element favors the
formation of instanton/anti-instanton molecules ori-
ented along the time direction.

These configurations were studied in greater detail by
Velkovsky and Shuryak (1996). These authors calculate
the IA partition function (150) from the bosonic and
fermionic interaction at finite temperature. The integra-
tion over the collective coordinates was performed as
follows: The point r50 (same position in space) and the
most attractive relative orientation (U51, cos u51) are
maxima of the partition function, so one can directly use
the saddle-point method for 10 integrals out of 11 (three
over relative spatial distance between the centers and
over seven relative orientation angles). The remaining
integral over the temporal distance t is more compli-
cated and has to be done numerically.

In Fig. 28(a) we show the dependence of the overlap
matrix element TIA on t for T5Tc , r50, and U51.
Even at Tc , TIA does not have a maximum at the sym-
metric point t51/(2T), but a minimum. However, when

FIG. 28. Mean-field results at finite temperature, from Velk-
ovsky and Shuryak, 1996. (a) Fermionic overlap matrix ele-
ment TIA(t ,r50, T5Tc) as a function of the distance t be-
tween the centers of the instanton and anti-instanton in the
time direction; (b) Same for the partially integrated partition
function Zmol8 5*d10VTIA

2Nfe2S int (Z is not yet integrated over
Matsubara time) at different temperatures T5(0.6–1.0)Tc , in
steps of DT50.04Tc . The dashed line shows the behavior of
TIA . (c) Fermionic overlap matrix element after integration
over Matsubara time; (d) partition function after integration
over Matsubara time.
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one includes the bosonic interaction and the pre-
exponential factor from taking into account fluctuations
around the saddle point, the result looks different. The
partition function after integrating over 10 of the 11 col-
lective coordinates is shown in Fig. 28(b) for tempera-
tures in the range (0.621.0)Tc . We observe that there is
a maximum in the partition function at the symmetric
point t51/(2T) if the temperature is bigger than
Tmolec.0.2r.120 MeV. The temperature dependence
of the partition function integrated over all variables is
shown in Figs. 28(c) and 28(d).

This means that there is a qualitative difference be-
tween the status of instanton/anti-instanton molecules at
low and high (T.Tmolec) temperatures. At low tem-
peratures, saddle points in the instanton/anti-instanton
separation exist only if the collective coordinates are
analytically continued into the complex plane50 (as in
Sec. II.A). At high temperatures there is a real saddle
point in the middle of the Matsubara box @t51/(2T)# ,
which gives a real contribution to the free energy. It is
important that this happen close to the chiral phase tran-
sition. In fact, we shall argue that the phase transition is
caused by the formation of these molecules.

B. Chiral symmetry restoration

1. Introduction to QCD phase transitions

Before we come to a detailed discussion of the instan-
ton liquid at finite temperature, we should like to give a
brief summary of what is known about the phase struc-
ture of QCD at finite temperature. It is generally be-
lieved that at high temperature (or density) QCD under-
goes a phase transition from hadronic matter to the
quark-gluon plasma. In the plasma phase, color charges
are screened (Shuryak, 1978a) rather then confined, and
chiral symmetry is restored. At sufficiently high tem-
perature, perturbation theory should be applicable, and
the physical excitations are quarks and gluons. In this
case, the thermodynamics of the plasma are governed by
the Stefan-Boltzmann law, just like ordinary blackbody
radiation.

This basic scenario has been confirmed by a large
number of lattice simulations. As an example, we show
the equation of state for Nf52 (Kogut-Susskind) QCD
in Fig. 29 (Blum et al., 1995). The transition temperature
is Tc(Nf52).150 MeV. The energy density and pres-
sure are small below the phase transition, but the energy
density rises quickly to its perturbative (Stefan-
Boltzmann) value. The pressure, on the other hand, lags
behind and remains small up to T.2Tc .

In Fig. 29 the energy density and pressure are mea-
sured with respect to the perturbative vacuum. How-
ever, we have repeatedly emphasized that in QCD there
is a nonperturbative vacuum energy density (the bag
pressure) even at T50. In order to compare a noninter-

50The two maxima at t.r and t.3r in Fig. 28(a) are not
really physical; they are related to the presence of a core in the
ratio ansatz interaction.
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acting gas of quarks and gluons with the hadronic phase,
we have to shift the pressure in the high-T phase by this
amount, pQGP→pQGP2B . Since the pressure from ther-
mal hadrons below Tc is small, a rough estimate of the
transition temperature can be obtained from the re-
quirement that the (shifted) pressure in the plasma
phase be positive, pQGP.0. From this inequality we ex-
pect the plasma phase to be favored for T.Tc
5@(90B)/(Ndp2)#1/4, where Nd is the effective number
of degrees of freedom in the quark-gluon-plasma phase.
For Nf52 we have Nd537 and Tc.180 MeV.

Lattice simulations indicate that in going from
quenched QCD to QCD with two light flavors the tran-
sition temperature drops by almost a factor of two, from
Tc(Nf50).260 MeV to Tc(Nf52).150 MeV. The
number of degrees of freedom in the plasma phase, on
the other hand, increases only from 16 to 37 (and Tc
does not vary much with Nd , Tc;Nd

21/4). This implies
that there are significant differences between the pure
gauge and unquenched phase transitions.

In particular, the low transition temperature observed
for Nf52,3 suggests that the energy scales are quite dif-
ferent. We have already emphasized that the bag pres-
sure is directly related to the gluon condensate
(Shuryak, 1978b). This relation was studied in greater
detail by Deng (1989), Adami, Hatsuda, and Zahed
(1991), and Koch and Brown (1993). From the canonical
energy-momentum tensor and the trace anomaly, the
gluonic contributions to the energy density and pressure
are related to the electric- and magnetic-field strengths,

e5
1
2 ^B22E2&2

g2b

128p2 ^E21B2&, (328)

p5
1
6 ^B22E2&1

g2b

128p2 ^E21B2&. (329)

Using the available lattice data one finds that in pure
gauge theory the gluon condensate essentially disap-
pears in the high-temperature phase, while in full QCD
(Nf52,3) about half of the condensate remains. G.
Brown has referred to this part of the gluon condensate
as the ‘‘hard glue’’ or ‘‘epoxy.’’ It plays an important
role in keeping the pressure positive despite the low
transition temperature.

More general information on the nature of the phase

FIG. 29. Equation of state for Nf52 QCD with Kogut-
Susskind fermions, from Blum et al., 1995.
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transition is provided by universality arguments. For this
purpose, we have to identify an order parameter that
characterizes the transition. In QCD, there are two lim-
its in which this can be achieved. For infinitely heavy
quarks, the Polyakov line (Polyakov, 1978) provides an
order parameter for the deconfinement transition, while
for massless quarks the fermion condensate is an order
parameter for spontaneous chiral symmetry breaking.
The Polyakov line is defined by

^L~xW !&5K P expS iE
0

b

dtA0~xW ,t! D L , (330)

which can be interpreted as the propagator of a heavy
quark. The free energy of a single static quark (minus
the free energy of the vacuum) is given by Fq2F05
2T log(u^L(xW)&u). For ^L&50, the free energy of an iso-
lated quark is infinite, and the theory is in the confining
phase. For ^L&Þ0 the free energy is finite, and quarks
are screened rather than confined.

The Polyakov line has a nontrivial symmetry. Under
gauge transformations in the center of the gauge group,
ZNc

,SU(Nc), local observables are invariant but the
Polyakov line picks up a phase L→zL with zPZNc

.
The deconfinement transition was therefore related to
spontaneous breakdown of the ZNc

center symmetry.
Following Landau, long wave excitations near the phase
transition should be governed by an effective ZNc

sym-
metric Lagrangian for the Polyakov line (Svetitsky and
Yaffe, 1982). Since long-range properties are deter-
mined by the lowest Matsubara modes, the effective ac-
tion is defined in three dimensions. For Nc52, this
means that the transition is in the same universality class
as the d53 Ising model, which is known to have a
second-order phase transition. For Nc>3, on the other
hand, we expect the transition to be first order.51 These
expectations are supported by lattice results.

For massless quarks, chiral symmetry is exact, and the
quark condensate ^q̄q& provides a natural order param-
eter. The symmetry of the order parameter is deter-
mined by the transformation properties of the matrix
Uij5^q̄ iqj&. For Nf52 flavors, this symmetry is given by
SU(2)3SU(2)5O(4), so the transition is governed by
the effective Lagrangian for a four-dimensional vector
field in three dimension (Pisarski and Wilczek, 1984;
Wilczek, 1992; Rajagopal and Wilczek, 1993). The O(4)
Heisenberg magnet is known to have a second-order
phase transition, and the critical indices have been de-
termined from both numerical simulations and the e ex-
pansion. For Nf>3, however, the phase transition is pre-
dicted to be first order.

From these arguments, one expects the schematic
phase structure of QCD in the mud2ms (with mud
[mu5md) plane to look as shown in Fig. 30 (Brown
et al., 1990; Iwasaki et al., 1996). The upper right-hand
corner corresponds to the first-order pure gauge phase

51Under certain assumptions, the Nc.3 phase transition can
be second order; see Pisarski and Tytgat (1997).
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transition. Presumably, this first-order transition extends
to lower quark masses before it ends in a line of second-
order phase transitions. The first-order Nf53 chiral
phase transition is located in the lower left corner and
continues in the mass plane before it ends in another
line of second-order phase transitions. At the left edge
there is a tricritical point where this line meets the line
of Nf52 second-order phase transitions extending down
from the upper left corner.

Simulations suggest that the gap between the first-
order chiral and deconfinement transitions is very wide,
extending from m[mu5md5ms.0.2 GeV to m
.0.8 GeV. This is in line with the arguments given
above, indicating that there are important differences
between the phase transitions in pure gauge and full
QCD. Nevertheless, one should not take this distinction
too literally. In the presence of light quarks, there is no
deconfinement phase transition in a strict, mathematical
sense. From a practical point of view, however, decon-
finement plays an important role in the chiral transition.
In particular, the equation of state shows that the jump
in energy density is dominated by the release of 37
quark and gluon degrees of freedom.

There are many important questions related to the
phase diagram that still have to be resolved. First of all,
we have to determine the location of real QCD (with
two light, one intermediate-mass, and several heavy fla-
vors) on this phase diagram. While results using stag-
gered fermions (Brown et al., 1990) seem to suggest that
QCD lies outside the range of first-order chiral phase
transitions and shows only a smooth crossover, simula-
tions using Wilson fermions (Iwasaki et al., 1991) with
realistic masses find a first-order transition.

A more general problem is to verify the structure of
the phase diagram and to check the values of the critical
indices near second-order transitions. While earlier stud-

FIG. 30. Schematic phase diagram of Nf53 QCD with dy-
namic quark masses mud[mu5md and ms , from Iwasaki
et al., 1996: d, simulations (with Wilson fermions) that found a
first-order transition; o, simulations that found a smooth cross-
over. The (approximate) location of QCD with realistic masses
is shown by a star.
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ies confirmed (within errors) the O(4) values of the
critical indices for the Nf52 chiral transition with both
staggered (Karsch and Laermann, 1994) and Wilson fer-
mions (Iwasaki et al., 1996), more recent work concludes
that 1/d (defined as ^q̄q&Tc

;m1/d) is consistent with zero
(Ukawa, 1997). If this result is correct, it would imply
that there is no Nf52 second-order phase transition,
and the only second-order line in Fig. 30 corresponds to
the boundary of the first-order region, with standard
Ising indices.

Are there any possible effects that could upset the
expected O(4) scenario for the Nf52 transition? One
possibility discussed in the literature is related to the
fate of the U(1)A symmetry at Tc . At zero temperature
the axial U(1)A symmetry is explicitly broken by the
chiral anomaly and instantons. If instantons are strongly
suppressed (Pisarski and Wilczek, 1984) or rearranged
(Shuryak, 1994) at Tc , then the U(1)A symmetry might
effectively be restored at the phase transition. In this
case, the masses of the U(1)A partners of the p,s, the
d ,h8, could become sufficiently small that fluctuations of
these modes would affect the universality arguments
given above. In particular, if there were eight rather
than four light modes at the phase transition, the transi-
tion would be expected to be first order. Whether this is
the correct interpretation of the lattice data remains un-
clear at the moment. We shall return to the question of
U(1)A breaking at finite temperature in Sec. VII.C.3
below. Let us only note that the simulations are very
difficult and that there are several possible artifacts. For
example, there could be problems with the extrapolation
to small masses. Also, first-order transitions need not
have an order parameter, and it is difficult to distinguish
very weak first-order transitions from second-order tran-
sitions.

Completing this brief review of general arguments
and lattice results on the chiral phase transition, let us
also comment on some of the theoretical approaches.
Just as perturbative QCD describes the thermodynamics
of the plasma phase at very high temperature, effective
chiral Lagrangians provide a very powerful tool at low
temperature. In particular, chiral perturbation theory
predicts the temperature dependence of the quark and
gluon condensates as well as of the masses and coupling
constants of light hadrons (Gerber and Leutwyler,
1989). These results are expressed as an expansion in
T2/fp

2 . It is difficult to determine what the range of va-
lidity of these predictions is, but the approach certainly
has to fail as one approaches the phase transition.

The phase transition has also been studied in various
effective models, for example, in the linear sigma model,
the chiral quark model, or the Nambu-Jona-Lasinio
model (Hatsuda and Kunihiro, 1985; Bernard and
Meissner, 1988; Klimt, Lutz, and Weise, 1990). In the
Nambu–Jona-Lasinio model, the chiral transition con-
nects the low-temperature phase of massive constituent
quarks with the high-temperature phase of massless
quarks (but of course not gluons). The mechanism for
the transition is similar to that for a transition from a
superconductor to a normal metal: The energy gain due
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to pairing disappears once a sufficient number of
positive-energy states is excited. We have seen that, at
zero temperature, the instanton liquid leads to a picture
of chiral symmetry breaking which closely resembles the
Nambu–Jona-Lasinio model. Nevertheless, we shall ar-
gue that the mechanism for the phase transition is quite
different. In the instanton liquid, it is the ensemble itself
that is rearranged at Tc . This means not only that we
have nonzero occupation numbers, but also that the ef-
fective interaction itself changes.

Finally, a number of authors have extended random
matrix models to finite temperature and density (Jack-
son and Verbaarschot, 1996; Novak, Papp, and Zahed,
1996; Wettig, Schäfer, and Weidenmüller, 1996). It is im-
portant to distinguish these models from random matrix
methods at T ,m50. In this case, there is evidence that
certain observables,52 like scaled correlations between
eigenvalues of the Dirac operator, are universal and can
be described in terms of suitably chosen random matrix
ensembles. The effects of nonzero temperature and den-
sity, on the other hand, are included in a rather sche-
matic fashion, by putting terms like (pT1im) into the
Dirac operator.53 This procedure is certainly not univer-
sal. From the point of view of the instanton model, the
entries of the random matrix correspond to matrix ele-
ments of the Dirac operator in the zero-mode basis. If
we include the effects of a nonzero m ,T in the schematic
form mentioned above, we assume that at m ,TÞ0 there
are no zero modes in the spectrum. But this is not true.
We have explicitly constructed the zero mode for the
caloron configuration in Sec. VII.A.1, for mÞ0 [see Car-
valho (1980), and Abrikosov (1983)]. As we shall see
below, in the instanton model the phase transition is not
caused by a constant contribution to the overlap matrix
elements, but by specific correlations in the ensemble.

2. The instanton liquid at finite temperature
and IA molecules

In Sec. VII.A.3, we argued that the instanton density
remains roughly constant below the phase transition.
This means that the chiral phase transition has to be
caused by a rearrangement of the instanton ensemble.
Furthermore, we have shown that the gluonic interac-
tion between instantons remains qualitatively un-
changed even at fairly high temperatures. This suggests
that fermionic interactions between instantons drive the
phase transition (Ilgenfritz and Shuryak, 1994; Schäfer
et al., 1995; Schäfer and Shuryak, 1996a).

The mechanism for this transition is most easily un-
derstood by considering the fermion determinant for
one instanton/anti-instanton pair (Schäfer et al., 1995).
Using the asymptotic form of the overlap matrix ele-
ments specified above, we have

52On the other hand, macroscopic observables, like the aver-
age level density (and the quark condensate) are not expected
to be universal.

53See Wettig et al. (1996) for an attempt to model the results
of the instanton liquid in terms of a random matrix ensemble.
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det~D” !;U sin~pTt!

cosh~pTr !
U2Nf

. (331)

This expression is maximal for r50 and t51/(2T),
which is the most symmetric orientation of the
instanton/anti-instanton pair on the Matsubara torus.
Since the fermion determinant controls the probability
of the configuration, we expect polarized molecules to
become important at finite temperature. The effect
should be largest when the IA pairs exactly fit onto the
torus, i.e., 4r.b . Using the zero-temperature value r
.0.33 fm, we get T.150 MeV, close to the expected
transition temperature for two flavors.

