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This chapter is primarily intended as an introductory text, a pedagogical platform, on the phe-
nomenon of turbulence in fluids. For the sake of simplicity, the discussion is mostly limited to the
case of an incompressible (constant-property) newtonian fluid in simple three-dimensional turbulent
flows. Additional complexities related to thermal convection, magnetic forces, nuclear reactions
and so forth are ignored on purpose. The main motivation is to exhibit the general problematic
of turbulence in an as simple as possible physical setting. Modelling prospecting, which aims at
elaborating numerically tractable mathematical models of turbulence, is also brought up.

I. INTRODUCTION

A. A few words on turbulence

The word turbulence is employed to label many dif-
ferent physical phenomena, which exhibit the common
characteristics of disorder and complexity. It is the ubiq-
uitous presence of spontaneous (intrinsic) fluctuations,
distributed over a wide range of length and time scales,
that makes turbulence a worthwhile research topic. The
very nature of the turbulent fluctuations is extremely pe-
culiar. Turbulence has to do with non-linearity; there is
no hint of the non-linear solutions in the linearized ap-
proximations, and strong departure from absolute sta-
tistical equilibrium. With this respect, turbulence is of
prime interest from the viewpoint of both (non-linear)
dynamical systems (Takens & Ruelle [1971]) and irre-
versible statistical mechanics (Monin & Yaglom [1975]).

Most natural and industrial flows are turbulent; turbu-
lence lies at the core of so much of what we observe. Tur-
bulence generally eclipses the laminar (steady and regu-
lar) behavior of the flow, and contributes to a largely en-
hanced energy dissipation, mixing, heat and mass trans-
fer, etc. In astrophysics, interstellar turbulence is said to
be one of the key ingredients of modern theories of star
formation (Kritsuk & Norman [2004]). Turbulence is ex-
pected to play a significant role in solar eruptions, or in
regular pulsations of cepheids.

Non-equilibrium distributions which correspond to tur-
bulent fluctuations depend on the detailed form of the in-
teractions involved in the dynamics; in that sense, turbu-
lence is foremost a problem of fluid mechanics. However,
it seems quite clear that the statistics of turbulence can
not be made determinate, unless the dynamical equations
are supplemented by an additional information about the
turbulent state; turbulence is therefore, also, a problem
of statistical physics. Since pioneering Reynolds’ exper-
iments (Reynolds [1883]), there has been a continuous
effort aiming at elucidating this additional information,
and elaborating a self-consistent theory of turbulence.

The concept of energy cascade, which owes its origin
to Richardson (Richardson [1922]), has been particularly

FIG. 1: Turbulence in a soap film behind a one-dimensional
vertical grid (courtesy Hamid Kellay, Université de Bordeaux
I, France).

important. In 1941, Kolmogorov envisaged a self-similar
cascade of kinetic energy from the large (spatial) scales
to the small scales of motion. Kolmogorov’s cascade is lo-
cal in scale and all statistical information concerning the
large scales is lost, except for the mean energy cascade
rate ε̄ itself. Kolmogorov’s theory (Kolmogorov [1941])
postulates universal, homogeneous and isotropic distri-
butions for the small-scale velocity fluctuations, and pre-
dicts a universal law for the spectrum (in wavenumber k)
of kinetic energy:

E(k) = C ε̄2/3k−5/3,

where C is termed the Kolmogorov’s constant. A large
body of experimental and numerical measurements cor-
roborate the Kolmogorov’s law but higher-order statis-
tics are not universal in the sense of Kolmogorov’s hy-
potheses. These discrepancies are rooted in the spatio-
temporal fluctuations of the (local) cascade rate: The
energy cascade is an highly non-uniform process in space
and time. This feature is usually referred to as inter-
mittency. From the viewpoint of statistical mechanics,
intermittency implies that the macroscopic parameter ε̄
is not sufficient to describe the energy-cascade state of
turbulence.

