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Is there a fundamental lower bound on viscosity? To answer this question, we can look at the coldest and hottest
fluids that laboratories are able to produce.
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Introduction

From everyday experience, we have an intuitive feel
for how a “good” fluid behaves. A good fluid, such
as water, supports complicated flow patterns that de-
cay slowly over time. In contrast, in a “poor” fluid, like
honey or tar, we cannot observe waves or eddies, and
flow processes decay quickly. Far beyond the realm of
the everyday, experiments on ultracold gases and the ex-
tremely hot quark-gluon plasma are now allowing us to
explore fundamental aspects of fluid mechanics. This
article explores how results from studying such seem-
ingly different systems are helping us address the ques-
tion: Can there be such a thing as a perfect fluid?

The physical quantity that distinguishes good from
poor fluids is the shear viscosity η (Fig. 1), which is a
measure of the friction force F per unit area A created
by a shear flow with transverse flow gradient ∇yvx,

F
A

= η∇yvx . (1)

The SI unit for viscosity is a pascal second (Pa · s).
Given that we define good fluids as having a low shear
viscosity, it may be disconcerting to think that the exper-
imental values of η for water, liquid helium, cold atomic
gases, and hot quark-gluon plasmas—all described as
“good” fluids—vary by some 24 orders of magnitude.
For example, the shear viscosity of a cold atomic Fermi
gas is ∼ 2× 10−15 Pa · s, while the shear viscosity of the
quark-gluon plasma produced recently at the Relativis-
tic Heavy Ion Collider (RHIC)—and dubbed a “perfect
fluid”—is ∼ 5× 1011 Pa · s.

Fluid flows are described by a differential equation
called the Navier-Stokes equation. The Reynolds num-
ber, which is the ratio of inertial to viscous forces in the
Navier-Stokes equation, determines the physical behav-
ior of the solutions to this equation. Specifically, the
kinds of flows that we associate with good fluidity are
characterized by large Reynolds numbers.

The Reynolds number is given by

Re = (
mn
η

)vL, (2)

FIG. 1: Viscosity—the ratio between a shear force F and the
transverse gradient in a velocity profile ∇yvx—causes dissi-
pation in a fluid, which converts part of the kinetic energy in
the flow to heat. A “good” fluid is therefore characterized by
a small shear viscosity. (Illustration: Carin Cain)

where v and L are the characteristic velocity and
length scale of the flow, respectively, and mn is the
fluid’s mass density. We note that the first term, (mn/η),
is solely a property of the fluid.

Since mvL has units of angular momentum, η/n can
be measured in units of h̄. The ratio η/(h̄n) is a useful
measure of fluidity, but it cannot be directly applied to
relativistic fluids for which the particle number is not
conserved. Again, we can look to the Reynolds number
for guidance. In a relativistic fluid, the Reynolds num-
ber is defined in terms of η/s, where s is the entropy
density. Since for many fluids the entropy per parti-
cle in units of Boltzmann’s constant kB is of order one,
the ratio η/s in units of h̄/kB can be used to compare
both relativistic and nonrelativistic fluids. Another way
to think about the ratio η/s is to realize that shear vis-
cosity determines the amount of entropy produced by
time-irreversible, dissipative, effects, so this ratio mea-
sures the relative change in entropy over a characteristic
time L/v.

The ratio η/s in units of h̄/kB for many good fluids is
of order one. Water near the triple point reaches η/s ' 2
and measurements in liquid helium give ratios as low as
η/s ' 0.7, see Ref. [1] for an overview. This leads us to
the question: Can we observe fluids for which η/s is
arbitrarily small, or is there a fundamental limit to flu-
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idity?

Estimating the fundamental lower
bound on viscosity

A first hint that a lower limit on viscosity may exist
comes from the molecular theory of transport phenom-
ena in dilute gases. This theory goes back to Maxwell,
who realized that shear viscosity is related to momen-
tum transport by individual molecules. A simple esti-
mate of the shear viscosity of a dilute gas is

η =
1
3

npl, (3)

where n is the density, p is the average momentum
of the molecules, and l is the mean free path. Since the
mean free path varies inversely with the density n, the
shear viscosity of a dilute gas is, to good approximation,
independent of density. The fact that the viscosity of a
dilute gas does not depend on its density has some in-
teresting implications. For example, it means that the
damping of a pendulum caused by the surrounding air
is independent of atmospheric pressure. This counterin-
tuitive result is confirmed by experiment, going back to
measurements carried out by Maxwell himself [2].