In general, the formation of molecules is controlled by
the competition between minimum action, which favors
correlations, and maximum entropy, which favors ran-
domness. Determining the exact composition of the in-
stanton liquid as well as the transition temperature re-
quires the calculation of the full partition function,
including the fermion-induced correlations. We shall do
this using a schematic model in Sec. VII.B.3 and using
numerical simulations in Sec. VII.B.4.

Before we come to this, we should like to study what
physical effects are caused by the presence of molecules.
Qualitatively, it is clear why the formation of molecules
leads to chiral symmetry restoration. If instantons are
bound into pairs, then quarks mostly propagate from
one instanton to the corresponding anti-instanton and
back. In addition to that, quarks propagate mostly along
the imaginary-time direction, so all eigenstates are well
localized in space and no quark condensate is formed.
Another way to see this is by noting that the Dirac op-
erator essentially decomposes into 232 blocks corre-
sponding to the instanton/anti-instanton pairs. This
means that the eigenvalues will be concentrated around
some typical 6l determined by the average size of the
pair, so the density of eigenvalues near l50 vanishes.
We have studied the eigenvalue distribution in a sche-
matic model of random and correlated instantons in
Schäfer et al. (1995), and a random matrix model of the
transition based on these ideas was discussed by Wettig
et al. (1996).

The effect of molecules on the effective interaction
between quarks at high temperature was studied by
Schäfer et al. (1995), using methods similar to those in-
troduced in Sec. IV.F. In order to determine the inter-
action in a quark-antiquark (meson) channel with given
quantum numbers, it is convenient to calculate both the
direct and the exchange terms and Fierz-rearrange the
exchange term into an effective direct interaction. The
resulting Fierz symmetric Lagrangian reads (Schäfer
et al., 1995)

Lmol sym5GH 2

Nc
2 @~ c̄tac!22~ c̄tag5c!2#

2
1

2Nc
2 @~ c̄tagmc!21~ c̄tagmg5c!2#

1
2

Nc
2 ~ c̄gmg5c!2J 1L8 , (332)
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with the coupling constant

G5E n~r1 ,r2!dr1dr2

1

8TIA
2 ~2pr1!2~2pr2!2. (333)

Here, L8 is the color-octet part of the interaction and ta

is a four-vector with components (tW ,1). Also, n(r1 ,r2)
is the tunneling probability for the IA pair and TIA the
corresponding overlap matrix element. The effective La-
grangian (332) was determined by averaging over all
possible molecule orientations, with the relative color
orientation cos(u)51 fixed. Near the phase transition,
molecules are polarized in the temporal direction, Lor-
entz invariance is broken, and vector interactions are
modified according to (c̄gmGc)2→4(c̄g0Gc)2.

Like the zero-temperature effective Lagrangian (111),
the interaction (332) is SU(2)3SU(2) symmetric. Since
molecules are topologically neutral, the interaction is
also U(1)A symmetric. This does not mean that U(1)A
symmetry is restored in the molecular vacuum. Even a
very small O(mNf) fraction of random instantons will
still lead to U(1)A breaking effects of order O(1) (see
Sec. VII.C.3). If chiral symmetry is restored, the effec-
tive interaction (332) is attractive not only in the pion
channel, but also in the other scalar-pseudoscalar chan-
nels s, d, and h8. Furthermore, unlike the ’t Hooft in-
teraction, the effective interaction in the molecular
vacuum also includes an attractive interaction in the vec-
tor and axial-vector channels. If molecules are unpolar-
ized, the corresponding coupling constant is a factor of 4
smaller than the scalar coupling. If they are fully polar-
ized, only the longitudinal vector components are af-
fected. In fact, the coupling constant is equal to the sca-
lar coupling. A more detailed study of the quark
interaction in the molecular vacuum was performed by
Schäfer et al. (1995) and Schäfer and Shuryak (1995b),
in which hadronic correlation functions in the spatial
and temporal direction were calculated in the schematic
model mentioned above. We shall discuss the results be-
low.

3. Mean-field description at finite temperature

In the following two sections we wish to study the
statistical mechanics of the instanton liquid at finite tem-
perature. This is necessary not only in order to study
thermodynamic properties of the system, but also to de-
termine the correct ensemble for calculations of had-
ronic correlation functions. We first extend the mean-
field calculation of Sec. IV.F to finite temperature. In
the next section we shall study the problem numerically,
using the methods introduced in Sec. V.B.

For pure gauge theory, the variational method was
extended to finite temperature by Diakonov and Mirlin
(1988) and Kanki (1988). The gluonic interaction be-
tween instantons changes very little with temperature,
so we shall ignore this effect. In this case, the only dif-
ference as compared to zero temperature is the appear-
ance of the perturbative suppression factor (308) (for
T.Tc , although Diakonov and Mirlin used it for all T).
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Since the interaction is unchanged, so is the form of the
single-instanton distribution,

m~r!5n~r ,T !expF2bg2NT

V3
r2r2G , (334)

where n(r ,T) is the semiclassical result (308) and the
four-dimensional volume is given by V5V3 /T . The T
dependence of the distribution functions modifies the
self-consistency equations for r2 and N/V . Following
Diakonov and Mirlin (1988), we can expand the coeffi-
cient B(l) in (308) to order T2: n(r ,T)

.exp@2 1
3( 11

6 Nc21)(prT)2#n(r,T50). In this case, the
self-consistency condition for the average size is given
by

r25nF1
3 S 11

6
Nc21 Dp2T21

Nbg2

V3
Tr2G21

. (335)

For T50, this gives r25@(nV)/(bg2N)#1/2 as before,
while for large T.(pr)21 we have r2;1/T2. The in-
stanton density follows from the self-consistency equa-
tion for m0 . For large T we have

N/V5CNc
b2NcL4G~n!F1

3 S 11
6

Nc21 Dp2
T2

L2G2n

, (336)

so that N/V;1/Tb24, which is what one would expect
from simply cutting the size integration at r.1/T .

The situation is somewhat more interesting if one ex-
tends the variational method to full QCD (Ilgenfritz and
Shuryak, 1989; Nowak, Verbaarschot, and Zahed,
1989c). In this case, an additional temperature depen-
dence enters through the T dependence of the average
fermionic overlap matrix elements. More importantly,
the average determinant depends on the instanton size,

det~D” !5)
I

~rmdet!,

mdet5r3/2F1
2

I~T !E drn~r!rG1/2

, (337)

where I(T) is the angle and distance-averaged overlap
matrix element TIA . The additional r dependence modi-
fies the instanton distribution (334) and introduces an
additional nonlinearity into the self-consistency equa-
tion. As a result, the instanton density at large T de-
pends crucially on the number of flavors. For Nf50,1,
the density drops smoothly with N/V;1/T2a and a
5(b2412Nf)/(22Nf) for large T . For Nf52, the in-
stanton density goes to zero continuously at the critical
temperature Tc , whereas for Nf.2 the density goes to
zero discontinuously at Tc . This behavior can be under-
stood from the form of the gap equation for the quark
condensate. We have ^q̄q&;const^q̄q&Nf21, which, for
Nf.2, cannot have a solution for arbitrarily small ^q̄q&.

In the mean-field approximation, the instanton en-
semble remains random at all temperatures. This of
course implies that instantons cannot exist above Tc .
We have already argued that this is not correct, and that
instantons can be present above Tc , provided they are
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bound in molecules (or larger clusters). In order to in-
clude this effect in a variational calculation, Ilgenfritz
and Shuryak introduced a ‘‘cocktail’’ model (Ilgenfritz
and Shuryak, 1989; 1994), in which the instanton en-
semble consists of a random and a molecular compo-
nent. The composition of the instanton liquid is deter-
mined by minimizing the free energy with respect to the
two concentrations.

As above, the distribution functions for random in-
stantons is given by

m~r!5n~r!exp@2kr2~ra
2na12rm

2 nm!#~mdetr!Nf,
(338)

where na ,m are the densities of the random and molecu-
lar contributions and r2

a ,m are the corresponding aver-
age radii. The parameter k5bg2 characterizes the aver-
age repulsion between instantons. The distribution of
instantons bound in molecules is given by

m~r1 ,r2!5n~r1!n~r2!

3exp@2k~r1
21r2

2!~ra
2na12rm

2 nm!#

3^~TIATIA* !Nf&, (339)

where Im(Nf ,T)[^(TIATIA* )Nf& is the average determi-
nant for an instanton/anti-instanton pair, with the rela-
tive orientation cos u51 fixed. Summing the contribu-
tions from both the random and the molecular
components, we find that the self-consistency condition
for the instanton size becomes

rm
2

ra
2

5
a

b
,

1

k
5

2~ra
2!2na

b
1

4~rm
2 !2nm

a
, (340)

where a5b/221 and b5b/213Nf/422. Using this re-
sult, one can eliminate the radii and determine the nor-
malizations:

m0,m5
A

@na1~2a/b!nm#a , A5
Im~Nf ,T !C2G2~a!

~4kb!a ,

(341)

m0,a5
Bna

Nf/2

@na1~2a/b!nm#b/21Nf/8
,

B5
CG~b!

~2k!b S I~T !

2 D Nf/2S b

k D Nf/82b/2

. (342)

Finally, the free energy is given by

F52
1

V4
log Z5

Na

V4
logS em0,aV4

Na
D

1
Nm

V4
logS em0,mV4

Nm
D , (343)

and the instanton density is determined by minimizing F
with respect to the densities na ,m of random and corre-
lated instantons. The resulting free energy determines
the instanton contribution to the pressure p52F and
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the energy density e52p1T(]p/]T). In order to pro-
vide a more realistic description of the thermodynamics
of the chiral phase transition, Ilgenfritz and Shuryak
added the free energy of a noninteracting pion gas in the
broken phase and a quark-gluon plasma in the symmet-
ric phase.

Minimizing the free energy gives a set of rather cum-
bersome equations. It is clear that in general there will
be two phases, a low-temperature phase containing a
mixture of molecules and random instantons, and a
chirally restored high-temperature phase consisting of
molecules only. The density of random instantons is sup-
pressed as the temperature increases because the aver-
age overlap matrix element decreases. Molecules, on the
other hand, are favored at high T , because the overlap
for the most attractive orientation increases. Both of
these results are simple consequences of the anisotropy
of the fermion wave functions.

Numerical results for Nf52 are shown in Fig. 31. In
practice, the average molecular determinant Im(Nf ,T)
was calculated by introducing a core into the IA inter-
action. In order to assess the uncertainty involved, we
show the results for two different cores, Rc5r and 2r.
The overall normalization was fixed such that N/V51.4
fm24 at T50. Figure 31 shows that the random compo-
nent dominates the broken phase and that the density of
instantons is only weakly dependent on T below the
phase transition. The number of molecules is small for

FIG. 31. Chiral restoration phase transitions for two massless
flavors and two different core parameters Rc . The upper panel
shows the T dependence of the densities: solid curve, na ; dot-
ted curve, nm . In the middle panel the T dependence is shown:
solid curve, the total pressure p ; dotted curve, the contribu-
tions of the pion gas/quark-gluon plasma; dash-dotted curve,
contribution of instantons. The lower panel shows the energy
density (solid curve), which is modified by the instanton con-
tribution (dash-dotted curve).
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T,Tc but jumps up at the transition. The total instan-
ton density above Tc , (N/V)52nm turns out to be
comparable to that at T50.

The importance of the molecular component above
Tc can be seen from the temperature dependence of the
pressure. For T5(122)Tc , the contribution of mol-
ecules (dash-dotted line) is crucial in order to keep the
pressure positive. This is the same phenomenon we al-
ready mentioned in our discussion of the lattice data. If
the transition temperature is as low as Tc5150 MeV,
then the contribution of quarks and gluons is not suffi-
cient to match the T50 bag pressure. The lower panel
in Fig. 31 shows the behavior of the energy density. The
jump in the energy density at Tc is De.(0.5
21.0) GeV/fm3, depending on the size of the core. Al-
though most of the latent heat is due to the liberation of
quarks and gluons, a significant part is generated by
molecules.

4. Phase transitions in the interacting instanton model

In this section, we go beyond this schematic model
and study the phase transition using numerical simula-
tions of the interacting instanton liquid (Schäfer and
Shuryak, 1996a). This means that we do not have to
make any assumptions about the nature of the impor-
tant configurations (molecules, larger clusters,...), nor do
we have to rely on variational estimates to determine
their relative importance. Neither, are we limited to a
simple two-phase picture with a first-order transition.

In Fig. 32 we show the instanton density, free energy,
and quark condensate for the physically relevant case of
two light and one intermediate-mass flavor. In the ratio
ansatz the instanton density at zero temperature is given
by N/V50.69L4. Taking the density to be 1 fm24 at T
50 fixes the scale parameter L5222 MeV and deter-
mines the absolute units. The temperature dependence
of the instanton density54 is shown in Fig. 32(a). It shows
a slight increase at small temperatures, starts to drop
around 115 MeV, and becomes very small for T
.175 MeV. The free energy closely follows the behav-
ior of the instanton density. This means that the
instanton-induced pressure first increases slightly, but
then drops and eventually vanishes at high temperature.
This behavior is expected for a system of instantons, but
if all fluctuations are included, the pressure should al-
ways increase as a function of the temperature.

The temperature dependence of the quark condensate
is shown in Fig. 32(c). At temperatures below T
5100 MeV it is practically temperature independent.
Above that, ^q̄q& starts to drop and becomes very small
above the critical temperature T.140 MeV. Note that
at this point the instanton density is N/V50.6 fm24,
slightly more than half the zero-temperature value. This

54The instanton density is of course sensitive to our assump-
tions concerning the role of the finite-temperature suppression
factor. In practice, we have chosen a functional form that in-
terpolates between no suppression below Tc and full suppres-
sion above Tc , with a width DT50.3Tc .
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means that the phase transition is indeed caused by a
transition within the instanton liquid, not by the disap-
pearance of instantons. This point is illustrated in Fig.
33, which shows projections of the instanton liquid at
T574 MeV and T5158 MeV, below and above the
phase transition. The figures are projections of a cube
V5(3.0L21)33T21 into the 3-4 plane. The positions of
instantons and anti-instantons are denoted by 1/2 sym-
bols. The lines connecting them indicate the strength of
the fermionic overlap (‘‘hopping’’) matrix elements. Be-
low the phase transition, there is no clear pattern. In-
stantons are unpaired, part of molecules or larger clus-
ters. Above the phase transition, the ensemble is
dominated by polarized instanton/anti-instanton mol-
ecules.

Figure 34 shows the spectrum of the Dirac operator.
Below the phase transition it has the familiar flat shape
near the origin and extrapolates to a nonzero density of
eigenvalues at l50. Near the phase transition the eigen-
value density appears to extrapolate to 0 as l→0, but
there is a spike in the eigenvalue density at l50. This
spike contains the contribution from unpaired instan-
tons. In the high-temperature phase, we expect the den-
sity of random instantons to be O(mNf), giving a con-

FIG. 32. Instanton density, free energy, and quark condensate
as a function of the temperature in the instanton liquid with
two light and one intermediate mass flavor, from Schäfer and
Shuryak, 1996a. The instanton density is given in units of the
zero-temperature value n051 fm24, while the free energy and
the quark condensate are given in units of the Pauli-Vilars
scale parameter, L5222 MeV.
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tribution of the form r(l);mNfd(l) to the Dirac
spectrum. These eigenvalues do not contribute to the
quark condensate in the chiral limit, but they are impor-
tant for U(1)A-violating observables.

The nature of the phase transition for different num-
bers of flavors and values of the quark masses was stud-
ied by Schäfer and Shuryak (1996a). The order of the
phase transition is most easily determined by studying
order-parameter fluctuations near Tc . For a first-order
transition one expects two (meta) stable phases. The sys-
tem tunnels back and forth between the two phases,
with tunneling events signaled by sudden jumps in the
order parameter. Near a second-order phase transition,
on the other hand, the order parameter shows large fluc-
tuations. These fluctuations can be studied in greater de-
tail by measuring the scaling behavior of the mean-
square fluctuations (the scalar susceptibility) with the
current mass and temperature. Universality makes defi-
nite predictions for the corresponding critical exponents.
The main conclusion in Schäfer and Shuryak (1996a)
was that the transition in QCD is consistent with a
nearby (Nf52) second-order phase transition with
O(4) critical indices. For three flavors with physical
masses, the transition is either very weakly first order or
just a rapid crossover. As the number of flavors is in-
creased, the transition becomes more strongly first or-
der.