Once “Kolmogorov’s mean field theory” is abandoned,
a pandora box of possibilities is opened, and a specific
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contact with the dynamics must be achieved. Current
models have not yet managed to establish this contact.
They rely on (a priori) plausible hypotheses, but fail
to relate themselves to the actual dynamics (see Frisch
[1995], for a modern review). More recent works at-
tempt to correlate turbulent velocity fluctuations with
the presence of highly coherent vortical structures (She
& Lévêque [1994], for instance).

The Kolmogorov’s theory is sixty year old, but fun-
damental questions about turbulence remain mainly un-
solved.

B. Suggestions for further readings on turbulence

The following articles on turbulence, accessible to a
general audience, may help to situate the topic of turbu-
lence in the field of modern classical physics:

• “Turbulence: Challenges for Theory and Experi-
ment”
by Uriel Frisch & Stephen Orszag, Physics To-
day, p. 24 (January, 1990)

• “Some comments on Turbulence”
by J. L. Lumley, Phys. Fluids A 4(2), p. 203
(1992)

• “Turbulence near a final answer”
by Uriel Frisch, Physics World, vol. 12, p. 53
(December, 1999)

The following books (among many others) may be
found enlightening on the topics broached in this chapter:

• A first course in turbulence (a reference book on
turbulence)
by H. Tennekes & J. L. Lumley

ed. Mit Press, Cambridge, USA (1972)

• Turbulent flows (textbook of a course taught at
Cornell University)
by S. Pope

ed. Cambridge University Press, Cambridge,
United Kingdom (2000)

C. Content of the chapter

Turbulence is introduced from the standpoint of fluid
mechanics in section II; the need for a statistical treat-
ment is put forward. Turbulent-viscosity modelling of
turbulence is briefly discussed in section III. The statis-
tical mechanics of turbulence are outlined in section IV;
the Kolmogorov’s theory and its shortcomings, related
to the phenomenon of intermittency, are presented. Fi-
nally, section V is devoted to a rapid introduction to the
so-called large-eddy simulation of turbulent flows.

II. TURBULENCE AS A PROBLEM OF FLUID
MECHANICS

A. An historical example: The Poiseuille’s flow

Let us consider the internal flow of an incompressible
newtonian fluid through a long, straight (slightly tilted)
pipe (Fig. 2). This flow is known as the Poiseuille’s flow ;
it has played an historical role in the development of our
understanding of turbulent flows.

FIG. 2: Sketch of the Poiseuille’s flow (in a slightly tilted
pipe); g is the gravitational acceleration; u(r) denotes the
streamwise velocity at a distance r from the axis.

A laminar regime is achieved for low flow rates. The
fluid motion is direct; the streamlines are parallel to the
axis of the pipe. In the stationary regime, the drop in
pressure between the entrance and the exit, here sup-
plemented by gravity, drives the flow against the (inter-
nal) friction forces, resulting from collisions between the
molecules of the fluid.

The (constant-property) newtonian-fluid hypothesis
(see Batchelor [1967]) states that the tangential resis-
tance per unit area, or shearing stress, writes

τ(r) = −µ
du(r)

dr
, (1)

where µ is the dynamic viscosity. µ depends on the mi-
croscopic properties of the fluid. By balancing the forces
along the axis, one obtains

τ(r) =
1

2
Gr, (2)

where G ≡ −dq(Z)/dZ > 0 is the (constant) downward
gradient of the modified pressure q = p + gz. Combining
Eqs. (1) and (2) finally leads to the parabolic velocity
profile

u(r) =
G

4µ
(R2 − r2), (3)

which satisfies the no-slip condition at the boundary.
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Once the velocity profile is known, the flow rate Q
(defined as the volume of fluid which flows through a
section of the pipe per unit time) can be determined:

Q ≡
∫ 2π

0

2πru(r)dr =
πGR4

8µ
. (4)

This is the celebrated Poiseuille’s law, which relates the
flow rate, the radius of the pipe and the (modified) pres-
sure drop (Poiseuille [1841]).