At fixed density and temperature the shear viscosity is
only proportional to the mean free path, which will be-
come shorter as the particles in the fluid start to interact
more strongly. We expect, however, that there is a limit
to how small η can become. Shear viscosity is a measure
of the ability of a fluid to transport momentum from one
point to another, and quantum mechanics limits the ac-
curacy with which momentum and position can be si-
multaneously determined. Based on Heisenberg’s un-
certainty principle we expect that pl >∼ h̄. Using s ∼ kBn,
this relation implies a lower bound of η/s >∼ h̄/kB[3].

There are many possible objections to this simple ar-
gument. First of all, kinetic theory is not applicable in
the regime pl ∼ h̄, because there are no well defined
quasiparticles. Also, there are many systems for which
the entropy per particle can become much larger than
kB. Is it possible to make the lower bound on viscosity
more precise?

Enter string theory

Perhaps surprisingly, a precise value of the bound on
viscosity comes not from transport theory, but from a
calculation in string theory. The now famous AdS/CFT
(anti-de Sitter/Conformal Field Theory) conjecture says
there is a correspondence between certain field theories
in four dimensions, and string theory on curved, higher
dimensional spaces (see Ref. [4] for a recent pedagogi-
cal overview). What is remarkable about the correspon-

dence is that in the limit that the field theory becomes
very strongly coupled—meaning the particles of the the-
ory are strongly interacting—the corresponding string
theory reduces to classical Einstein gravity. The most
studied example of the correspondence is the equiva-
lence between the large Nc limit of a supersymmetric ex-
tension of QCD, N = 4 superconformal QCD (the CFT
of AdS/CFT), and string theory on AdS5 × S5. Here,
Nc is the number of colors in the field theory, AdS5 is
five-dimensional anti-de Sitter space—a solution of the
Einstein equations with a negative cosmological con-
stant—and S5 is a 5 sphere. The boundary of AdS5 × S5
is four-dimensional Minkowski space. In order to study
the boundary theory at finite temperature one has to
consider solutions of Einstein’s equations that contain
a black hole in the AdS5 space. The temperature of the
field theory is equal to the Hawking temperature of the
back hole.

The shear viscosity of a plasma that sits on the bound-
ary of this space is determined by the absorptive part of
the stress tensor correlation function. The stress tensor is
the source of a gravitational field in the five-dimensional
geometry, and the shear viscosity of the plasma can be
related to the absorption of gravitational waves by the
black hole. Policastro et al. computed η/s in the strong
coupling limit of superconformal QCD and found [5]
that it was equal to

h̄
4πkB

(∼ 0.08
h̄

kB
). (4)

This result is universal—it applies to all theories that
have a classical gravitational dual—and any corrections
to account for the fact that the coupling in the CFT is not
infinite will only increase the ratio η/s. Kovtun, Son,
and Starinets (KSS) conjectured that η/s ≥ h̄/(4πkB) is
a universal lower bound, valid for all fluids [6]. We now
know that this conjecture is not strictly true—there are
theories in which corrections lower the ratio η/s—but
these violations are themselves bounded [7]. However,
the precise value of the universal lower bound is not
known at present.

The shear viscosity to entropy density ratio of helium
exceeds the KSS bound h̄/(4πkB) by almost an order of
magnitude. But are there fluids in nature that approach
this lower bound? Remarkably, the two best candidates
are the coldest and hottest fluids that can be produced
in the laboratory.

From the coldest fluid on earth . . .