FIG. 33. Typical instanton ensembles for T575 and 158 MeV,
from Schäfer and Shuryak, 1996a. The plots show projections
of a four-dimensional (3.0L21)33T21 box into the 3-4 plane.
The positions of instantons and anti-instanton are indicated by
1 and 2 symbols: Dashed lines, fermionic overlap matrix ele-
ments TIAL.0.40; solid lines, matrix elements TIA.0.56;
heavy solid lines, matrix elements TIA.0.64.
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
The results of simulations with55 Nf52,3,5 flavors
with equal masses are summarized in the phase diagram
35 (Schäfer and Shuryak, 1996a). For Nf52 there is a
second-order phase transition which turns into a line of
first-order transitions in the m-T plane for Nf.2. If the
system is in the chirally restored phase (T.Tc) at m
50, we find a discontinuity in the chiral order parameter
if the mass is increased beyond some critical value.
Qualitatively, the reason for this behavior is clear. While
increasing the temperature increases the role of correla-
tions caused by fermion determinant, increasing the
quark mass has the opposite effect. We also observe that
increasing the number of flavors lowers the transition
temperature. Again, increasing the number of flavors
means that the determinant is raised to a higher power,
so fermion-induced correlations become stronger. For
Nf55 we find that the transition temperature drops to
zero and the instanton liquid has a chirally symmetric

55The case Nf54 is omitted because the contribution of
small-size (semiclassical) instantons to the quark condensate is
very small and the precise location of the phase boundary hard
to determine.

FIG. 34. Spectrum of the Dirac operator for different tem-
peratures T575, 130, and 158 MeV, from Schäfer and
Shuryak, 1996a. Eigenvalues are given in units of the scale
parameter. The normalization of the spectra is arbitrary (but
identical).
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ground state, provided the dynamic quark mass is less
than some critical value.

Studying the instanton ensemble more closely shows
that, in this case, all instantons are bound into mol-
ecules. The molecular vacuum at T50 and large Nf has
a somewhat different theoretical status from that of the
molecular vacuum for small Nf and large T . In the high-
temperature phase, large instantons are suppressed and
long-range interactions are screened. This is not the case
at T50 and Nf large, where these effects may contrib-
ute to chiral symmetry breaking (see the discussion in
Sec. IX.D).

Unfortunately, little is known about QCD with differ-
ent numbers of flavors from lattice simulations. There
are some results on the phase structure of large-Nf QCD
that we shall discuss in Sec. IX.D. In addition to that,
there are some recent data by the Columbia group
(Chen and Mawhinney, 1997) on the hadron spectrum
for Nf54. The most important result is that chiral
symmetry-breaking effects were found to be drastically
smaller than those for Nf50,2. In particular, the mass
splittings between chiral partners such as p2s,
r2a1 , N( 1

2
1)2N( 1

2
2), were found to be four to five

times smaller. This agrees well with what was found in
the interacting instanton model, but more work in this
direction is certainly needed.

C. Hadronic correlation functions at finite temperature

1. Introduction

Studying the behavior of hadronic correlation func-
tions at finite temperature is of great interest in connec-
tion with possible modifications of hadronic properties
in hot hadronic matter. In addition to that, the structure
of correlation functions at intermediate distances di-
rectly reflects on changes in the interaction between
quarks and gluons. There is very little phenomenological
information on this subject, but the problem has been
studied extensively in the context of QCD sum rules

FIG. 35. Phase diagram of the instanton liquid in the T2m
plane for different numbers of flavors. The open and closed
squares show points on the phase diagram where we have per-
formed simulations. For Nf52, the open squares mark points
where we found large fluctuations of the order parameter, in-
dicative of a nearby second-order phase transition (marked by
a star). In the cases Nf53 and 5, open and closed squares
mark points in the chirally broken and restored phases, respec-
tively. The (approximate) location of the discontinuity is
shown by the dashed line.
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(Bochkarev and Shaposhnikov, 1986; Eletskii and Ioffe,
1993; Hatsuda, Koike, and Lee, 1993). At finite tempera-
tures, however, the predictive power of QCD sum rules
is very limited, because additional assumptions about
the temperature dependence of the condensates and the
shape of the spectrum are needed. There is an extensive
literature on spacelike screening masses on the lattice,
but only very limited information on temporal, point-to-
point correlation functions (Boyd et al., 1994).

At finite temperature, the heat bath breaks Lorenz
invariance, and correlation functions in the spatial and
temporal direction are independent. In addition, me-
sonic and baryonic correlation functions have to obey
periodic or antiperiodic boundary conditions, respec-
tively, in the temporal direction. In the case of spacelike
correlators, one can still go to large x and filter out the
lowest exponents known as screening masses. While
these states are of theoretical interest and have been
studied in a number of lattice calculations, they do not
correspond to poles of the spectral function in energy. In
order to look for real bound states, one has to study
temporal correlation functions. However, at finite tem-
peratures the periodic boundary conditions restrict the
useful range of temporal correlators to the interval t
,1/(2T) (about 0.6 fm at T5Tc). This means that there
is no direct procedure for extracting information about
the ground state. The underlying physical reason is
clear: at finite temperatures excitations are always
present. Below we explore how much can be learned
from temporal correlation functions in the interacting
instanton liquid. In the next section we also present the
corresponding screening masses.

2. Temporal correlation functions

Finite-temperature correlation functions in the tem-
poral direction are shown in Fig. 36. These correlators
were obtained from simulations of the interacting in-
stanton liquid (Schäfer and Shuryak, 1995b). Correlators
in the random-phase approximation were studied by
Velkovsky and Shuryak (1996). The results, shown in
Fig. 36, are normalized to the corresponding noninter-
acting correlators, calculated from the free TÞ0 propa-
gator (300). Figures 36(a) and 36(b) show the pion and
sigma correlators for different temperatures below
(open symbols) and above (closed symbols) the chiral
phase transition. The normalized p and s correlators are
larger than one at all temperatures, implying that there
is an attractive interaction even above Tc . In particular,
the value of the pion correlator at t.0.6 fm, which is
not directly affected by the periodic boundary condi-
tions, is essentially temperature independent. This sug-
gests that there is a strong (p,s)-like mode present even
above Tc . Schäfer and Shuryak (1996b) tried to deter-
mine the properties of this mode from a simple fit to the
measured correlation function, similar to the T50 pa-
rametrization (278). Above Tc , the mass of the p-like
mode is expected to grow, but the precise value is hard
to determine. The coupling constant is lp.1 fm22 at T
5170 MeV, as compared to lp.3 fm22 at T50.
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FIG. 36. Temporal correlation functions at
TÞ0, normalized to free thermal correlators:
(a) the pseudoscalar (pion) correlator; (b) the
isoscalar scalar s; (c) the isovector vector (r);
and (d) the axial vector (a1). Correlators in
the chirally symmetric phase (T>Tc) are
shown as solid points, below Tc as open
points. n, T50.43Tc ; h, T50.60Tc ; ˝, T
50.86Tc ; m, T51.00Tc ; j, T51.13Tc .
The T dependence of the s correlator is more pro-
nounced because there is a disconnected contribution
which tends to the square of the quark condensate at
large distance. Above Tc , chiral symmetry is restored
and the s and p correlation functions are equal up to
small corrections due to the current quark masses.

Vector and axial-vector correlation functions are
shown in Figs. 36(c) and 36(d). At low T the two are
very different, while above Tc they become indistin-
guishable, again in accordance with chiral symmetry res-
toration. In the vector channel, the changes in the cor-
relation function indicate the ‘‘melting’’ of the
resonance contribution. At the lowest temperature,
there is a small enhancement in the correlation function
at t.1 fm, indicating the presence of a bound state
separated from the two-quark (or two-pion) continuum.
However, this signal disappears at T.100 MeV, imply-
ing that the r meson coupling to the local current be-
comes small.56 This is consistent with the idea that had-
rons ‘‘swell’’ in hot and dense matter. At low
temperature, the dominant effect is mixing between the
vector and axial-vector channels (Dey, Eletsky, and
Ioffe, 1990). In particular, there is a pion contribution to
the vector correlator at finite T , which is most easily
observed in the longitudinal vector channel P44

V (t) [in
Fig. 36 we show the trace Pmm

V (t) of the vector cor-
relator].

56Note, however, that in the instanton model, there is no con-
finement and the amount of binding in the r-meson channel is
presumably small. In full QCD, the r resonance might there-
fore be more stable as the temperature increases.
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Schäfer and Shuryak (1995b) also studied baryon cor-
relation functions at finite temperatures. Because the
different nucleon and delta correlation functions have
different transformation properties under the chiral
SU(2)3SU(2) and U(1)A symmetries, one can distin-
guish different modes of symmetry restoration. The
main possibilities are (i) that all resonances simply dis-
appear, (ii) that all states become massless as T→Tc , or
(iii) that above Tc all states occur in parity doublets. In
the nucleon channel, we find clear evidence for the sur-
vival of a massive nucleon mode. There is also support
for the presence of a degenerate parity partner above
Tc , so the data seem to favor the third possibility.

In summary, we find that correlation functions in
strongly attractive, chiral even channels are remarkably
stable as a function of temperature, despite the fact that
the quark condensate disappears. There is evidence for
the survival of (p,s)-like modes even above Tc . These
modes are bound by the effective quark interaction gen-
erated by polarized instanton molecules [see Eq. (332)].
In channels that do not receive large nonperturbative
contributions at T50 (like the r, a1 , and D), the reso-
nances disappear, and the correlators can be described
in terms of the free-quark continuum (possibly with a
residual ‘‘chiral’’ mass).

3. U(1)A breaking

So far, we have not discussed correlation functions
related to the U(1)A anomaly, in particular the h and h8
channels. A number of authors have considered the pos-
sibility that the U(1)A symmetry is at least partially re-
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stored near the chiral phase transition (Shuryak, 1994;
Huang and Wang, 1996; Kapusta, Kharzeev, and McLer-
ran, 1996). Given the fact that the h82p mass differ-
ence is larger than all other meson mass splittings, any
tendency towards U(1)A restoration is expected to lead
to rather dramatic observable effects. Possible signa-
tures of a hot hadronic phase with partially restored
U(1)A symmetry that might be produced in heavy-ion
collisions are anomalous values of the h/p and h8/p
ratios, as well as an enhancement in the number of low-
mass dilepton pairs from the Dalitz decay of the h8.

In general, we know that isolated instantons disappear
above the chiral phase transition. In the presence of ex-
ternal sources, however, isolated tunneling events can
still occur (see Sec. II.D.2). The density of random in-
stantons above Tc is expected to be O(mNf), but the
contribution of isolated instantons to the expectation
value of the ’t Hooft operator detf(c̄lcR) (and other
U(1)A-violating operators) is of order O(1) (Evans,
Hsu, and Schwetz, 1996; Lee and Hatsuda, 1996). The
presence of isolated zero modes in the spectrum of the
Dirac operator above Tc can be seen explicitly in Fig.
34. The problem was studied in greater detail by Schäfer
(1996), where it was concluded that the number of (al-
most) zero modes above Tc scales correctly with the dy-
namic quark mass and the volume.

A number of groups have measured U(1)A-violating
observables at finite temperature on the lattice. Most
work focuses on the the susceptibility xp2xd (Chan-
drasekharan, 1995; Boyd, 1996; Bernard et al., 1997).
Above Tc , when chiral symmetry is restored, this quan-
tity is a measure of U(1)A violation. Most of the pub-
lished results conclude that U(1)A remains broken, al-
though recent results by the Columbia group have
questioned that conclusion57 (Christ, 1996). In any case,
one should keep in mind that all results involve extrapo-
lations to m50, and that both instanton and lattice
simulations suffer from certain artifacts in this limit.

Phenomenological aspects of the U(1)A anomaly at
finite temperature are usually discussed in terms of the
effective Lagrangian (Pisarski and Wilczek, 1984),

L5
1
2

Tr„~]mF!~]mF†!…2Tr„M~F1F†!…

1V~FF†!1c~det F1det F†!, (344)

where F is a meson field in the (3,3) representation of
U(3)3U(3), V(FF†) is a U(3)3U(3) symmetric po-
tential (usually taken be quartic), M is a mass matrix,
and c controls the strength of the U(1)A breaking inter-
action. If the coupling is chosen as c5x top /(12fp

3 ), the

57In addition, it is not clear whether lattice simulations ob-
serve the peak in the spectrum at l50, which is due to isolated
instantons. The Columbia group has measured the valence
mass dependence of the quark condensate, which is a folded
version of the Dirac spectrum (Chandrasekharan, 1995). The
result looks very smooth, with no hint of an enhancement at
small virtuality.
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effective Lagrangian reproduces the Witten-Veneziano
relation fp

2 mh8
2

5x top . In a quenched ensemble, we can
further identify x top.(N/V). The temperature depen-
dence of c is usually estimated from the semiclassical
tunneling amplitude n(r);exp@2(8/3)(prT)2# . As a
result, the strength of the anomaly is reduced by a factor
;5 near Tc . If the anomaly becomes weaker, the eigen-
states are determined by the mass matrix. In that case,
the mixing angle is close to the ideal value u5254.7°
and the nonstrange hNS is almost degenerate with the
pion.

There are several points in this line of argument that
are not entirely correct. The strength of the ’t Hooft
term is not controlled by the topological susceptibility
(x top50 in massless QCD), x top is not proportional to
the instanton density (for the same reason), and, at least
below Tc , the semiclassical estimate for the instanton
density is not applicable. Only above Tc do we expect
instantons to be suppressed. However, chiral symmetry
restoration affects the structure of flavor mixing in the
h2h8 system (see Fig. 37). The mixing between the
strange and nonstrange eta is controlled by the light-
quark condensate, so hNS and hS do not mix above Tc .
As a result, the mixing angle is not close to zero, as it is
at T50, but close to the ideal value. Furthermore, the
anomaly can only affect the nonstrange h, not the
strange one. Therefore, if the anomaly is sufficiently
strong, the hNS will be heavier than the hS .

This phenomenon can also be understood from the
effective Lagrangian (344). The determinant is third or-
der in the fields, so it only contributes to mass terms if
some of the scalar fields have a vacuum expectation
value. Above Tc , only the strange scalar has a vacuum
expectation value, so only light flavors mix, and only the
hNS receives a contribution to its mass from the
anomaly. This effect was studied more quantitatively by
Schäfer (1996). Singlet and octet, as well as strange and
nonstrange, eta correlation functions in the instanton
liquid are shown in Fig. 38. Below Tc the singlet corre-
lation function is strongly repulsive, while the octet cor-
relator shows some attraction at larger distance. The off-
diagonal correlator is small and positive, corresponding
to a negative mixing angle. The strange and nonstrange
eta correlation functions are very similar, which is a sign
for strong flavor mixing. This is also seen directly from
the off-diagonal correlator between hS and hNS .

Above Tc , the picture changes. The off-diagonal
singlet-octet correlator changes sign, and its value at in-
termediate distances t.0.5 fm is significantly larger.
The strange and nonstrange eta correlators are very dif-

FIG. 37. Leading contributions to flavor mixing in the h2h8
system below and above the chiral phase transition.



404 T. Schäfer and E. V. Shuryak: Instantons in QCD
FIG. 38. Eta-meson correlation functions at
TÞ0, normalized to free thermal correlators:
(a) the flavor singlet; (b) the octet and off-
diagonal singlet-octet; (c) the nonstrange eta
correlation function; (d) the strange and off-
diagonal strange-nonstrange eta correlation
functions. The correlators are labeled as in
Fig. 36.
ferent from each other. The nonstrange correlation
function is very repulsive, but no repulsion is seen in the
strange channel. This clearly supports the scenario pre-
sented above. Near Tc the eigenstates are essentially the
strange and nonstrange components of the h, with the
hS being the lighter of the two states. This picture is not
realized completely; PS ,NS does not vanish, and the sin-
glet eta is still somewhat more repulsive than the octet
eta correlation function. This is due to the fact that the
light-quark mass does not vanish. In particular, in this
simulation, the ratio (mu1md)/(2ms)51/7, which is
about three times larger than the physical mass ratio.

It is difficult to provide a quantitative analysis of tem-
poral correlation functions in the vicinity of the phase
transition. At high temperatures the temporal direction
in a Euclidean box becomes short, and there is no
unique way to separate out the contribution from ex-
cited states. Nevertheless, under some simplifying as-
sumptions one can try to translate the correlation func-
tions shown in Fig. 38 into definite predictions
concerning the masses of the h and h8. For definiteness,
we use ideal mixing above Tc and fix the threshold for
the perturbative continuum at 1 GeV. In this case, the
masses of the strange and nonstrange components of
the h at T5126 MeV are given by mhS

5(0.420
60.120) GeV and mhS

5(1.25060.400) GeV.

4. Screening masses

Correlation functions in the spatial direction can be
studied at arbitrarily large distances, even at finite tem-
perature. This means that (in contrast to the temporal
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
correlators) the spectrum of the lowest states can be de-
termined with good accuracy. Although it is not directly
related to the spectrum of physical excitations, the struc-
ture of spacelike screening masses is of theoretical inter-
est and has been investigated in a number of lattice (Tar
and Kogut, 1987; Gocksch, 1991) and theoretical
(Eletsky and Ioffe, 1988; Hansson and Zahed, 1992;
Koch et al., 1992; Hansson, Sporre, and Zahed, 1994)
works.

At finite temperatures, the antiperiodic boundary con-
ditions in the temporal direction require the lowest Mat-
subara frequency for fermions to be pT . This energy
acts like a mass term for propagation in the spatial di-
rection, so quarks effectively become massive. At as-
ymptotically large temperatures, quarks propagate only
in the lowest Matsubara mode, and the theory under-
goes dimensional reduction (Appelquist and Pisarski,
1981). The spectrum of spacelike screening states is then
determined by a three-dimensional theory of quarks
with chiral mass pT , interacting via the three-
dimensional Coulomb law and the nonvanishing space-
like string tension (Borgs, 1985; Manousakis and Polo-
nyi, 1987).