The overall dissipation rate of kinetic energy (per unit
mass) expresses as

εdiss. =
GU

ρ
, (5)

where U ≡ Q/πR2 is the mean velocity over a section.
Using Eq. (4), one gets

G =
8µU

R2
and therefore εdiss. = 8ν

U2

R2
. (6)

ν ≡ µ/ρ is termed the kinematic viscosity, since its di-
mensions (length)2 × (time)−1 do not include mass. ν
is about 0.01 cm2/s for water at standard temperature.
εdiss. corresponds to the (external) energy input required
to maintain the flow stationary, and compensate the loss
of kinetic energy due to viscous friction. In the laminar
regime, one finds that εdiss. is proportional to the kine-
matic viscosity of the fluid and to the square of the mean
velocity of the flow.

The previous computation is relevant only for low flow
rates. Indeed, let us consider a pipe with a radius 1 cm,
titled with a slope 0.1 %. According to the poiseuille’s
law (4), water takes under gravity (assuming the same
pressure at the entrance and the exit) a speed 10 cm/s.
This prediction is correct. However, for a 1 m radius
pipe, the Poiseuille’s law yields (in a similar situation)
a speed 1 km/s. In practice, speeds are obviously much
smaller; the actual flow dissipates much more energy than
predicted by the laminar dissipation law (6). The mean
dissipation rate is no longer proportional to U2, but to U3

(considering rugous walls). Furthermore, the (mean) ve-
locity profile is no longer parabolic. It is almost constant
around the centerline and decreases rapidly to zero near
the boundary. What is the origin of such dissimilarities?

B. The transition to turbulence

As the velocity of the fluid exceeds some critical value,
the stationarity and the regularity of the flow break off.
Small (velocity) disturbances are no longer damped by
the laminar flow, but grow by extracting kinetic energy
from the mean flow. Disordered swirling motions, in
which fluid particles follow complicated (non-brownian)
trajectories, take place (Fig. 3). The flow is turbulent.
In this situation, velocity gradients are much larger than
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FIG. 3: The trajectory of a fluid particle (an infinitesimal
material element of fluid) transported by a statistically ho-
mogeneous and isotropic turbulent flow, does not result from
a sequence of independent random steps (brownian motion).
Occasionally, the fluid particle is trapped in a vortex filament,
which gives rise to anomalous velocity fluctuations.

in the laminar case, and consequently, viscous friction is
strongly enhanced.

In 1883, Osborne Reynolds evidenced this transition
by steadily injecting dye on the centerline of the pipe
(Fig. 4). In the laminar regime, the dye forms a streak
and does not mix with the surrounding fluid, except for
molecular diffusion. Above a certain speed, the streak
becomes unstable and the dye rapidly disperses across
the whole pipe (turbulence is indeed very efficient for
mixing fluids).

FIG. 4: (a): The laminar regime — (b): “The colour band
would all at once mix up with the surrounding water, and
fill the rest of the tube with a mass of coloured water” —
(c): “On viewing the tube by the light of an electric spark,
the mass of colour resolved itself into a mass of more or less
distinct curls, showing eddies” (Reynolds [1883])

When the flow is turbulent, it is preferable to break the
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instantaneous velocity field ui(~x, t) into a mean (ensem-
ble average is meant) value ui(~x, t), which varies slowly
as a function of ~x and t, and a rapidly fluctuating com-
ponent

u′
i(~x, t) ≡ ui(~x, t) − ui(~x, t).

This decomposition is called the Reynolds’ decomposi-
tion.

Obviously, it is not realistic to obtain an ensemble
average in an experiment or in a numerical simulation,
since one can not carry out an infinite number of inde-
pendent realizations. When the turbulent flow is (sta-
tistically) stationary, ergodicity is invoked (Eckmann &
Ruelle [1985]); it is assumed that statistical properties
obtained by averaging over a set of realizations (ensem-
ble averages) coincide with those obtained by averaging
a single realization for a sufficiently long interval of time
(time average):

ui(~x) ≡ lim
N→∞

1

N

N∑

n=1

u
(n)
i (~x, t)

︸ ︷︷ ︸

ensemble average

≈ 1

T

∫ t+T/2

t−T/2

ui(~x, t′)dt′, (7)

where T should be taken (very) large compared to the
correlation time of the turbulent velocity.