The coldest fluid is made from optically trapped 6Li
atoms. 6Li is a fermion, and it can be trapped in two
different hyperfine states. We can view these states as
the “up” and “down” states of a nonrelativistic spin
1/2 particle. The interaction between spin-up and spin-
down particles can be tuned via a Feshbach resonance,
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FIG. 2: The viscosity of a cold atomic Fermi gas can be de-
termined by analyzing the gas as it expands. The top row
of images shows the expansion of the gas after it is released
from a nonrotating trap (the time after release is shown above).
The bottom two rows show the expansion when the gas is re-
leased from a rotating trap. The rotational frequency (left axis)
is given in units of the axial trap frequency. (From Ref. [8].)

where the two particles form a bound state with zero
binding energy. On resonance the two-body scattering
length diverges and at this so-called “unitarity limit” the
only dimensionful quantity describing the atomic gas is
the particle density. As a consequence, the viscosity in
units of h̄ must be a multiple of the density n.

Nearly perfect fluidity is observed in experiments on
cold atom gases like the one shown in Fig. 2 (from Ref.
[8]). The top row shows the expansion of a Fermi gas
out of a deformed trap after the trapping potential is re-
moved. In hydrostatic equilibrium the pressure gradi-
ent in the short (transverse) direction is larger than the
one in the long (axial) direction. After the potential is
removed this pressure gradient accelerates the cloud in
the transverse direction, and the cloud eventually elon-
gates in the short direction. Shear viscosity tends to
counteract this expansion and at unitarity, the expansion
is consistent with almost ideal hydrodynamics.

Additional information is obtained if the gas is re-
leased from a slowly rotating trap, as in the second and
third row of Fig. 2. As the cloud becomes spherical, the
rotational motion speeds up, which implies that the mo-
ment of inertia is suppressed. This is the hallmark of
irrotational flow, which is usually observed in superflu-
ids, but at unitarity the moment of inertia is also sup-
pressed in the normal phase of a fluid. A quantitative
analysis of the data shown in Fig. 2 was reported by
John Thomas from Duke University in Ref. [9]. He finds

η/s ' (0.1− 0.5) in units of h̄/kB. This value is even
smaller than an earlier estimate, η/s <∼ 0.5, based on an
analysis of the damping of collective oscillations [10].

. . . to the hottest

Almost ideal hydrodynamic flow was also observed
in a completely different physical system, the quark-
gluon plasma created in heavy-ion collisions at RHIC
at Brookhaven National Laboratory [11–13]. The con-
ditions for creating the quark gluon plasma could not
be more different from the optically trapped cold ions:
The energy in gold-gold collisions at RHIC is 100 GeV
per nucleon, and the nuclei are Lorentz contracted by a
factor of γ ' 100. The transverse radius of a gold nu-
cleus is approximately 6 fm, and on the order of 7000
particles are produced overall. The motion of the parti-
cles is relativistic, and the duration of a heavy-ion event
is ∼ 6 fm/c—about 10−23 s. In order for hydrodynamic
theory to apply to the quark-gluon plasma, this time has
to be large compared to the time it takes for the plasma
to equilibrate.

The most dramatic evidence for hydrodynamic be-
havior in the quark-gluon plasma is the observation of
elliptic flow in noncentral heavy-ion collisions (see Fig.
3 for a schematic illustration of the geometry). Elliptic
flow occurs when the plasma collectively responds to
pressure gradients in the initial state, just as in the case
of cold atomic gases. Hydrodynamic evolution converts
the initial pressure gradients to velocity gradients in the
final state.

In a heavy-ion collision we cannot control the defor-
mation of the initial state, as we can by using specially
designed traps for cold atom gases. Instead, the defor-
mation of the plasma is determined by the shape of the
overlapping region of the colliding nuclei. This shape is
governed by the impact parameter b, the transverse sep-
aration of the two nuclei (Fig. 3). The impact parameter
can be measured on an event-by-event basis using the
azimuthal dependence of the spectra of produced parti-
cles. Once the impact parameter direction is known, the
particle distribution can be expanded in Fourier compo-
nents of the azimuthal angle φ:

p0
dN
d3 p

∣∣∣∣
pz=0

= v0(pT)
(

1 + 2v2(pT)cos(2φ) + 2v4(pT)cos(4φ) + . . .
)