Dimensional reduction at large T predicts almost de-
generate multiplets of mesons and baryons with screen-
ing masses close to 2pT and 3pT . The splittings of me-
sons and baryons with different spins can be understood
in terms of the nonrelativistic spin-spin interaction. The
resulting pattern of screening states is in qualitative
agreement with lattice results even at moderate tem-
peratures T.1.5Tc . The most notable exception is the
pion, whose screening mass is significantly below 2pT .
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Screening masses in the instanton liquid are summa-
rized in Fig. 39. First of all, the screening masses clearly
show the restoration of chiral symmetry as T→Tc : chi-
ral partners like the p and s or the r and a1 become
degenerate. Furthermore, the mesonic screening masses
are close to 2pT above Tc , while the baryonic ones are
close to 3pT , as expected. Most of the screening masses
are slightly higher than npT , consistent with a residual
chiral quark mass on the order of 120–140 MeV. The
most striking observation is the strong deviation from
this pattern seen in the scalar channels p and s, with
screening masses significantly below 2pT near the chiral
phase transition. The effect disappears around T
.1.5Tc . We also find that the nucleon-delta splitting
does not vanish at the phase transition, but decreases
smoothly.

In summary, the pattern of screening masses seen in
the instanton liquid is in agreement with the results of
lattice calculations.58 In particular, the attractive interac-
tion provided by instanton molecules accounts for the
fact that the p,s screening masses are much smaller than
2pT near Tc .

58There is one exception, which concerns the screening
masses in the longitudinal P44 and transverse P ii vector chan-
nels. In agreement with dimensional reduction, we find mr i

.mr4
, while lattice results reported by Tar and Kogut (1987)

find the opposite pattern.

FIG. 39. Spectrum of spacelike screening masses in the instan-
ton liquid as a function of the temperature, from Schäfer and
Shuryak, 1996b. The masses are given in units of the lowest
fermionic Matsubara frequency pT . The dotted lines corre-
spond to the screening masses m52pT and 3pT for mesons
and baryons in the limit when quarks are noninteracting.
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D. Instantons at finite temperature: Lattice studies

Very few lattice simulations have focused on the role
of instantons at finite temperature, and all the results
that have been reported were obtained in the quenched
approximation (Teper, 1986; Hoek et al., 1987; Chu and
Schramm, 1995; Ilgenfritz, Müller-Preussker, and Meg-
giolaro, 1995). In this section we shall concentrate on
results obtained by the cooling method, in particular, the
work of Chu and Schramm (1995). In this work, the tem-
perature was varied by changing the number of time
slices Nt52,4,.. . ,16, while the spatial extent of the lat-
tice and the coupling constant b56 were kept fixed.

The topological susceptibility was calculated from to-
pological charge fluctuations ^Q2&/V in the cooled con-
figurations. In the quenched theory, correlations be-
tween instantons are not very important, and the
topological susceptibility provides a good estimate of the
instanton density. Figure 40(a) shows their results as a
function of T . At T50, x top.(180 MeV)4, in agree-

FIG. 40. Lattice measurements of the temperature depen-
dence of the topological susceptibility in pure gauge SU(3): (a)
from Chu and Schramm, 1995; (b) from Alles et al., 1997. The
dash-dotted line labeled P-Y in (a) corresponds to the semi-
classical (Pisarski-Yaffe) result [Eq. (308)], while the dashed
curve shows the rescaled formula discussed in the text. The
solid line labeled PCAC is not very relevant for pure gauge
theory. In (b), the circles and squares correspond to two dif-
ferent topological charge operators.
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ment with the phenomenological value. The topological
susceptibility is almost temperature independent below
the critical temperature (Tc.260 MeV in quenched
QCD), but drops very fast above Tc . The temperature
dependence of x top above Tc is consistent with the De-
bye screening suppression factor (308), but with a
shifted temperature, T2→(T22Tc

2). Clearly, these re-
sults support the arguments presented in Sec. VII.A.3.
The conclusions of Chu and Schramm are consistent
with results reported by Ilgenfritz et al. (1995) and Alles,
D’Elia, and DiGiacomo (1996). We show the results of
Alles et al. in Fig. 40(b).

Chu and Schramm also extracted the average instan-
ton size from the correlation function of the topological
charge density. Below Tc , they found r50.33 fm, inde-
pendent of temperature, while at T5334 MeV, they got
a smaller value, r50.26 fm. This result is in good agree-
ment with the Debye screening dependence discussed
above.

Finally, they considered instanton contributions to the
pressure and spacelike hadronic wave functions. They
found that instantons contributed roughly 15% of the
pressure at T5334 MeV and 5% at T5500 MeV. While
spacelike hadronic wave functions were dominated by
instantons at T50 (see Sec. VI.G), this was not true at
T.Tc . This is consistent with the idea that spacelike
wave functions above Tc are determined by the space-
like string tension (Koch et al., 1992), which disappears
during cooling.

Clearly, studies with dynamic fermions are of great
interest. Some preliminary results have been obtained
by Ilgenfritz et al. (private communication). Using a
‘‘gentle cooling’’ algorithm with only a few cooling itera-
tions in order to prevent instantons and anti-instantons
from annihilating each other, they found evidence for an
anticorrelation of topological charges in the time direc-
tion above Tc . This would be the first direct lattice evi-
dence for the formation of polarized instanton mol-
ecules in the chirally symmetric phase.

VIII. INSTANTONS IN RELATED THEORIES

A. Two-dimensional theories

Although two-dimensional theories should logically
be placed between the simplest quantum-mechanical
systems and Yang-Mills theories, we have postponed
their discussion up to now in order not to disrupt the
main line of the review. Nevertheless, topological ob-
jects play an important role in many low-dimensional
models. We do not want to give an exhaustive survey of
these theories, but have selected two examples, the
O(2) and O(3) models, which, in our opinion, provide
a few interesting lessons for QCD. As far as other theo-
ries are concerned, we refer the reader to the extensive
literature, in particular on the Schwinger model (Smilga,
1994a; Steele, Subramanian, and Zahed, 1995) and two-
dimensional QCD with fundamental or adjoint fermions
(Smilga, 1994b).
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1. The O(2) sigma model

The O(2) model is also known as a the d52 Heisen-
berg magnet or the XY model. It describes a two-
dimensional spin vector SW governed by the Hamiltonian

E

T
5

1
2t E d2x~]mSW !2, (345)

together with the constraint SW 251. Here, t5T/J is a di-
mensionless parameter and J the coupling constant. In
this section we follow the more traditional language of
statistical mechanics rather than Euclidean quantum
field theory. This means that the coordinates are x ,y and
the weight factor in the functional integral is
exp(2E/T). Of course, one can always switch to field
theory language by replacing the energy by the action
and the temperature by the coupling constant g2.

The statistical sum is Gaussian except for the con-
straint. We can make this more explicit by parametrizing
the two-dimensional spin vector SW in the form S1
5cos u, S25sin u. In this case, the energy is given by
E/T5(1/2t)*d2x(]mu)2, which would describe a non-
interacting scalar field if it were not for the fact that u is
a periodic variable. It is often useful to define the theory
directly on the lattice. The partition function is given by

Z5E S )
x

dux

2p D expS b (
x , êm

@cos~ux2ux1 êm
!21# D ,

(346)
which is automatically periodic in u. The lattice spacing
a provides an ultraviolet cutoff. We should also note
that the O(2) model has a number of physical applica-
tions. First of all, the model obviously describes a two-
dimensional magnet. In addition, fluctuations of the or-
der parameter in superconducting films of liquid 4He
and the dynamics of dislocations in the melting of two-
dimensional crystals are governed by effective O(2)
models.

A two-dimensional theory with a continuous symme-
try cannot have an ordered phase at nonzero tempera-
tures. This means that, under ordinary circumstances,
two-dimensional models cannot have a phase transition
at finite temperatures (Mermin and Wagner, 1966). The
O(2) model is special because it has a phase transition
at Tc.(pJ)/2.0 (although, in agreement with the
Mermin-Wagner theorem, the transition is not charac-
terized by a local order parameter). Both the low- and
the high-temperature phase are disordered, but the
functional form of the spin-correlation function K(x)
5^SW (x)SW (0)& changes. In some sense, the whole region
T,Tc is critical because the correlation function exhib-
its a power-law decay (Beresinsky, 1971). For T.Tc the
spin correlator decays exponentially, and the theory has
a mass gap.

The mechanism of this phase transition was clarified
in the seminal paper by Koesterlitz and Thouless (1973;
see also the review of Kogut, 1979). Let us start with the
low-temperature phase. In terms of the angle variable u,
the spin-correlation function is given by
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K~x !5N21E du~x !eiu~x !e2iu~0 !e21/~2t !*d2x~]mu!2
.

(347)

At low temperatures, the system is dominated by spin
waves, and we expect that fluctuations in u are small. In
this case we can ignore the periodic character of u for
the moment. Using the propagator for the u field,
G(r)521/(2p)log(r/a), we have

K~r !5exp@ tG~r !#;r2t/2p. (348)

The correlator shows a power law, with a temperature-
dependent exponent h5T/(2pJ).

In order to understand the phase transition in the
O(2) model, we have to go beyond Gaussian fluctua-
tions and include topological objects. These objects can
be classified by a winding number

q5
1

2p R dxW •¹W u . (349)

Solutions with q561 are called (anti) vortices. A solu-
tion with q5n is given by u5na with a5arctan(y/x).
The energy of a vortex is

E~q51 !

T
5

p

t E dr

r S ]u

]a D 2

5
pn2

t
log~R/a !, (350)

where R is the IR cutoff. Since the energy is logarithmi-
cally divergent, one might think that vortex configura-
tions are irrelevant. In fact, they are crucial for the dy-
namics of the phase transition.

The reason is that it is not the energy, but the free
energy F5E2TS , which is relevant for the statistical
sum. The entropy of an isolated vortex is essentially the
logarithm of all possible vortex positions, given by S
5log@(R/a)2#. For temperatures T.Tc.(pJ)/2, entropy
dominates over energy, and vortices are important. The
presence of vortices implies that the system is even more
disordered, and the spin correlator decays exponentially.

What happens to the vortex gas below Tc? Although
isolated vortices have infinite energy, vortex-antivortex
pairs (molecules) have finite energy E.p/
(2t)@ log(R/a)1const#, where R is the size of the mol-
ecule. At low temperatures, molecules are strongly sup-
pressed, but as the temperature increases they become
more copious. Above the critical temperature, mol-
ecules are ionized and a vortex plasma is formed.

There is yet another way to look at this transition. We
can decompose any field configuration into the contribu-
tion of vortices and a smooth field. Using this decompo-
sition, one can see that the O(2) sigma model is equiva-
lent to a two-dimensional Coulomb gas. The Koesterlitz-
Thouless transition describes the transition from a
system of dipoles to an ionized plasma. The correlation
length of the spin system is nothing but the Debye
screening length in the Coulomb plasma. At the transi-
tion point, the screening length has an essential singular-
ity (Koesterlitz and Thouless, 1973)

j;expS const
uT2Tcu1/2D (351)
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rather than the power-law divergence observed in ordi-
nary phase transitions.59

There is an obvious lesson we should like to draw
from this: the two phases of the O(2) model resemble
the two phases found in QCD (Sec. VII.B.4). In both
cases the system is described by an (approximately) ran-
dom ensemble of topological objects in one phase and
by bound pairs of pseudoparticles with opposite charge
in the other. The only difference is that the high- and
low-temperature phases are interchanged. This is essen-
tially due to the fact that temperature has a different
meaning in both problems. In the O(2) model, instan-
tons are excited at high temperature, while in QCD they
are suppressed.

2. The O(3) sigma model

The O(2) model can be generalized to a d52 spin
system with a three-dimensional (or, more generally,
N-dimensional) spin vector SW of unit length. Unlike the
O(2) model, the O(3) model is not just a free field
theory for a periodic variable. In fact, in many ways the
model resembles QCD much more than the O(2) model
does. First of all, for N.2 the rotation group is non-
Abelian, and spin waves [with (N21) polarizations] in-
teract. In order to treat the model perturbatively, it is
useful to decompose the vector field in the form SW
5(s ,pW ), where pW is an (N21)-dimensional vector field
and s5A12pW 2. The perturbative analysis of the O(N)
model gives the beta function (Polyakov, 1975)

b~ t !52
N22

2p
t21O~ t3!, (352)

which shows that just like QCD, the O(N) model is
asymptotically free for N.2. In the language of statisti-
cal mechanics, the beta function describes the evolution
of the effective temperature as a function of the scale. A
negative beta function then implies that if the tempera-
ture is low at the atomic scale a , the effective tempera-
ture grows as one goes go to larger scales. Eventually,
the reduced temperature is t5O(1) (T is comparable to
J), fluctuations are large, and long-range order is de-
stroyed. Unlike the N52 model, the O(3) model has
only one critical point, t50, and correlation functions
decay exponentially for all temperatures T.0.

Furthermore, like non-Abelian gauge theory, the
O(3) model has classical instanton solutions. The topol-
ogy is provided by the fact that field configurations are
maps from two-dimensional spacetime (compacted to a

59The interested reader can find further details in review talks
on spin models given at the annual Lattice meetings. Using
cluster algorithms to fight critical slowdown, one can obtain
very accurate data. In Wolff (1989), the correlation length
reaches about 70 lattice units, confirming Eq. (351). Neverthe-
less, not all Koesterlitz-Thouless results are reproduced: e.g.,
the value of index h (defined by K(r);1/rh as T→Tc) is not
1/4 but noticeably larger.
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sphere) into another sphere which describes the orienta-
tion of SW . The winding number is defined by

q5
1

8p E d2xemnSW •~]mSW 3]nSW !. (353)

Similar to QCD, solutions with integer winding number
and energy E54pJuqu can be found from the self-
duality equation

]mSW 56emnSW 3]nSW . (354)

A solution with q51 can be constructed by means of the
stereographic projection

SW 5S 2rx1

x21r2 ,
2rx2

x21r2 ,
x22r2

x21r2D . (355)

At large distances all spins point up, in the center the
spin points down, and at intermediate distances x;r all
spins are horizontal, pointing away from the center. Like
QCD, the theory is scale invariant on the classical level,
and the energy of an instanton is independent of the size
r. Instantons in the O(2) model are sometimes called
Skyrmions, in analogy with the static (three-
dimensional) solitons introduced by Skyrme in the d
54 O(4) model (Skyrme, 1961).

The next logical step is the analog of the ’t Hooft
calculation of fluctuations around the classical instanton
solution. The result of the semiclassical calculation is
(Polyakov, 1975)

dN inst;
d2xdr

r3 exp~2E/T !;
d2xdr

r
, (356)

which is divergent both for large and small radii.60 The
result for large r is of course not reliable, since it is
based on the one-loop beta function.

Because the O(3) model shows so many similarities
with QCD, it is natural to ask whether one can learn
anything of relevance for QCD. Indeed, the O(3) model
has been widely used as a testing ground for new meth-
ods in lattice gauge theory. The numerical results pro-
vide strong support for the renormalization-group analy-
sis. For example, Caracciolo, Edwards, and Sokal (1995)
studied the O(3) model at correlation lengths as large
as j/a;105. The results agree with state-of-the-art the-
oretical predictions (based on the three-loop beta func-
tion and an overall constant determined from the Bethe
ansatz) with a very impressive accuracy, on the order of
a few percent.

Unfortunately, studies of instantons in the O(3)
model have not produced any significant insights. In par-
ticular, there are no indications that small-size (semiclas-
sical) instantons play any role in the dynamics of the

60This result marks the first nonperturbative ultraviolet diver-
gence ever discovered. It is similar to the divergence of the
density of instanton molecules for large Nf discussed in Sec.
IX.D.
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theory. Because of the divergence in the instanton den-
sity, the topological susceptibility in the O(3) has no
continuum limit. This conclusion is supported by lattice
simulations (Michael and Spencer, 1994). The simula-
tions also indicate that, for large-size instantons, the size
distribution is dN;dr/r23. This power differs from the
semiclassical result, but it agrees with the r dependence
coming from the Jacobian alone, without the running
coupling in the action. This result supports the idea of a
frozen coupling constant discussed in Sec. III.C.3.

B. Instantons in electroweak theory

In the context of this review, we cannot provide a
detailed discussion of instantons and baryon-number
violation in electroweak theory. Nevertheless, we briefly
touch on this subject because electroweak theory pro-
vides an interesting theoretical laboratory. The coupling
constant is small, the instanton action is large, and the
semiclassical approximation is under control. Unfortu-
nately, this means that under ordinary conditions tun-
neling events are too rare to be of physical importance.
Interesting questions arise when one tries to increase the
tunneling rate, e.g., by studying scattering processes with
collision energies close to the barrier height, or pro-
cesses in the vicinity of the electroweak phase transition.
Another interesting problem is what happens if we con-
sider the Higgs expectation value to be a free parameter.
When the Higgs vacuum expectation value is lowered,
electroweak theory becomes a strongly interacting
theory, and we encounter many of the problems we have
to deal with in QCD.