The turbulent velocity u′
i(~x, t) has zero mean but

deeply influences the kinetics of the mean flow. Indeed,
the mean flux of momentum writes

ρuiuj = ρui uj
︸ ︷︷ ︸

mean flow

+ ρu′
iu

′
j

︸ ︷︷ ︸

turbulent agitation

, (8)

which implies that the flux of momentum related to the
mean flow is supplemented by the mean flux ρu′

iu
′
j , re-

lated to the turbulent velocity. This latter may be viewed
as an additional stress (acting on the mean flow) result-
ing from the underlying turbulent agitation. This stress
is termed the Reynolds stress. In order to take into ac-
count turbulence in the mean flow dynamics, it is neces-
sary to determine the Reynolds-stress tensor.

C. The kinetics of the mean flow

The equations governing the motion of a newtonian
fluid have been known for long. It dates back to the
works of Navier and Stokes (Navier [1823], Stokes [1843]).
The Navier-Stokes equation stands for the conservation
of the momentum of an infinitesimal material element of
fluid, and satisfies the primary requirement of the second
law of thermodynamics (the rate of energy dissipation be
positive and the process irreversible).
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FIG. 5: Temporal fluctuations of the streamwise velocity in
the turbulent wake behind a vertical cylinder; the fluid is
air (courtesy C. Baudet, Ens-Lyon, France). The velocity
has been measured by using a hot-wire anemometer (Comte-
Bellot [1976]). Turbulent temporal fluctuations do not exhibit
any characteristic temporal period; the signal is said scale-
invariant.

For each component ui(~x, t):

Dui

Dt
≡
(

∂

∂t
+ uj

∂

∂xj

)

ui = −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
. (9)

Here and below, summation over repeated cartesian in-
dices is implied.

Furthermore, it is assumed that the density of the fluid
does not vary; the fluid is considered as incompressible.
The solenoidal condition

∂ui

∂xi
= 0 (10)

follows from the mass conservation. This condition is also
verified by the mean-flow velocity ui and the turbulent
velocity u′

i.

1. The mean-flow equations

By averaging the Navier-Stokes equations, one obtains
for each component ui(~x, t):

(
∂

∂t
+ uj

∂

∂xj
)ui = −1

ρ

∂p̄

∂xi
−

∂u′
iu

′
j

∂xj
+ ν

∂2ui

∂xj∂xj
. (11)

For the kinetic energy (per unit mass) k ≡ 1
2ui

2:

D k

Dt
=

∂

∂xj

(

−1

ρ
uj p +

[

2νSij − u′
iu

′
j

]

ui

)

−
[

2νSij − u′
iu

′
j

]

Sij , (12)
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where

Sij ≡ 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

(13)

is the (symmetric) mean strain-rate tensor.

2. The transition to turbulence and the Reynolds number

The transition to turbulence is related to the prepon-
derance of the turbulent stress u′

iu
′
j (turbulent trans-

port of momentum) over the mean viscous stress −2νSij

(molecular diffusion of momentum) in Eq.(12). Reynolds
(Reynolds [1895]) proposed to quantify the relative effi-
ciency of these two mechanisms by an order parameter
of the flow, defined as

Re ≡ UL

ν
: the so-called Reynolds number, (14)

where U and L characterize respectively the velocity et
the size of the flow.

From the dynamical equations, the Reynolds number
is recovered by assuming that

∫

V

−u′
iu

′
j Sij ∼ U3

L
and

∫

V

|S|2 ∼ U2

L2
. (15)

∫

V
denotes an average over the flow and ∼ means “be-

haves as”.

The turbulent regime corresponds to high Reynolds
numbers, and indicates the supremacy of the turbulent
stress over the mean-flow viscous stress. In that case,
the kinematic viscosity is no longer a relevant parameter
of the mean-flow dynamics; the budget equation for the
kinetic energy becomes

D k

Dt
=

∂

∂xj

transport within the mean flow
︷ ︸︸ ︷
(

−1

ρ
uj p − u′

iu
′
jui

)

+ u′
iu

′
j Sij .