, (5)

where N is the number of particles, p0 is the energy,
and pT = (p2

x + p2
y)1/2 is the transverse momentum. The

Fourier coefficients v2, v4, carry information about the

deformation of the final state and, in particular, a posi-
tive v2 harmonic implies that particles are preferentially
emitted in the short direction, i.e., elliptic flow, just as in
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FIG. 3: Geometry of a high-energy heavy-ion collision. The
left panel shows the collision of two Lorentz-contracted gold
nuclei: the radius of the gold nuclei, RAu, is contracted by γ in
the direction of motion z. The right panel shows the same col-
lision viewed from a direction that is perpendicular to the mo-
tion. The impact parameter, b, is along the x axis, and the re-
maining transverse direction is the y axis. (Illustration: Carin
Cain)

the cold atomic gases. Figure 4 shows that the experi-
mentally measured elliptic flow coefficient can become
as large as 15%, which corresponds to a significant de-
formation in the anisotropy of the particle distribution
(1 + 2v2)/(1− 2v2) ' 1.85.

Shear viscosity slows down the transverse expansion
of the system and reduces v2. A quantitative analysis of
the RHIC data, taken from the work of Paul Romatschke
and Ulrike Romatschke, is shown in Fig. 4[14]. Similar
analyses can be found in [15, 16]. We observe that the
best fit to the data is obtained for η/s ' 0.03 h̄/kB. (Note
that the hydrodynamic fit is not expected to describe the
spectra for pT > 2 GeV, because particles in this range
of momenta are rare and have large mean free paths
and therefore don’t reach equilibrium on such short
time scales.) The best fit value of η/s is smaller than
h̄/(4πkB), but there are significant uncertainties associ-
ated with the anisotropy of the initial state, which can-
not be directly measured, and hydrodynamics breaks
down in the late stages of the evolution when quarks
and gluons hadronize into the observed particles, such
as pions, kaons, and nucleons. A conservative bound
from the RHIC experiments is η/s <∼ 0.4h̄/kB. Cur-
rent work on both the cold atomic gases and the quark
gluon plasma is devoted to sharpening these numeri-
cal estimates, and to correlate the shear viscosity with
other transport properties, like the energy loss of ener-
getic probes.

Future experiments

Ultimately, we would like to understand what nearly
perfect fluids are like: Is momentum transport governed
by quasiparticles, or are there no quasiparticles at all, as

FIG. 4: In the quark-gluon plasma, the viscosity of the plasma
is characterized by the elliptic flow parameter v2 as a func-
tion of the transverse momentum of the produced particles,
pT . The lines show the results of a calculation based on viscous
hydrodynamics [14]. The data (black circles) were obtained by
the STAR collaboration [13]. (From Ref. [14].)

suggested by the AdS/CFT correspondence? There are
several ways to address this question. One approach is
to use quantum Monte Carlo calculations to compute
the spectral function of the energy-momentum tensor.
Kinetic theory predicts that the spectral function con-
tains a peak associated with the contribution of quasi-
particles, whereas the AdS/CFT correspondence leads
to a completely smooth spectral function.

Experimentally, we can study the way hydrodynam-
ics break down as one goes to smaller or even more de-
formed systems, and how shear viscosity is correlated
with other transport properties like the diffusion con-
stant. In heavy-ion collisions, diffusion can be stud-
ied by measuring the extent to which heavy charm and
bottom quarks follow the flow of light quarks. Heavy
quarks are rare, and in the experiment their trajectories
have to be reconstructed from their decay products. As
a consequence, flow data for heavy quarks has not yet
reached the accuracy that has been achieved for light
quarks.

Finally, both theorists and experimentalists are ea-
gerly awaiting data from the Large Hadron Collider
(LHC) at CERN. The LHC will be able to produce a
higher temperature quark-gluon plasma than that RHIC
can currently reach. Data on elliptic flow will tell us
whether hydrodynamics continues to be applicable un-
der these conditions, and how the “perfection” of the
hot plasma at the LHC compares to what was seen at
RHIC.
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