Electroweak theory is an SU(2)L3U(1) chiral gauge
theory coupled to a Higgs doublet. For simplicity we
shall neglect the U(1) interactions in the following, i.e.,
set the Weinberg angle to zero. The most important dif-
ference, as compared to QCD, is the fact that gauge
invariance is spontaneously broken. In the ground state,
the Higgs field acquires an expectation value, which
gives masses to the W bosons as well as to the quarks
and charged leptons. If the Higgs field has a nonzero
vacuum expectation value the instanton is, strictly
speaking, not a solution of the equations of motion.
Nevertheless, it is clear that if r!v21 (where v is the
Higgs vacuum expectation value), the gauge fields are
much stronger than the Higgs field, and there should be
an approximate instanton solution.61 In the central re-
gion x,mW

21 ,mH
21 , the solution can be found by keep-

ing the instanton gauge field fixed and solving the equa-
tions of motion for the Higgs field. The result is

f5
x2

x21r2 US 0
v/& D , (357)

61This notion can be made more precise using the constrained
instanton solution (Affleck, 1981). This technique is similar to
the construction that defines the streamline solution for an in-
stanton anti-instanton pair.
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where U is the color orientation matrix of the instanton.
The result shows that the instanton makes a hole of size
r in the Higgs condensate. Scale invariance is lost, and
the instanton action depends on the Higgs vacuum ex-
pectation value (’t Hooft, 1976b)

S5
8p2

g2 12p2r2v2. (358)

The tunneling rate is p;exp(2S), and large instantons
with r@v21 are strongly suppressed.

The loss of scale invariance also implies that, in elec-
troweak theory, the height of the barrier separating dif-
ferent topological vacua can be determined. There is a
static solution with winding number 1/2, corresponding
to the top of the barrier, called the sphaleron
(Klinkhammer and Manton, 1984). The sphaleron en-
ergy is Esph.4mW /aW.10 TeV.

Electroweak instantons also have fermionic zero
modes, and as usual the presence of these zero modes is
connected with the axial anomaly. Since only left-
handed fermions participate in weak interactions, nei-
ther vector nor axial-vector currents are conserved. The
’t Hooft vertex contains all twelve weak doublets,

~ne ,e !, ~nm ,m!, ~nt ,t!, 3* ~u ,d !,

3* ~c ,s !, 3* ~ t ,b !, (359)

where the factors of three come from color. Each dou-
blet provides one fermionic zero mode, the flavor de-
pending on the isospin orientation of the instanton. The
’t Hooft vertex violates both baryon and lepton number.
These processes are quite spectacular because all fami-
lies have to be involved, for example,

u1d→d̄1 s̄12 c̄13 t̄1e11m11t1, (360)

u1d→ū12 s̄1 c̄1 t̄12b̄1ne1nm1t1. (361)

Note that DB5DL523, so B1L is violated, but B
2L is conserved. Unfortunately, the probability of such
an event is tiny, proportional to the square of the tun-
neling amplitude P;exp(216p2/gw

2 );102169 (’t Hooft,
1976a), many orders of magnitude smaller than any
known radioactive decay.

Many authors have discussed the possibility of in-
creasing the tunneling rate by studying processes near
the electroweak phase transition (Kuzmin, Rubakov,
and Shaposhnikov, 1985) or scattering processes involv-
ing energies close to the sphaleron barrier E.Esph .
Since Esph.10 TeV, this energy would have been acces-
sible at the SSC and will possibly be within reach at the
LHC. The latter idea became attractive when it was re-
alized that associated multi-Higgs and W production in-
creases the cross section (Espinosa, 1990; Ringwald,
1990). On general grounds one expects

sD~B1L !;expF2
4p

aW
FS E

Esph
D G , (362)
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where F(e) is called the ‘‘holy grail’’ function. At low
energy, F(0)51 and baryon-number violation is
strongly suppressed. The first correction is F(e)51
2 9

8 e4/31O(e2), indicating that the cross section rises
with energy. Clearly, the problem is the behavior of
F(e) near e51. Most authors now seem to agree that
F(e) will not drop below F.1/2, implying that baryon-
number violation in pp collisions will remain unobserv-
able (Maggiore and Shifman, 1992a, 1992b; Veneziano,
1992; Zakharov, 1992; Diakonov and Petrov, 1994). The
question is of interest also for QCD because the holy
grail function at e51 is related to the instanton/anti-
instanton interaction at short distance. In particular, tak-
ing into account unitarity in the multi-W (or multigluon)
production process corresponds to an effective
instanton/anti-instanton repulsion; see Sec. IV.A.1.

The other question of interest for QCD is what hap-
pens if the Higgs vacuum expectation value v is gradu-
ally reduced. As v becomes smaller the theory moves
from the weak-coupling to the strong-coupling regime.
The vacuum structure changes from a very dilute system
of IA molecules to a more dense (and more interesting)
nonperturbative vacuum. Depending on the number of
light fermions, one should eventually reach a confining,
QCD-like phase. In this phase, leptons are composite,
but the low-energy effective action is probably similar to
the one in the Higgs phase (Abbott and Farhi, 1981;
Claudson, Farhi, and Jaffe, 1986). Unfortunately, the
importance of nonperturbative effects has never been
studied.

Let us comment only on one element that is absent in
QCD, the scalar-induced interaction between instan-
tons. Although the scalar interaction is of order O(1)
and therefore suppressed with respect to the gauge in-
teraction O(g22), it is long range if the Higgs mass is
small. For mH

21@R@r the IA interaction is (Yung,
1988)

SHiggs54p2a2r2F11
r2

R2 @2~u•R̂ !221#G1OS 1
R4D .

(363)

Unlike the gluonic dipole interaction, it does not vanish
if averaged over all orientations, ^(u•R̂)2&51/4. This
means that the scalar interaction can provide coherent
attraction for distances RmH,1, which is of the order
v2r4n/mH

2 where n is the instanton density. This is large
if the Higgs mass is small.

Another unusual feature of Yung interaction (363) is
that it is repulsive for u•R̂51 (which is the most attrac-
tive orientation for the dipole interaction). This would
suggest that, for a light Higgs mass, there is no small-R
problem. This question was studied by Velkovsky and
Shuryak (1993). For the complete Yung ansatz (which is
a good approximation to the full streamline solution)
the approximate result (363) is valid only for R.10r ,
while for smaller separation the dependence on u•R̂ is
reversed.
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C. Supersymmetric QCD

Supersymmetry (SUSY) is a powerful theoretical con-
cept, which is of great interest in constructing field theo-
ries beyond the standard model. In addition, supersym-
metric field theories provide a very useful theoretical
laboratory and have been responsible for a number of
important advances in our understanding of the ground
state of strongly coupled field theories. We have already
seen one example of the usefulness of supersymmetry in
isolating instanton effects in the context of SUSY quan-
tum mechanics, in Sec. II.B. In that case, SUSY implies
that perturbative contributions to the vacuum energy
vanish and allows a precise definition of the instanton/
anti-instanton contribution. In the following, we shall
see that supersymmetry can be used in very much the
same way in the context of gauge-field theories.

In general, one should keep in mind that SUSY theo-
ries are just ordinary field theories with a very specific
matter content and certain relations between different
coupling constants. Eventually, we hope to understand
non-Abelian gauge theories for all possible matter sec-
tors. In particular, we want to know how the structure of
the theory changes as one goes from QCD to supersym-
metric generalizations, where many exact statements
about instantons and the vacuum structure are known.
Deriving these results often requires special techniques
that go beyond the scope of this review. For details of
the supersymmetric instanton calculus we refer the
reader to the extensive review by Amati et al. (1988).
Nevertheless, we have tried to include a number of in-
teresting results and explain them in standard language.

As theoretical laboratories, SUSY theories have sev-
eral advantages over ordinary field theories. We have
already mentioned one of them: Nonrenormalization
theorems imply that many quantities do not receive per-
turbative contributions, so instanton effects are more
easily identified. In addition to that, SUSY gauge theo-
ries usually have many degenerate classical vacua. These
degeneracies cannot be lifted to any order in perturba-
tion theory, and instantons often play an important role
in determining the ground state. In most cases, the clas-
sical vacua are characterized by scalar field vacuum ex-
pectation values. If the scalar field vacuum expectation
value is large, one can perform reliable semiclassical cal-
culations. Decreasing the scalar vacuum expectation
value, one moves towards strong coupling, and the dy-
namics of the theory is nontrivial. Nevertheless, super-
symmetry restricts the functional dependence of the ef-
fective potential on the scalar vacuum expectation value
(and other parameters, like masses or coupling con-
stants), so that instanton calculations can often be con-
tinued into the strong-coupling domain.

Ultimately, we should like to understand the behavior
of SUSY QCD as we introduce soft supersymmetry
breaking terms and send the masses of the gluinos and
squarks to infinity. Not much progress has been
achieved in this direction, but at least for small breaking
the calculations are feasible and some lessons have been
learned.
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1. The instanton measure and the perturbative beta function

The simplest (N51) supersymmetric non-Abelian
gauge theory is SU(2) SUSY gluodynamics, defined by

L52
1

4g2 Fmn
a Fmn

a 1
i

2g2 la~D” !ablb, (364)

where the gluino field la is a Majorana fermion in the
adjoint representation of SU(2). More complicated
theories can be constructed by adding additional matter
fields and scalars. N extended supersymmetry has N
gluino fields as well as additional scalars. Clearly, super-
symmetric gluodynamics has u vacua and instanton solu-
tions. The only difference as compared to QCD is that
the fermions carry adjoint color, so there are twice as
many fermion zero modes. If the model contains scalars
fields that acquire a vacuum expectation value, instan-
tons are approximate solutions, and the size integration
is automatically cut off by the scalar vacuum expectation
value. These theories usually resemble electroweak
theory more than they do QCD.

At first glance, instanton amplitudes seem to violate
supersymmetry: the number of zero modes for gauge
fields and fermions does not match, while scalars have
no zero modes at all. However, one can rewrite the tun-
neling amplitude in manifestly supersymmetric form
(Novikov et al., 1983). We shall not do this here, but
stick to the standard notation. The remarkable observa-
tion is that the determination of the tunneling amplitude
in SUSY gauge theory is actually simpler than in QCD.
Furthermore, with some additional input, one can deter-
mine the complete perturbative beta function from the
tunneling amplitude.

The tunneling amplitude is given by

n~r!;expS 2
2p

a DMng2nf/2S 2p

a D ng/2

3d4x
dr

r5 rk)
f

d2j f , (365)

where all factors can be understood from the ’t Hooft
calculation discussed in Sec. II.C.4. There are ng54Nc
bosonic zero modes that have to be removed from the
determinant and these give one power of the regulator
mass M each. Similarly, each of the nf fermionic zero
modes gives a factor M1/2. Introducing collective coordi-
nates for the bosonic zero modes gives a Jacobian AS0
for every zero mode. Finally, d2j is the integral over the
fermionic collective coordinates, and rk is the power of
r needed to give the correct dimension. Supersymmetry
now ensures that all non-zero-mode contributions ex-
actly cancel. More precisely, the subset of SUSY trans-
formations that does not rotate the instanton field itself
mixes fermionic and bosonic non-zero modes but anni-
hilates zero modes. This is why all non-zero modes can-
cel, but zero modes can be unmatched. Note that as a
result of this cancellation, the power of M in the tunnel-
ing amplitude is an integer.
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Renormalizability demands that the tunneling ampli-
tude be independent of the regulator mass. This means
that the explicit M dependence of the tunneling ampli-
tude and the M dependence of the bare coupling have to
cancel. As in QCD, this allows us to determine the one-
loop coefficient of the beta function b5(42N)Nc
2Nf . Again note that b is an integer, a result that
would appear very mysterious if we did not know about
instanton zero modes.

In supersymmetric theories one can even go one step
further and determine the beta function to all loops (No-
vikov et al., 1983; Vainshtein et al., 1986). For that pur-
pose let us write down the renormalized instanton mea-
sure

n~r!;expS 2
2p

a DMng2nf /2S 2p

aR
D ng/2

Zg
ng/2

3S)
f

Zf
21/2D d4x

dr

r5 rk)
f

d2j f , (366)

where we have introduced the field renormalization fac-
tors Zg ,f for the bosonic/fermionic fields. Again, non-
renormalization theorems ensure that the tunneling am-
plitude is not renormalized at higher orders (the
cancellation between the non-zero-mode determinants
persists beyond one loop). For gluons the field renor-
malization (by definition) is the same as the charge
renormalization Zg5aR /a0 . Furthermore, supersym-
metry implies that the field renormalization is the same
for gluinos and gluons. This means that the only new
quantity in Eq. (366) is the anomalous dimension of the
quark fields, gc5d log Zf /d log M.

Again, renormalizability demands that the amplitude
be independent of M . This condition gives the
Novikov-Shifman-Vainshtein-Zakharov beta function
(Novikov et al., 1983) which, in the case N51, reads

b~g !52
g3

16p2

3Nc2Nf1Nfgc~g !

12Ncg2/8p2 . (367)

The anomalous dimension of the quarks has to be cal-
culated perturbatively. To leading order, it is given by

gc~g !52
g2

8p2

Nc
221

Nc
1O~g4!. (368)

The result (367) agrees with explicit calculations up to
three loops (Jack, Jones, and North, 1997). Note that the
beta function is scheme dependent beyond two loops, so
in order to make a comparison with high-order pertur-
bative calculations, one has to translate from the Pauli-
Vilars scheme to a more standard perturbative scheme,
e.g., MS .

In theories without quarks, the Novikov-Shifman-
Vainshtein-Zakharov result determines the beta func-
tion completely. For N-extended supersymmetric gluo-
dynamics, we have

b~g !52
g3

16p2

Nc~42N !

12~22N !Ncg2/~8p2!
. (369)
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One immediately recognizes two interesting special
cases. For N54, the beta function vanishes, and the
theory is conformal. In the case N52, the denominator
vanishes, and the one-loop result for the beta function is
exact.

2. N51 supersymmetric QCD

In the previous section we used instantons only as a
tool to simplify a perturbative calculation. Naturally, the
next question is whether instantons cause important dy-
namic effects in SUSY theories. Historically, there has
been a good deal of interest in SUSY breaking by in-
stantons, first discovered in the quantum-mechanical
model discussed in Sec. II.B. The simplest field theory in
which SUSY is broken by instantons is the
SU(2)3SU(3) model (Affleck, Dine, and Seiberg, 1984a,
1985; Vainshtein, Shifman, and Zakharov, 1985). How-
ever, nonperturbative SUSY breaking does not take
place in supersymmetric QCD, so we shall not discuss it
any further.

An effect that is more interesting in our context is
gluino condensation in SUSY gluodynamics [Eq. (364);
Novikov et al., 1983]. For SU(2) color, the gluino con-
densate is most easily determined from the correlator
^la

a laa(x)lb
blbb(0)&. In SU(N), one has to consider

the N-point function of la
a laa. In supersymmetric theo-

ries, gluinos have to be massless, so the tunneling ampli-
tude is zero. However, in the N-point correlation func-
tion all zero modes can be absorbed by external sources,
similar to the axial anomaly in QCD. Therefore there is
a nonvanishing one-instanton contribution. In agree-
ment with SUSY Ward identities, this contribution is x
independent. Therefore one can use cluster decomposi-
tion to extract the gluino condensate ^ll&56AL3 [in
SU(2)], where A is a constant that is fixed from the
single-instanton calculation.

There are a number of alternative methods for calcu-
lating the gluino condensate in SUSY gluodynamics. For
example, it has been suggested that ^ll& can be calcu-
lated directly using configurations with fractional charge
(Cohen and Gomez, 1984). In addition to that, one can
include matter fields, make the theory Higgs-like, and
then integrate out the matter fields (Novikov et al.,
1985a; Shifman and Vainshtein, 1988). This method
gives a different coefficient for the gluino condensate, a
problem that was recently discussed by Kovner and Shif-
man (1997).

The next interesting theory is N51 SUSY QCD,
where we add Nf matter fields (quarks c and squarks f)
in the fundamental representation. Let us first look at
the Novikov-Shifman-Vainshtein-Zakharov beta func-
tion. For N51, the beta function blows up at g

*
2

58p2/Nc , so the renormalization-group trajectory can-
not be extended beyond this point. Recently, Kogan and
Shifman have suggested that at this point the standard
phase meets the renormalization-group trajectory of a
different (nonasymptotically free) phase of the theory
(Kogan and Shifman, 1995). The beta function vanishes
at g

*
2 /(8p2)5@Nc(3Nc2Nf)#/@Nf(Nc

221)# , where we
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have used the one-loop anomalous dimension. This is
reliable if g* is small, which we can ensure by choosing
Nc→` and Nf in the conformal window 3Nc/2,Nf
,3Nc . Recently, Seiberg has shown that the conformal
point exists for all Nf in the conformal window (even if
Nc is not large) and has clarified the structure of the
theory at the conformal point (Seiberg, 1994).