︸ ︷︷ ︸

transfert of energy to turbulence

(16)

The term u′
iu

′
j Sij is important; it stands for a trans-

fert of kinetic energy from the mean flow to the turbulent
agitation. As a rule of thumb, one may claim that the
mean-flow inhomogeneities trigger turbulence. The ki-
netic energy extracted from the mean flow will be even-
tually transformed into heat by viscous dissipation acting
on turbulent motions (at very small length scales).

According to Eq. (15), the overall mean dissipation
rate read

εdiss. =

∫

V

−u′
iu

′
j Sij ∼ U3

L
. (17)

εdiss. does not depend on the viscosity of the fluid: Tur-
bulence is a property of the flow, not of the fluid.

In order to illustrate these results, let us come back to
the Poiseuille’s flow. In the turbulent regime, the pres-
sure drop per unit length expresses as G(ρ, U, R) because
ν is no longer a relevant parameter. A dimensional argu-
ment leads to

G ∼ ρU2

R
. (18)

Concerning the overall mean dissipation rate, one obtains

εdiss. =
GU

ρ
∼ U3

R
, (19)

in agreement with experimental observations.

D. The need for a statistical treatment

In order to determine the turbulent-stress tensor

ρ u′
i(~x, t)u′

j(~x, t),

it is needed to describe the statistics of the turbulent
velocity field. This has been the subject of many stud-
ies based on statistical considerations, where u′

i(~x, t) is
viewed as a random function of (~x, t).

From the Navier-Stokes equation, a dynamical equa-
tion for u′

iu
′
j can be derived by considering

∂u′
iu

′
j

∂t
= u′

i

∂u′
j

∂t
+ u′

j

∂u′
i

∂t
(20)

and by substituting the equations for ∂u′
j/∂t and ∂u′

i/∂t.
This computation leads to the so-called Reynolds-stress
equation, which has been the primary vehicle for much of
the turbulence-modelling efforts.

D ρu′
iu

′
j

Dt
= −

pressure strain-rate tensor
︷ ︸︸ ︷

2 p′S′
ij

− ∂

∂xk

(turbulent+diffusive) transport tensor
︷ ︸︸ ︷
(

p′u′
iδjk + p′u′

jδik + ρu′
iu

′
ju

′
k − ν

∂ ρu′
iu

′
j

∂xk

)

−

production tensor
︷ ︸︸ ︷
(

ρu′
iu

′
k

∂uj

∂xk
+ ρu′

ju
′
k

∂ui

∂xk

)

−

dissipation tensor
︷ ︸︸ ︷

2µ

(

∂u′
i

∂xk

∂u′
j

∂xk

)

, (21)

where S′
ij denotes the turbulent strain-rate tensor.
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The Reynolds-stress equation (21) involves the third-

order tensor u′
iu

′
ju

′
k. Similarly, the equation for u′

iu
′
ju

′
k

would involve the fourth-order tensor u′
iu

′
ju

′
ku′

l as an ad-
ditional unknown, and so forth. This difficulty arises
from the non-linearity of the Navier-Stokes equation. It
means that the Navier-Stokes equation is equivalent to an
infinite hierarchy of statistical equations coupling all the
moments of the velocity field. Any finite subset of this hi-
erarchy is not closed and possesses more unknowns than
are set by the equations of the subset. In this situation,
a (statistical) closure condition must be posed in order
to provide a description with a reduced set of averaged
(macroscopic) quantities. Closure attempts must connect
with the dynamics of turbulence. By understanding how
turbulence behaves, one may hope to guess an appropri-
ate reduced set of modelled constitutive equations, usu-
ally referred to as the Reynolds Averaged Navier-Stokes
equations (see Wilcox [1993], for a comprehensive re-
view).

III. THE TURBULENT-VISCOSITY
MODELLING OF TURBULENCE

A. The concept of turbulent viscosity and related
ideas

Important features of turbulence can be described in
terms of turbulent viscosity. Despite its numerous flaws,
the concept of turbulent viscosity — originally intro-
duced by Boussinesq in 1877 — provides a valuable, sim-
ple contact with the dynamics of turbulence.