Let us now examine the vacuum structure of SUSY
QCD for Nc52 and Nf51. In this case we have one
Majorana fermion (the gluino), one Dirac fermion (the
quark), and one scalar squark (or Higgs) field. The
quark and squark fields do not have to be massless. We
shall denote their mass by m , while v is the vacuum
expectation value of the scalar field. In the semiclassical
regime v@L , the tunneling amplitude (366) is O(L5).
The ’t Hooft effective Lagrangian is of the form l4c2,
containing four quark and two gluino zero modes. As
usual, instantons give an expectation value to the
’t Hooft operator. However, due to the presence of
Yukawa couplings and a Higgs vacuum expectation
value, they can also provide expectation values for op-
erators with fewer than six fermion fields. In particular,
combining the quarks with a gluino and a squark tad-
pole, we can construct a two-gluino operator. Instantons
therefore lead to gluino condensation (Affleck, Dine,
and Seiberg, 1984b). Furthermore, using two more
Yukawa couplings one can couple the gluinos to exter-
nal quark fields. Therefore, if the quark mass is nonzero,
we get a finite density of individual instantons
O(mL5/v2); see Fig. 41.

As in ordinary QCD, there are also instanton/anti-
instanton molecules. The contribution of molecules to
the vacuum energy can be calculated either directly or
indirectly, using the single-instanton result and argu-
ments based on supersymmetry. This provides a nice
check on the direct calculation because in this case we
have a rigorous definition of the contribution from mol-
ecules. Calculating the graph shown in Fig. 41(b), one
finds (Yung, 1988)

evac
IA 5

32L10

g8v6 , (370)

which agrees with the result originally derived by Af-
fleck et al. (1984b) using different methods. The result
implies that the Higgs expectation value is driven to in-

FIG. 41. Instanton contributions to the effective potential in
supersymmetric QCD.
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finity, and Nf51 SUSY QCD does not have a stable
ground state. The vacuum can be stabilized by adding a
mass term. For nonzero quark mass m the vacuum en-
ergy is given by

evac52m2v22
16mL5

g4v2 1
32L10

g8v6 52S mv2
4L5

g4v3D 2

,

(371)

where the first term is the classical Higgs mass term, the
second is the one-instanton contribution, and the third is
due to molecules. In this case, the theory has a stable
ground state at v2562L5/2/(g2m1/2). Since SUSY is un-
broken, the vacuum energy is exactly zero. Let us note
that in the semiclassical regime m!L!v everything is
under control: instantons are small r;v21, individual
instantons are rare, molecules form a dilute gas, nR4

;(v/L)10, and the instanton and anti-instanton inside a
molecule are well separated, RIA /r;1/Ag . Supersym-
metry implies that the result remains correct even if we
leave the semiclassical regime. This means, in particular,
that all higher-order instanton corrections [O(L15) etc]
have to cancel exactly. Checking this explicitly might
provide a very nontrivial check of the instanton calculus.

Recently, significant progress has been made in deter-
mining the structure of the ground state of N51 super-
symmetric QCD for arbitrary Nc and Nf (Intriligator
and Seiberg, 1996). Seiberg showed that the situation
discussed above is generic for Nf,Nc , a stable ground
state can only exist for nonzero quark mass. For Nf
5Nc21, the mÞ0 contribution to the potential is an
instanton effect. In the case Nf5Nc , the theory has chi-
ral symmetry breaking (in the chiral limit m→0) and
confinement.62 For Nf5Nc11, there is confinement but
no chiral symmetry breaking. Unlike QCD, the ’t Hooft
anomaly matching conditions can be satisfied with mass-
less fermions. These fermions can be viewed as elemen-
tary fields in the dual (or ‘‘magnetic’’) formulation of the
theory. For Nc11,Nf,3Nc/2, the magnetic formula-
tion of the theory is IR free, while for 3Nc/2,Nf
,3Nc the theory has an infrared fixed point. Finally, for
Nf.3Nc , asymptotic freedom is lost and the electric
theory is IR free.

3. N52 supersymmetric gauge theory

The work of Seiberg has shown that supersymmetry
sufficiently constrains the effective potential in N51 su-
persymmetric QCD that the possible vacuum states for
all Nc and Nf can be determined. For N52 extended
supersymmetric QCD, these constraints are even more
powerful. Witten and Seiberg have been able to deter-
mine not just the effective potential, but the complete

62There is no instanton contribution to the superpotential,
but instantons provide a constraint on the allowed vacua in the
quantum theory. To our knowledge, the microscopic mecha-
nism for chiral symmetry breaking in this theory has not been
clarified.
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low-energy effective action (Seiberg and Witten, 1994).
Again, the techniques used in this work are outside the
scope of this review. However, instantons play an impor-
tant role in this theory, so we should like to discuss a few
interesting results.

N52 supersymmetric gauge theory contains two Ma-
jorana fermions la

a , ca
a and a complex scalar fa, all in

the adjoint representation of SU(Nc). In the case of N
52 SUSY QCD, we add Nf multiplets (qa ,q̃a ,Q ,Q̃) of
quarks qa ,q̃a and squarks Q ,Q̃ in the fundamental rep-
resentation. In general, gauge invariance is broken and
the Higgs field develops an expectation value ^f&
5at3/2. The vacua of the theory can be labeled by a
(gauge-invariant) complex number u5(1/2)^tr f2&. If
the Higgs vacuum expectation value a is large (a@L),
the semiclassical description is valid and u5(1/2)a2. In
this case, instantons are small r;a21 and the instanton
ensemble is dilute nr4;L4/a4!1.

In the semiclassical regime, the effective Lagrangian is
given by

Leff5
1

4p
ImF2F9~f!S 1

2
~Fmn

sd !21~]mf!~]mf†!

1ic]” c̄1il]” l̄D1
1

&
F-~f!lsmncFmn

sd

1
1
4
F99~f!c2l2G1Laux1¯ , (372)

where Fmn
sd 5Fmn1iF̃mn is the self dual part of the field

strength tensor, Laux contains auxiliary fields, and ‘‘•••’’
denotes higher derivative terms. Note that the effective
low-energy Lagrangian contains only the light fields. In
the semiclassical regime, this is the U(1) part of the
gauge field (the ‘‘photon’’) and its superpartners. Using
arguments based on electric-magnetic duality, Seiberg
and Witten determined the exact prepotential F(f).
From the effective Lagrangian, we can immediately read
off the effective charge at the scale a ,

F9~a !5
t~a !

2
5

4pi

g2~a !
1

u

2p
, (373)

which combines the coupling constant g and the u angle.
The Witten-Seiberg solution also determines the anoma-
lous magnetic moment F- and the four-fermion vertex
F99. In general, the structure of the prepotential is given
by

F~f!5
i~42Nf!

8p
f2 logS f2

L2D2
i

p (
k51

`

Fkf2S L

f D ~42Nf!k

.

(374)

The first term is just the perturbative result with the
one-loop beta functions coefficient. As noted in Sec.
VIII.C.1, there are no corrections from higher loops. In-
stead, there is an infinite series of power corrections.
The coefficient Fk is proportional to L(42Nf)k, which is
exactly what one would expect for a k-instanton contri-
bution.
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For k51, this was first checked by Finnel and Pouliot
(1995) in the case of SU(2) and by Ito and Sasakura
(1996) in the more general case of SU(Nc). The basic
idea is to calculate the coefficient of the
’t Hooft interaction ;l2c2. The gluino l and the
Higgsino c together have eight fermion zero modes.
Pairing zero modes using Yukawa couplings of the type
(lc)f and the nonvanishing Higgs vacuum expectation
value, we can see that instantons induce a four-fermion
operator. In an impressive tour de force, the calculation
of the coefficient of this operator was recently extended
to the two-instanton level63 (Dorey, Khoze, and Mattis,
1996a; Aoyama et al., 1996). For Nf50, the result is

S4f5E dx~c2l2!F 15L4

8p2a6 1
9!L8

33212p2a10 1¯ G , (375)

which agrees with the Witten-Seiberg solution. This is
also true for NfÞ0, except in the case Nf54, where a
discrepancy appears. This is the special case in which the
coefficient of the perturbative beta function vanishes.
Seiberg and Witten assume that the nonperturbative
t(a) is the same as the corresponding bare coupling in
the Lagrangian. But the explicit two-instanton calcula-
tion shows that even in this theory the charge is renor-
malized by instantons (Dorey, Khoze, and Mattis,
1996b). In principle, these calculations can be extended
order by order in the instanton density. The result pro-
vides a very nontrivial check on the instanton calculus.
For example, in order to obtain the correct two-
instanton contribution, one has to use the most general
(ADHM) two-instanton solution, not just a linear super-
position of two instantons.

Instantons also give a contribution to the expectation
value of f2. Pairing off the remaining zero modes, we
see that the semiclassical relation u5a2/2 receives a cor-
rection (Finnel and Pouliot, 1995)

u5
a2

2
1

L4

a2 1OS L8

a6 D . (376)

More interesting are instanton corrections to the effec-
tive charge t. The solution of Seiberg and Witten can be
written in terms of an elliptic integral of the first kind,

t~u !5i
K~A12k2!

K~k !
, k25

u2Au224L4

u1Au224L4
. (377)

In the semiclassical domain, this result can be written as
the one-loop perturbative contribution plus an infinite
series of k-instanton terms. Up to the two-instanton
level, we have [for a more detailed discussion of the
nonperturbative beta function, see Bonelli and Matone
(1996)]

8p

g2 5
2
p F logS 2a2

L2 D2
3L4

a4 2
33537L8

8a8 1¯ G . (378)

63Supersymmetry implies that there is no instanton/anti-
instanton contribution to the prepotential.
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It is interesting to note that instanton corrections tend to
accelerate the growth of the coupling constant g. This is
consistent with what was found in QCD by considering
how small-size instantons renormalize the charge of a
larger instanton (Callan et al., 1978a). However, the re-
sult is opposite to the trend discussed in Sec. III.C.3
(based on the instanton size distribution and lattice beta
function), which suggests that in QCD the coupling runs
more slowly than suggested by perturbation theory.

If the Higgs vacuum expectation value is reduced, the
instanton corrections in Eq. (377) start to grow and com-
pensate for the perturbative logarithm. At this point the
expansion (378) becomes unreliable, but the exact solu-
tion of Seiberg and Witten is still applicable. In the semi-
classical regime, the spectrum of the theory contains
monopoles and dyons with masses proportional to t. As
the Higgs vacuum expectation value is reduced, these
particles can become massless. In this case, the expan-
sion of the effective Lagrangian in terms of the original
(electrically charged) fields breaks down, but the theory
can be described in terms of their (magnetically
charged) dual partners.

IX. SUMMARY AND DISCUSSION

A. General remarks

Finally, we should like to summarize the main points
of this review, discuss some of the open problems, and
provide an outlook. In general, semiclassical methods in
quantum mechanics and field theory are well developed.
We can reliably calculate the contribution of small-size
(large-action) instantons to arbitrary Green’s functions.
Problems arise when we leave this regime and attempt
to calculate the contribution from large instantons or
close instanton/anti-instanton pairs. While these prob-
lems can be solved rigorously in some theories (as in
quantum mechanics or in some SUSY field theories), in
QCD-like theories we still face a number of unresolved
problems and therefore have to follow a somewhat more
phenomenological approach. Nevertheless, the main
point of this review is that important progress has been
made in this context. The phenomenological success of
the instanton liquid model is impressive, and initial at-
tempts to check the underlying assumptions explicitly on
the lattice are very encouraging.

With this review, we want not only to acquaint the
reader with the theory of instantons in QCD, but also to
draw attention to the large number of observables, in
particular hadronic correlation functions at zero and fi-
nite temperatures, that have already been calculated in
the instanton liquid model. While some of these predic-
tions have been compared with phenomenological infor-
mation or lattice results, many others still await confron-
tation with experiment or the lattice. The instanton
liquid calculations were made possible by a number of
technical advances. We now have a variety of ap-
proaches at our disposal, including the single instanton,
the mean-field and random-phase approximations, as
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
well as numerical calculations that take the ’t Hooft in-
teraction into account to all orders.

The progress made in understanding the physics of
instantons in lattice calculations has been of equal im-
portance. We now have data concerning the total den-
sity, the typical size, the size distribution, and correla-
tions between instantons. Furthermore, there are
detailed checks on the mechanism of U(1)A violation
and on the behavior of many more correlation functions
under cooling. Recent investigations have begun to fo-
cus on many interesting questions, like the effects of
quenching, correlations of instantons with monopoles,
etc.

In the following we shall first summarize the main re-
sults concerning the structure of the QCD vacuum and
its hadronic excitations, then discuss the effects of finite
temperature, and finally try to place QCD in a broader
context, comparing the vacuum structure of QCD with
other non-Abelian field theories.

B. Vacuum and hadronic structure

The instanton liquid model is based on the assump-
tion that nonperturbative aspects of the gluonic vacuum,
like the gluon condensate, the vacuum energy density,
or the topological susceptibility, are dominated by small-
size (r.1/3 fm) instantons. The density of tunneling
events is n.1 fm24. These numbers imply that the
gauge fields are very inhomogeneous, with strong fields
(Gmn;g21r22) concentrated in small regions of space-
time. In addition, the gluon fields are strongly polarized,
the field strength locally being either self-dual or anti-
self-dual.

Quark fields, on the other hand, cannot be localized
inside instantons. Isolated instantons have unpaired chi-
ral zero modes, so the instanton amplitude vanishes if
quarks are massless. In order to get a nonzero probabil-
ity, quarks have to be exchanged between instantons
and anti-instantons. In the ground state, zero modes be-
come completely delocalized, and chiral symmetry is
broken. As a consequence, quark-antiquark pairs with
the quantum numbers of the pion can travel infinitely
far, and we have a Goldstone pion.

This difference in the distribution of vacuum fields
leads to significant differences in gluonic and fermionic
correlation functions. Gluonic correlators are much
more short range, and as a result the mass scale for glue-
balls, m011.1.5 GeV, is significantly larger than the
typical mass of non-Goldstone mesons, mr50.77 GeV.
The polarized gluon fields lead to large spin splittings for
both glueballs and ordinary mesons. In general, we can
group all hadronic correlation functions into three
classes: (i) Those that receive direct instanton contribu-
tions that are attractive, p ,K ,011 glueball, N , . . . , (ii)
those with direct instantons effects that are repulsive,
h8,d ,012 glueball, . . . , and (iii) correlation functions
with no direct instanton contributions r ,a1 ,211 glueball,
D, . . . . As we have repeatedly emphasized throughout
this review, already this simple classification based on
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first-order instanton effects gives a nontrivial under-
standing of the bulk features of hadronic correlation
functions.

In addition, the instanton liquid allows us to go into
much greater detail. Explicit calculations of the full cor-
relation functions in a large number of hadronic chan-
nels have been performed. These calculations require
only two parameters to be fixed. One is the scale param-
eter L and the other characterizes the scale at which the
effective repulsion between close pairs sets in. With
these parameters fixed from global properties of the
vacuum, we not only find a very satisfactory description
of the masses and couplings of ground-state hadrons, but
we also reproduce the full correlation function whenever
they are available. Of course, the instanton model
reaches its limits as soon as perturbative or confinement
effects become dominant. This is the case, for example,
when one attempts to study bound states of heavy
quarks or tries to resolve high-lying radial excitations of
light hadrons.

How does this picture compare with other approaches
to hadronic structure? As far as the methodology is con-
cerned, the instanton approach is close to (and to some
extent a natural outgrowth of) the QCD sum-rule
method. Moreover, the instanton effects explain why the
OPE works in some channels and fails in others (those
with direct instanton contributions). The instanton liq-
uid provides a complete picture of the ground state, so
that no assumptions about higher-order condensates are
required. It also allows the calculations to be extended
to large distances, so that no matching is needed.

In the quark sector, the instanton model provides a
picture similar to the Nambu and Jona-Lasinio model.
There is an attractive quark-quark interaction that
causes quarks to condense and binds them into light me-
sons and baryons. However, the instanton liquid pro-
vides a more microscopic mechanism, with a more direct
connection to QCD, and relates the different coupling
constants and cutoffs in the Nambu and Jona-Lasinio
model.

Instead of going into comparisons with the plethora of
hadronic models that have been proposed over the
years, let us emphasize two points that we feel are im-
portant. Hadrons are not cavities which are empty inside
(devoid of nonperturbative fields) as the bag model sug-
gests. Indeed, matrix elements of electric and magnetic
fields inside the nucleon can be determined from the
trace anomaly (Shuryak, 1978b; Ji, 1995), showing that
the density of instantons and the magnitude of the gluon
condensate inside the nucleon is only reduced by a few
percent. Hadrons are excitations of a very dense me-
dium, and this medium should be understood first. Fur-
thermore, spin splittings in glueballs (2112011, . . .)
and light hadrons (r2p , . . .) are not small, so it makes
no sense to treat them perturbatively. This was directly
checked on the lattice: spin splittings are not removed
by cooling, which quickly eliminates all perturbative
contributions.

What is the prospect for future work on hadronic
structure? Of course, our understanding of hadronic
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structure is still very far from being complete. Clearly,
the most important question concerns the mechanism of
confinement and its role in hadronic structure. In the
meantime, experiments continue to provide interesting
new puzzles: the spin of the nucleon, the magnitude and
polarization of the strange sea, the isospin asymmetry in
the light u ,d quark sea, etc.

C. Finite temperature and chiral restoration

Understanding the behavior of hadrons and hadronic
matter at high temperature is the ultimate goal of the
experimental heavy-ion program. These studies comple-
ment our knowledge of hadronic structure at zero tem-
perature and density and provide an opportunity to ob-
serve rearrangements in the structure of the QCD
vacuum directly.

Generalizing the instanton liquid model to finite tem-
peratures is straightforward in principle. Nevertheless,
the role of instantons at finite temperatures has been
reevaluated during the past few years. There is evidence
that instantons are not suppressed near Tc , but disap-
pear only at significantly higher temperatures. Only
after instantons disappear does the system become
a perturbative plasma.64

In addition, we have argued that the chiral transition
is due to the dynamics of the instanton liquid itself. The
phase transition is driven by a rearrangement of the in-
stanton liquid, going from a (predominantly) random
phase at small temperature to a correlated phase of
instanton/anti-instanton molecules at high temperature.
Without having to introduce any additional parameters,
this picture provides the correct temperature scale for
the transition and agrees with standard predictions con-
cerning the structure of the phase diagram.

If instantons are bound into topologically neutral
pairs at T.Tc , they no longer generate a quark conden-
sate. However, they still contribute to the gluon conden-
sate, the effective interaction between quarks, and the
equation of state. Therefore instanton effects are poten-
tially very important in understanding the plasma at
moderate temperatures T5(1 –3)Tc . We have begun
to explore some of these consequences in greater detail,
in particular the behavior of spatial and temporal corre-
lation functions across the transition region. While
spacelike screening masses essentially agree with the re-
sults of lattice calculations, interesting phenomena are
seen in temporal correlation functions. We find evidence
that certain hadronic modes survive in the high-
temperature phase. Clearly, much work remains to be

64We should mention that even at asymptotically high tem-
perature there are nonperturbative effects in QCD, related to
the physics of magnetic (three-dimensional) QCD. However,
these effects are associated with the scale g2T , which is small
compared to the typical momenta of the order T . This means
that the corrections to quantities like the equation of state are
small.
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FIG. 42. Schematic phase diagram of QCD
(a) and supersymmetric QCD (b) as a func-
tion of the number of colors Nc and the num-
ber of flavors Nf .
done in order to improve our understanding of the high-
temperature phase.

D. The big picture

Finally, we should like to place QCD in a broader
perspective and discuss what is known about the phase
structure of non-Abelian gauge theories (both ordinary
and supersymmetric) based on the gauge group SU(Nc)
with Nf quark flavors. For simplicity, we shall restrict
ourselves to zero temperature and massless fermions.
This means that the theory has no dimensional param-
eters other than L. The phase diagram of ordinary and
SUSY QCD in the Nc-Nf plane is shown in Fig. 42. For
simplicity, we have plotted Nc and Nf as if they were
continuous variables.65 We should emphasize that, while
the location of the phase boundaries can be rigorously
established in the case of SUSY QCD, the phase dia-
gram of ordinary QCD is just a guess, guided by some of
the results mentioned below.

Naturally, we are most interested in the role of instan-
tons in these theories. As Nf is increased above the
value 2 or 3 (relevant to real QCD), the two basic com-
ponents of the instanton ensemble, random (individual)
instantons and strongly correlated instanton/anti-
instanton pairs (molecules), are affected in very differ-
ent ways. Isolated instantons can only exist if the quark
condensate is nonzero, and the instanton density con-
tains the factor (u^q̄q&ur3)Nf which comes from the fer-
mion determinant. As a result, small-size instantons are
strongly suppressed as Nf is increased. This suppression
factor does not affect instantons with a size larger than
r;u^q̄q&u21/3. This means that as Nf is increased, ran-

65In a sense, at least the number of flavors is a continuous
variable. One can gradually remove a massless fermion by in-
creasing its mass.
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dom instantons are pushed to larger sizes. Since in this
regime the semiclassical approximation becomes unreli-
able, we do not know how to calculate the rate of ran-
dom instantons at large Nf .

For strongly correlated pairs (molecules) the trend is
exactly opposite. The density of pairs is essentially inde-
pendent of the quark condensate and only determined
by the interaction of the two instantons. From purely
dimensional considerations one expects the density of
molecules to be dnm;drL2br2b25, which means that
the typical size becomes smaller as Nf is increased
(Shuryak, 1987). If Nf.11Nc/2, we have b,2, and the
density of pairs is ultraviolet divergent [see the dashed
line in Fig. 42(a)]. This phenomenon is similar to the UV
divergence in the O(3) nonlinear s model. Both are
examples of UV divergencies of a nonperturbative na-
ture. Most likely they do not have significant effects on
the physics of the theory. Since the typical instanton size
is small, one would expect that the contribution of mol-
ecules at large Nf could be reliably calculated. However,
since the binding inside the pair increases with Nf , the
separation of perturbative and nonperturbative fluctua-
tions becomes more and more difficult.

Rather than speculate about these effects, let us go
back and consider very large Nf . The solid line labeled
b50 in Fig. 42 corresponds to a vanishing first coeffi-
cient of the beta function, b5(11/3)Nc2(2/3)Nf50 in
QCD and b53Nc2Nf50 in SUSY QCD. Above this
line, the coupling constant decreases at large distances,
and the theory is IR free. Below this line, the theory is
expected to have an infrared fixed point (Belavin and
Migdal, 1974; Banks and Zaks, 1982). As discussed in
Sec. III.C.3, this is due to the fact that the sign of the the
second coefficient of the beta function b8534Nc

2/3
213NcNf/31Nf /Nc is negative while the first one is
positive. As a result, the beta function has a zero at
g
*
2 /(16p2)52b/b8. This number determines the limit-

ing value of the charge at large distances. Note that the
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fixed point is not destroyed by higher-order perturbative
effects, since we can always choose a scheme where
higher-order coefficients vanish. The presence of an IR
fixed point implies that the theory is conformal, which
means correlation functions show a power-law decay at
large distances. There is no mass gap, and the long-
distance behavior is characterized by the set of critical
exponents.

Where is the lower boundary of the conformal do-
main? A recent perturbative study based on the 1/Nf
expansion (Gracey, 1996) suggested that the IR fixed
point might persist all the way down to Nf56 (for Nc
53). However, the critical coupling would become
larger and nonperturbative phenomena might become
important. For example, Appelquist, Terning, and
Wijewardhana (1996) argued that if the coupling con-
stant reached a critical value the quark-antiquark inter-
action could be sufficiently strong to break chiral sym-
metry. In their calculation, this would happen for Nf

c

.4Nc [see the dashed line in Fig. 42(a)].
It was then realized that instanton effects could also

be important (Appelquist and Selipsky, 1997). If the
critical coupling is small, even large instantons have a
large action, S58p2/g

*
2 @1, and the semiclassical ap-

proximation is valid. As usual, we expect random instan-
tons to contribute to chiral symmetry breaking. Accord-
ing to estimates made by Appelquist and Selipsky
(1997), the role of instantons is comparable to that of
perturbative effects in the vicinity of Nf54Nc . Chiral
symmetry breaking is dominated by large instantons
with size r;u^q̄q&u21/3.L21, while the perturbative re-
gime r,L21 contributes very little. For even larger in-
stantons, r@u^q̄q&u21/3, fermions acquire a mass due to
chiral symmetry breaking and effectively decouple from
gluons. This means that for large distances the charge
evolves as in pure gauge theory, and the IR fixed point is
only an approximate feature, useful for analyzing the
theory above the decoupling scale.

Little is known about the phase structure of multifla-
vor QCD from lattice simulations. Lattice QCD with up
to 240 flavors was studied by Iwasaki et al. (1996), who
showed that, as expected, the theory is trivial for b.0.
The paper also confirms the existence of an infrared
fixed point for Nf>7 (Nc53). In Fig. 42(a) we have
marked these results by open squares. Other groups
have studied QCD with Nf58 (Brown et al., 1992), 12
(Kogut and Sinclair, 1988) and 16 (Damgaard et al.,
1997) flavors. All of these simulations find a chirally
asymmetric and confining theory at strong coupling and
a bulk transition to a chirally symmetric phase (at b
52Nc /g2.4.73, 4.47, and 4.12, respectively).

It may appear that these results are in contradiction
with the results of Appelquist et al. mentioned above,
according to which chiral symmetry should be broken
for Nf,12 (Nc53), but this is not the case, since the
condensate is expected to be exponentially small. In
other words, in order to reproduce the subtle mecha-
nism of chiral breaking by large-distance Coulomb ex-
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changes or large-size instantons, the lattice has to in-
clude the relevant scales,66 which is not the case in the
present lattice simulations.

The present lattice results more closely resemble the
results in the interacting instanton liquid discussed in
Sec. VII.B.4. There we found a line of (rather robust
first-order) transitions that touches T50 near Nf.5. A
large drop in the quark condensate in going from Nf
52,3 to Nf54 observed by the Columbia group (Chen
and Mawhinney, 1997) may very well be the first indica-
tion of this phenomenon.

Again, there is no inconsistency between the interact-
ing instanton calculation and the results of Appelquist
et al. The interacting instanton liquid model calculation
takes into account the effects of small instantons only. If
small instantons do not break chiral symmetry, then
long-range Coulomb forces or large instantons can still
be responsible for chiral symmetry breaking.67 This
mechanism was studied by a number of authors (Bar-
ducci et al., 1988; Aoki et al., 1990), and the correspond-
ing quark condensate is about an order of magnitude
smaller68 than the one observed for Nf52. We would
therefore argue that, in a practical sense, QCD has two
different phases with chiral symmetry breaking, one in
which the quark condensate is large and generated by
small-size instantons and one in which the condensate is
significantly smaller and due to Coulomb forces or large
instantons. The transition regime is indicated by a wavy
line in Fig. 42(a). Further studies of the mechanisms of
chiral symmetry breaking for different Nf are needed
before final conclusions can be drawn.

Finally, although experiment tells us that confinement
and chiral symmetry breaking go together for Nf52,3,
the two are independent phenomena, and it is conceiv-
able that there are regions in the phase diagram where
only one of them takes place. It is commonly believed
that confinement implies chiral symmetry breaking, but
not even that is entirely clear. In fact, SUSY QCD with
Nf5Nc11 provides a counterexample.69

For comparison we also show the phase diagram of
(N51) supersymmetric QCD [Fig. 42(b)]. As discussed
in Sec. VIII.C, the phase structure of these theories was
recently clarified by Seiberg and collaborators. In this

66This cannot be done by simply tuning the bare coupling to
the critical value for chiral symmetry breaking b.1 because
lattice artifacts create a chirally asymmetric and confining
phase already at b.4 –5. Therefore one has to start at weak
coupling and then go to sufficiently large physical volumes to
reach the chiral symmetry-breaking scale.

67The situation is different at large temperatures because in
that case both Coulomb forces and large instantons are Debye
screened.

68This can be seen from the fact that these authors need an
unrealistically large value of LQCD.500 MeV to reproduce
the experimental value of fp .

69It is usually argued that anomaly matching shows that con-
finement implies chiral symmetry breaking for Nc.2, but
again SUSY QCD provides examples in which anomaly-
matching conditions work out in subtle and unexpected ways.
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case, the lower boundary of the conformal domain is at
Nf5(3/2)Nc . Below this line the dual theory based on
the gauge group SU(Nf2Nc) loses asymptotic freedom.
In this case, the excitations are IR free ‘‘dual quarks’’ or
composite light baryons in terms of the original theory.
Remarkably, the t’ Hooft matching conditions between
the original (short-distance) theory and the dual theory
based on a completely different gauge group work out
exactly. The theory becomes confining for Nf5Nc11
and Nf5Nc . In the first case, chiral symmetry is pre-
served, and the low-energy excitations are massless
baryons. In the second case, instantons modify the ge-
ometry of the space of possible vacua, the point where
the excitations are massless baryons is not allowed, and
chiral symmetry has to be broken. Note that, in ordinary
QCD, the ’t Hooft matching conditions cannot be satis-
fied for a confining phase without chiral symmetry
breaking (for NcÞ2). For an even smaller number of
flavors, 0,Nf<Nc21, massless SUSY QCD does not
have a stable ground state. The reason is that instanton/
anti-instanton molecules generate a positive vacuum en-
ergy density, which decreases with the Higgs expectation
value, so that the ground state is pushed to infinitely
large Higgs vacuum expectation value.

We have not shown the phase structure of SUSY
QCD with N.1 gluinos. In some cases (e.g., N54, Nf
50 or N52, Nf54), the beta function vanishes and the
theory is conformal, although instantons may still cause
a finite charge renormalization. As already mentioned,
the low-energy spectrum of the N52 theory was re-
cently determined by Seiberg and Witten. The theory
does not have chiral symmetry breaking or confinement,
but it contains monopoles/dyons which become massless
as the Higgs vacuum expectation value is decreased.
This can be used to trigger confinement when the theory
is perturbed to N51.

To summarize, there are many open questions con-
cerning the phase structure of QCD-like theories and
many issues to be explored in future studies, especially
on the lattice. The location of the lower boundary of the
conformal domain and the structure of the chirally
asymmetric phase in the domain Nf54 –12 should cer-
tainly be studied in more detail. Fascinating results have
clarified the rich (and sometimes rather exotic) phase
structure of SUSY QCD. To what extent these results
will help our understanding of nonsupersymmetric theo-
ries remains to be seen. In any event, it is certainly clear
that instantons and anomalies play a very important, if
not dominant, role in both cases.

Note added in proof.
Since this manuscript was prepared, the subject of in-

stantons in QCD has continued to see many interesting
developments. We would like to briefly mention some of
these, related to instanton searches on the lattice, the
relation of instantons with confinement, instantons and
charm quarks, instantons at finite chemical potential,
and instantons in supersymmetric theories.

Significant progress was made studying topology on
the lattice using improved operators, renormalization
group techniques, and fermionic methods. Also, first re-
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sults of studying instantons in the vicinity of the phase
transition in full QCD were reported. As an example for
the use of improved actions we mention results of Colo-
rado group (DeGrand, Hasenfratz, and Kovacs, 1997) in
pure gauge SU(2). They find that chiral symmetry
breaking and confinement are preserved by inverse
blocking (unlike ‘‘cooling’’) preserves even close
instanton–antiinstanton pairs. The instanton size distri-
bution is peaked at r.0.2 fm, and large instantons are
suppressed.

Low-lying eigenstates of the Dirac operator were
studied by the MIT group (Ivanenko and Negele, 1997).
They find that the corresponding wave functions are
spatially correlated with the locations of instantons, pro-
viding support for the picture of the quark condensate as
a collective state built from instanton zero modes. In
addition to that, they studied the importance of low-
lying states in hadronic correlation functions. They dem-
onstrate that the lowest ;100 modes (out of ;10 6) are
sufficient to quantitatively reproduce the hadronic
ground state contribution to the r and p meson correla-
tion functions.

In addition to that, first attempts were made to study
instantons in the vicinity of the finite temperature phase
transition in full QCD (de Forcrand, Perez, Hetrick, and
Stamatescu, 1998). Using the cooling technique to iden-
tify instantons, they verified the T dependence of the
instanton density discussion in Sec. VII.A. They observe
polarized instanton-antiinstanton pairs above Tc, but
these objects do not seem to dominate the ensemble.
This point definitely deserves further study, using im-
proved methods and smaller quark masses.

In the main text we stated that there is no confine-
ment in the instanton model. Recently, it was claimed
that instantons generate a linear potential with a slope
close to the experimental value 1 GeV/fm (Fukushima,
Suganuma, Tanaka, Toki, and Sasaki, 1997). This
prompted Chen, Negele, and Shuryak (1998) to reinves-
tigate the issue, and perform high statistics numerical
calculations of the heavy-quark potential in the instan-
ton liquid at distances up to 3 fm. The main conclusions
are (i) the potential is larger and significantly longer
range than the dilute gas result Eq. (208); (ii) a random
ensemble with a realistic size distribution leads to a po-
tential that is linear even for large R . 3 fm; (iii) the
slope of the potential is still too small, K.200 MeV/fm.
This means that the bulk of the confining forces still has
to come from some (as of yet?) unidentified objects with
small action. These objects may turn out to be large in-
stantons, but that would still imply that the main contri-
bution is not semiclassical. Nevertheless, the result that
the heavy quark potential is larger than expected is good
news for the instanton model. It implies that even
weakly bound states and resonances can be addressed
within in the model.