The idea behind the turbulent viscosity is to treat the
deviatoric (traceless) part of the turbulent stress ρu′

iu
′
j

like the viscous stress in a newtonian fluid:

−ρu′
iu

′
j +

2

3
ρk′ δij

︸ ︷︷ ︸

isotropic turbulent stress

= 2ρνturb.Sij , (22)

where the (kinematic) turbulent viscosity νturb.(~x, t) can
a priori depend on the position ~x and the time t. This
approach relies on the hypothesis of a turbulent friction
responsible for the diffusive transport of momentum from
the rapid to the slow mean-flow regions. In this context,
the mean-flow equation writes

Duj

Dt
= −1

ρ

∂

∂xj

generalized press.
︷ ︸︸ ︷
(

p̄ +
2

3
ρk′

)

+
∂

∂xi

(
2νeff.Sij

)
, (23)

with the effective viscosity νeff.(~x, t) = ν + νturb.(~x, t) ≈
νturb.(~x, t). An appropriate specification of the turbulent
viscosity is still required.

Similarly, the gradient-diffusion hypothesis states that
the turbulent transport of a scalar field φ(~x, t) is down

the mean scalar gradient:

u′
iφ

′ = −κturb.
∂φ

∂xi
, (24)

where κturb.(~x, t) is the turbulent diffusivity associated to
the scalar field φ. This is analogous to the Fourier’s law
for heat conduction, or, to the Fick’s law for molecular
diffusion.

1. The magnitude of the turbulent viscosity

The magnitude of the turbulent viscosity can be esti-
mated by considering the local mean energy-dissipation
rate (per unit mass)

ε̄ = −u′
iu

′
j Sij . (25)

On the other hand, the turbulent-viscosity hypothesis
yields

ε̄ = 2νturb. |S|2, (26)

where |S|2 =
∑

ij Sij
2
. By comparing the Eqs. (25) and

(26), one finally gets

νturb.

ν
=

−u′
iu

′
j Sij

2ν |S|2
∼ Relocal. (27)

Eq.(27) means that the molecular viscosity is multi-
plied by a factor of the order of the local Reynolds num-
ber (see next section) to give the turbulent viscosity. This
explains the highly dissipative nature of turbulent flows.

Dimensionally, νturb. is equivalent to the product of a
velocity and a length scale. This suggests to write, by
analogy to the kinetic theory for gases,

νturb. = u′ ℓ′, (28)

where u′ and ℓ′ would represent respectively the velocity
and length scales of the turbulent motion.

In the mixing-length model, u′ and ℓ′ are specified on
the basis of the geometry of the flow. In two-equation
models — the so-called (k-ε) model being the prime ex-
ample — u′ and ℓ′ are related to the turbulent kinetic
energy and the turbulent dissipation, for which modelled
constitutive equations are explicated.

2. The mixing-length model (zero-equation model)

The so-called mixing-length model has been proposed
by Prandtl (Prandtl [1925]) for two-dimensional bound-
ary flows. The turbulent viscosity reads

νturb. = ℓ2
m

∣
∣
∣
∣

∂ ux

∂y

∣
∣
∣
∣

(29)
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where y is the coordinate perpendicular to the wall (along
the x axis).

The turbulent length scale is the mixing length and the
velocity scale is locally determined by the mean velocity
gradient:

ℓ′ = ℓm and u′ = ℓm

∣
∣
∣
∣

∂ ux

∂y

∣
∣
∣
∣
. (30)

Note that u′ is zero wherever the mean velocity gradi-
ent is zero. This may be problematic for bounded flows
in some particular circumstances (on the centerline of a
channel flow).

Prandtl’s mixing length may be viewed as the turbu-
lent analog of the mean free path of molecules in the
kinetic theory of gases. The mixing length ℓm must be
specified accordingly to the geometry of the flow. This
specification is usually empirical; it is derived from ex-
periment and observation rather than theory.

A possible generalization of the mixing-length hypoth-
esis read

νturb. = ℓ2
m|S|. (31)

In its generalized form, this model is arguably the sim-
plest modelling of turbulence.