We also did not discuss the role of charm quarks in
the QCD vacuum. However, the color field inside a
small-size instantons Gmn.1 GeV2 is comparable to the
charm quark mass squared mc

2.2 GeV2, so one might
expect observable effects due to the polarization of
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charm quark inside ordinary hadrons. Recently, it was
suggested that CLEO observations of an unexpectedly
large branching ratio B → h8K (as well as inclusive B
→h81•••) provide a smoking gun for such effects (Hal-
perin and Zhitnitsky, 1998). The basic idea is that these
decays proceed via Cabbibo-unsuppressed b → c̄cs
transition, followed by c̄c → h8. The charm content of
the h8 in the instanton liquid was estimated by Shuryak
and Zhitnitsky (1997), and the result is consistent with
what is needed to understand the CLEO data. Another
interesting possibility raised in Halperin and Zhitnitsky
(1997) is that polarized charm quarks give a substantial
contribution to the spin ( of the nucleon. A recent in-
stanton calculation only finds a contribution in the range
Dc/(52(0.08–0.20) (Blotz and Shuryak, 1997), but the
value of Dc remains an interesting question for future
deep inelastic scattering experiments (e.g., Compass at
CERN). In the context of (polarized) nucleon structure
functions we should also mention interesting work on
leading and nonleading twist operators (see Balla,
Polyakov, and Weiss, 1997, and references therein).

Finally, Bjorken (1997) discussed the possibility that
instantons contribute to the decay of mesons containing
real c̄c pairs (Bjorken, 1997). A particularly interesting
case is the hc, which has three unusual 3-meson decay
channels (h8pp , hpp , and KKp), which contribute
roughly 5% each to the total width. This fits well with
the typical instanton vertex ūud̄ds̄s . In general, all of
these observables offer the chance to detect nonpertur-
bative effects deep inside the semi-classical domain.

Initial efforts were made to understand the instanton
liquid at finite chemical potential (Schäfer, 1997). The
suggestion made in this work is that the role that mol-
ecules play in the high temperature phase is now played
by more complicated ‘‘polymers’’ that are aligned in the
time direction. More importantly, it was suggested that
instanton lead to the formation of diquark condensates
in high density matter (Alford, Rajagopal, and Wilczek,
1997; Rapp, Schäfer, Shuryak, and Velkovsky, 1997). In
the high density phase chiral symmetry is restored, but
SU(3) color is broken by a Higgs mechanism.

Instanton effects in SUSY gauge theories continue to
be a very active field. For N 5 2 (Seiberg-Witten) theo-
ries the n-instanton contribution was calculated explic-
itly (Dorey, Khoze, and Mattis, 1997; Dorey, Hol-
lowood, Khoze, and Mattis, 1997), and as a by-product
these authors also determine the (classical) n-instanton
measure in the cases N 5 1 and N 5 0 (non-SUSY).
Yung also determined the one-instanton contribution to
higher derivative operators beyond the SW effective La-
grangian (Yung, 1997). Another very interesting result is
the generalization of the Seiberg-Witten solution to an
arbitrary number of colors Nc (Douglas and Shenker,
1995). This result sheds some light on the puzzling prob-
lem of instantons in the large Nc limit. The large Nc
limit is usually performed with g2Nc held fixed, and
in that case instantons amplitudes are suppressed by
exp(2Nc). However Douglas and Shenker (1995) found
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
that (at least in the case N52) this is not the correct way
to take the large Nc limit (if we want to keep the physics
unchanged).

A comparison of the running of the effective charge in
N52, 1 SUSY QCD and QCD was performed by Ran-
dall, Rattazzi, and Shuryak (1998). In N52 SUSY QCD,
the Seiberg-Witten solution shows that instantons accel-
erate the growth of the coupling. As a result, the cou-
pling blows up at a scale LNP.LQCD where the pertur-
bative coupling is still small. A similar phenomenon
takes place in QCD if the instanton correction to the
running coupling is estimated from the formula of Cal-
lan, Dashen, and Gross. This might help to explain why
in QCD the nonperturbative scale LNP.Lx SB.1 GeV
.LQCD.200 MeV.
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APPENDIX: BASIC INSTANTON FORMULAS

1. Instanton gauge potential

We use the following conventions for Euclidean gauge
fields: The gauge potential is Am5Am

a (la/2), where the
SU(N) generators satisfy @la,lb#52ifabclc and are
normalized according to tr@lalb#52dab. The covariant
derivative is given by Dm5]m2iAm and the field-
strength tensor is

Fmn5]mAn2]nAm2i@Am ,An# . (A1)

In our conventions, the coupling constant is absorbed
into the gauge fields. Standard perturbative notation
corresponds to the replacement Am→gAm . The single-
instanton solution in regular gauge is given by

Am
a 5

2hamnxn

x21r2 , (A2)

and the corresponding field strength is

Gmn
a 52

4hamnr2

~x21r2!2 , (A3)

~Gmn
a !25

192r4

~x21r2!4 . (A4)

The gauge potential and field strength in singular gauge
are
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Am
a 5

2h̄amnxnr2

x2~x21r2!
, (A5)

Gmn
a 52

4r2

~x21r2!2

3S h̄amn22h̄ama

xaxn

x2 22h̄aan

xmxa

x2 D . (A6)

Finally, an n-instanton solution in singular gauge is
given by

Am
a 5h̄amn]n ln P~x !, (A7)

P~x !511(
i51

n r i
2

~x2zi!
2 . (A8)

Note that all instantons have the same color orientation.
For a construction that gives the most general
n-instanton solution, see Atiyah et al. (1977).

2. Fermion zero modes and overlap integrals

In singular gauge, the zero-mode wave function
iD” f050 is given by

fan5
1

2&pr
AP F]” S F

P D G
nm

Uabemb , (A9)

where F5P21. For the single-instanton solution, we
get

fan~x !5
r

p

1

~x21r2!3/2 F S 12g5

2 D x”

Ax2G
nm

Uabemb .

(A10)

The instanton-instanton zero-mode density matrices are

fI~x ! iafJ
†~y ! jb5

1
8

wI~x !wJ~y !S x” gmgny”
12g5

2 D
ij

^ ~UItm
2tn

1UJ
†!ab , (A11)

fI~x ! iafA
† ~y ! jb52

i

2
wI~x !wA~y !S x” gmy”

11g5

2 D
ij

^ ~UItm
2UA

† !ab , (A12)

fA~x ! iafI
†~y ! jb5

i

2
wA~x !wI~y !S x” gmy”

12g5

2 D
ij

^ ~UAtm
1UI

†!ab , (A13)

with

w~x !5
r

p

1

Ax2~x21r2!3/2
. (A14)

The overlap matrix element is given by

TAI5E d4xfA
† ~x2zA!iD” fI~x2zI!

5rm Tr~UItm
2UA

† !
1

2p2r

d

dr
M~r !, (A15)
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with

M~r !5
1
r E

0

`

dpp2uw~p !u2J1~pr !. (A16)

The Fourier transform of the zero-mode profile is given
by

w~p !5pr2
d

dx
„I0~x !K0~x !2I1~x !K1~x !…U

x5pr/2

.

(A17)

3. Properties of h symbols

We define four-vector matrices

tm
65~tW ,7i !, (A18)

where tatb5dab1ieabctc and

tm
1tn

25dmn1ihamnta, (A19)

tm
2tn

15dmn1ih̄amnta, (A20)

with the h symbols given by

hamn5eamn1damdn42dandm4 , (A21)

h̄amn5eamn2damdn41dandm4 . (A22)

The h symbols are (anti) self-dual in the vector indices

hamn5
1
2

emnabhaab , h̄amn52
1
2

emnabh̄aab

hamn52hanm . (A23)

We have the following useful relations for contractions
involving h symbols

hamnhbmn54dab , (A24)

hamnhamr53dnr , (A25)

hamnhamn512, (A26)

hamnharl5dmrdnl2dmldnr1emnrl , (A27)

hamnhbmr5dabdnr1eabchcnr , (A28)

hamnh̄bmn50. (A29)

The same relations hold for h̄amn , except for

h̄amnh̄arl5dmrdnl2dmldnr2emnrl . (A30)

Some additional relations are

eabchbmnhcrl5dmrhanl2dmlhanr

1dnlhamr2dnrhaml , (A31)

elmnshars5drlhamn1drnhalm1drmhanl . (A32)
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4. Group integration

In order to perform averages over the color group, we
need the following integrands over the invariant
SU(Nc) measure:

E dUUijUkl
† 5

1
Nc

d jkd li , (A33)

E dUUijUkl
† UmnUop

†

5
1

Nc
2 d jkd lidnodmp1

1

4~Nc
221 !

~la! jk~la! li

3~lb!no~lb!mp . (A34)

Additional results can be found in Creutz (1983). These
results can be rearranged using the SU(N) Fierz trans-
formation,

~la! ij~la!kl52
2

Nc
d ijdkl12d jkd il . (A35)
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422 T. Schäfer and E. V. Shuryak: Instantons in QCD
Brown, G. E., and M. Rho, 1978, Comments Nucl. Part. Phys.
18, 1.

Brown, L. S., R. D. Carlitz, D. B. Creamer, and C. Lee, 1978,
Phys. Rev. D 17, 1583.

Brown, L. S., and D. B. Creamer, 1978, Phys. Rev. D 18, 3695.
Caldi, D., 1977, Phys. Rev. Lett. 39, 121.
Callan, C. G., R. Dashen, and D. J. Gross, 1976, Phys. Lett. B

63, 334.
Callan, C. G., R. Dashen, and D. J. Gross, 1978a, Phys. Rev. D

17, 2717.
Callan, C. G., R. F. Dashen, and D. J. Gross, 1978b, Phys. Rev.

D 18, 4684.
Callan, C. G., R. F. Dashen, and D. J. Gross, 1979, Phys. Rev.

D 19, 1826.
Campostrini, M., A. DiGiacomo, and Y. Gunduc, 1989, Phys.

Lett. B 225, 393.
Campostrini, M., A. DiGiacomo, and H. Panagopoulos, 1988,

Phys. Lett. B 212, 206.
Caracciolo, S. R., A. P. Edwards, and A. D. Sokal, 1995, Phys.

Rev. Lett. 75, 1891.
Carlitz, R. D., and D. B. Creamer, 1979a, Ann. Phys. (N.Y.)

118, 429.
Carlitz, R. D., and D. B. Creamer, 1979b, Phys. Lett. B 84, 215.
Carvalho, C. A. D., 1980, Nucl. Phys. B 183, 182.
Chandrasekharan, S., 1995, Nucl. Phys. B (Proc. Suppl.) 42,

475.
Chemtob, M., 1981, Nucl. Phys. B 184, 497.
Chen, D., and R. D. Mawhinney, 1997, Nucl. Phys. B (Proc.

Suppl.) 53, 216.
Chen, D., J. Negele, and E. Shuryak, 1998, ‘‘Instanton-induced

static potential in QCD, revisited,’’ MIT preprint.
Chernodub, M. N., and F. V. Gubarev, 1995, JETP Lett. 62,

100.
Chernyshev, S., M. A. Nowak, and I. Zahed, 1996, Phys. Rev.

D 53, 5176.
Christ, N. 1996, talk given at RHIC Summer Study 96,

Brookhaven National Laboratory.
Christos, G. A., 1984, Phys. Rep. 116, 251.
Christov, C. V., A. Blotz, H. Kim, P. Pobylitsa, T. Watabe, T.

Meissner, E. Ruiz-Ariola, and K. Goeke, 1996, Prog. Part.
Nucl. Phys. 37, 91.

Chu, M. C., J. M. Grandy, S. Huang, and J. W. Negele, 1993a,
Phys. Rev. Lett. 70, 225.

Chu, M. C., J. M. Grandy, S. Huang, and J. W. Negele, 1993b,
Phys. Rev. D 48, 3340.

Chu, M. C., J. M. Grandy, S. Huang, and J. W. Negele, 1994,
Phys. Rev. D 49, 6039.

Chu, M.-C., M. Lissia, and J. W. Negele, 1991, Nucl. Phys. B
360, 31.

Chu, M. C., and S. Schramm, 1995, Phys. Rev. D 51, 4580.
Claudson, M., E. Farhi, and R. L. Jaffe, 1986, Phys. Rev. D 34,

873.
Cohen, E., and C. Gomez, 1984, Phys. Rev. Lett. 52, 237.
Coleman, S., 1977, ‘‘The uses of instantons,’’ Proceedings of

the 1977 School of Subnuclear Physics, Erice (Italy), repro-
duced in Aspects of Symmetry (Cambridge University Press,
Cambridge, England, 1985), p. 265.

Cooper, F., A. Khare, and U. Sukhatme, 1995, Phys. Rep. 251,
267.

Corrigan, E., P. Goddard, and S. Templeton, 1979, Nucl. Phys.
B 151, 93.

Creutz, M., 1983, Quarks, gluons and lattices (Cambridge Uni-
versity Press, Cambridge).
Rev. Mod. Phys., Vol. 70, No. 2, April 1998
Crewther, R. J., P. D. Vecchia, G. Veneziano, and E. Witten,
1979, Phys. Lett. B 88, 123.

Damgaard, P. H., U. M. Heller, A. Krasnitz, and P. Olesen,
1997, Phys. Lett. B 400, 169.

de Forcrand, F., and K.-F. Liu, 1992, Phys. Rev. Lett. 69, 245.
de Forcrand, P., M. G. Perez, J. E. Hetrick, and I.-O.

Stamatescu, 1997, hep-lat/9802017.
de Forcrand, P., M. G. Perez, and I.-O. Statamescu, 1995, Nucl.

Phys. Proc. Suppl. 47, 777.
de Forcrand, P., M. G. Perez, and I.-O. Stamatescu, 1997, Nucl.

Phys. B 499, 409.
DeGrand, T., A. Hasenfratz, and T. G. Kovacs, 1997,

hep-lat/9710078.
DeGrand, T., R. Jaffe, K. Johnson, and J. Kiskis, 1975, Phys.

Rev. D 12, 2060.
DelDebbio, L., M. Faber, J. Greensite, and S. Olejnik, 1997,

Nucl. Phys. Proc. Suppl. 53, 141.
Deng, Y., 1989, Nucl. Phys. B (Proc. Suppl.) 9, 334.
Dey, M., V. L. Eletsky, and B. L. Ioffe, 1990, Phys. Lett. B 252,

620.
Diakonov, D. I., 1995, in International School of Physics, En-

rico Fermi, Course 80, Varenna, Italy.
Diakonov, D., 1996, Prog. Part. Nucl. Phys. 36, 1.
Diakonov, D. I., and A. D. Mirlin, 1988, Phys. Lett. B 203, 299.
Diakonov, D. I., and V. Y. Petrov, 1984, Nucl. Phys. B 245,

259.
Diakonov, D. I., and V. Y. Petrov, 1985, Sov. Phys. JETP 62,

204.
Diakonov, D. I., and V. Y. Petrov, 1986, Nucl. Phys. B 272,

457.
Diakonov, D. I., and V. Y. Petrov, 1994, Phys. Rev. D 50, 266.
Diakonov, D. I., and V. Y. Petrov, 1996, in Continuous Ad-

vances in QCD 1996 (World Scientific, Singapore).
Diakonov, D. I., V. Y. Petrov, and P. V. Pobylitsa, 1988, Nucl.

Phys. B 306, 809.
Diakonov, D., V. Petrov, and P. Pobylitsa, 1989, Phys. Lett. B

226, 372.
Diakonov, D. I., and M. Polyakov, 1993, Nucl. Phys. B 389,

109.
Dine, M., and W. Fischler, 1983, Phys. Lett. B 120, 137.
Dorey, N., T. J. Hollowood, V. V. Khoze, and M. P. Mattis,

1997, hep-th/9709072.
Dorey, N., V. Khoze, and M. Mattis, 1996a, Phys. Rev. D 54,

2921.
Dorey, N., V. Khoze, and M. Mattis, 1996b, Phys. Rev. D 54,

7832.
Dorey, N., V. V. Khoze, and M. P. Mattis, 1997,

hep-th/9708036.
Dorokhov, A. E., and N. I. Kochelev, 1990, Z. Phys. C 46, 281.
Dorokhov, A. E., and N. I. Kochelev, 1993, Phys. Lett. B 304,

167.
Dorokhov, A. E., N. I. Kochelev, and Y. A. Zubov, 1993, Int.

J. Mod. Phys. A 8, 603.
Dorokhov, A. E., Y. A. Zubov, and N. I. Kochelev, 1992, Sov.

J. Part. Nucl. 23, 522.
Douglas, M. R., and S. H. Shenker, 1995, Nucl. Phys. B 447,

271.
Dowrick, N., and N. McDougall, 1993, Nucl. Phys. B 399, 426.
Dubovikov, M. S., and A. V. Smilga, 1981, Nucl. Phys. B 185,

109.
Eguchi, T., P. B. Gilkey, and A. J. Hanson, 1980, Phys. Rep.

66, 213.
Eletskii, V. L., and B. L. Ioffe, 1993, Phys. Rev. D 47, 3083.
Eletsky, V. L., 1993, Phys. Lett. B 299, 111.
Eletsky, V. L., and B. L. Ioffe, 1988, Sov. J. Nucl. Phys. 48, 384.
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