The mixing-length model is valuable in simple flows
such as shear-layer or pressure-driven flows, but cannot
account for the transport effects of turbulence. Indeed,
it implies that the local level of turbulence depends upon
the local generation and dissipation rates. In reality, tur-
bulence may be carried or diffused to locations where no
turbulence is actually being generated at all.

3. One-equation model: The k-model

Independently, Kolmogorov ([1942]) and Prandtl
([1945]) suggested to base the turbulent velocity scale

on the mean turbulent kinetic energy: u′ ∝ k′
1/2

. If the
turbulent length scale is taken as the mixing length, the
turbulent viscosity becomes

νturb. = ℓmk′
1/2

. (32)

A transport equation for k′ is required.

The (exact) dynamical equation for k′ writes

D̄ k′

D̄t
= − ∂

∂xj








1

2
u′

iu
′
iu

′
j +

1

ρ
u′

jp
′

︸ ︷︷ ︸

turbulent transport

+ν
∂k′

∂xj








−u′
iu

′
j Sij

︸ ︷︷ ︸

production: P̄

−ν

(
∂u′

i

∂xj

)2

︸ ︷︷ ︸

dissipation: ε̄

(33)

• −u′
iu

′
j ≈ 2νturb.Sij−2/3 k′δij with νturb. = ℓmk′1/2

according to the turbulent-viscosity hypothesis.

• −1

2
u′

iu
′
iu

′
j +

1

ρ
u′

jp
′ ≈ νturb.

σk

∂k′

∂xj
. This stems from

the gradient-diffusion hypothesis. The empirical
coefficient σk may be viewed as a turbulent Prandtl
number (of order unity) for the kinetic energy.

• from a dimensional argument, the mean dissipation

rate ε̄ = Ck′
3/2

/ℓm where C is a model constant.

Finally, the transport equation for the mean turbulent
kinetic energy writes

D̄ k′

D̄t
= − ∂

∂xj

((

ν +
νturb.

σk

)
∂k′

∂xj

)

+ P̄ − ε̄ (34)

with νturb. = ℓmk′
1/2

and ε̄ = Ck′
3/2

/ℓm together with

the turbulent-viscosity hypothesis for u′
iu

′
j and the spec-

ification of the mixing length ℓm.

The k-model does allow for the transport of turbu-
lence into regions where there is locally no generation. It
is therefore inherently capable of simulating some phe-
nomena more realistically than the mixing-length model.
However the mixing length remains an empirical pa-
rameter, and knowledge is almost totally absent for re-
circulating and three-dimensional flows. This model is
found useful in boundary-layer flows, where the mixing
length is fairly well known.

4. Two-equation model: The (k-ε) model

The (k-ε) model belongs to the class of two-equation
models, which are more efficient in the case of flows in
complex geometry and higher Reynolds numbers. Its de-
velopment is often credited to Jones and Launder ([1972])
but acknowledgement should also be addressed to Kol-
mogorov for his original insight.

The two relevant macroscopic parameters in the (k-ε)
model are the turbulent mean kinetic energy and mean
energy dissipation. From dimensional analysis, one gets

that the turbulent length scale ℓ′ ∼ k′3/2
/ε̄ and the tur-

bulent velocity scale u′ ∼ k′
1/2

. It follows that

νturb. = Cµ
k′

2

ε̄
, (35)

where Cµ is an empirical constant.

The standard model equation for ε̄ is viewed as

D̄ ε

D̄t
=

∂

∂xj

((

ν +
νturb.

σε

)
∂ε̄

∂xj

)

− 2c1
νturb. ε̄

k
Sij

∂ui

∂xj
− c2

ε̄2

k
. (36)
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The five empirical coefficients (Cµ, c1, c2, σk, σε)
are fixed by considering experimental results for simple-
geometry flows.

B. The limit of the turbulent-viscosity concept

The concept of turbulent viscosity is properly applica-
ble only when there is a significant separation between
the length scale of inhomogeneity of the mean field and
the mixing length of the agitation. This condition is
not satisfied in turbulent flows where turbulent motions
display a continuous distribution of scale sizes; turbu-
lent motions do not occur at some characteristic mixing
length. Furthermore, the largest (spatial) scales of the
turbulent motion are as large as the scale of inhomo-
geneity of the mean flow. Consequently, the concept of
a local transport has not much justification, except in a
very crude qualitative sense.

IV. THE STATISTICAL MECHANICS OF
TURBULENCE

This section is devoted to the statistical description of
turbulent motions, also called turbulent eddies. By anal-
ogy with a molecule, an eddy may be seen as a “glob”
of fluid of a given size, or (spatial) scale, that has a cer-
tain structure and life history of its own. The turbulent
activity of the bulk is the net result of the interactions
between the eddies.

It is characteristic of turbulence that fluctuations are
unpredictable in details; however, statistically distinct
properties can be identified and profitably examined.

A. The mean kinetics of the turbulent motion

From the Navier-Stokes equations, one can establish
for each component of the turbulent velocity field u′

i(~x, t):

∂u′
i

∂t
+

∂

∂xj

(

u′
iu

′
j − u′

iu
′
j

)

+

(

u′
j

∂ui

∂xj
+ uj

∂u′
i

∂xj

)

=

− 1

ρ

∂p′

∂xi
+ ν

∂2u′
i

∂xj∂xj
(37)

and for the mean kinetic energy k′ = 1
2 u′

i
2 :

D

Dt
k′ = − ∂

∂xj

(
1

2
u′

iu
′
iu

′
j +

1

ρ
u′

jp
′ − 2νu′

iS
′
ij

)

︸ ︷︷ ︸

turbulent mixing

−u′
iu

′
j Sij

︸ ︷︷ ︸

production

−2ν|S′|2
︸ ︷︷ ︸

dissipation: ε̄

, (38)

where S′
ij denotes the turbulent strain-rate tensor.

FIG. 6: Sketch of the overall kinetics of a turbulent flow.

The transport term is responsible for a turbulent mix-
ing of kinetic energy between the various scales of motion
(eddies). This mixing is peculiar: It achieves a conser-
vative transfert of kinetic energy from the largest eddies
(of size comparable to the scale of inhomogeneity of the
mean flow) to smaller and smaller eddies. This process
is usually referred to as the energy cascade (Richardson
[1922]). The turbulent kinetic energy is ultimately dis-
sipated into thermal energy through the action of the
molecular viscosity.

When turbulence is developed,

− ∂

∂xj

(
1

2
u′

iu
′
iu

′
j +

1

ρ
u′

jp
′ − 2νu′

iS
′
ij

)

≈

− ∂

∂xj

(
1

2
u′

iu
′
iu

′
j +

1

ρ
u′

jp
′

)

(39)

The local energy budget then simplifies as

D

Dt
k′ = − ∂

∂xj

(
1

2
u′

iu
′
iu

′
j +

1

ρ
u′

jp
′

)

︸ ︷︷ ︸

energy cascade

− u′
iu

′
j Sij −2ν|S′|2. (40)

In homogeneous and stationary turbulence, this bud-
get reduces to

−u′
iu

′
j Sij = 2ν|S′|2, (41)

which simply states that the energy received from the
mean flow is eventually dissipated under molecular vis-
cosity. The kinetics of a turbulent flow are summarized
in Fig. 6.

B. The characteristic (length) scales of turbulence;
the turbulent Reynolds number

1. The turbulent two-point velocity correlation

The quantities of most theoretical interest in the sta-
tistical description of turbulence are averages of the form

Rij...(~x, t; ~x′, t′; ...) =
〈

ui(~x, t)uj(~x′, t′) · · ·
〉

(42)
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called velocity correlation functions. A complete specifi-
cation of turbulence implies the knowledge of all corre-
lation functions. The simplest (non-zero) and probably
most important is the two-point correlation function.

In this context, Taylor’s development of two-point ve-
locity correlations laid the groundwork for the modern
statistical approach of (stationary in time) turbulence
(Taylor [1935]):

Rij(~x,~r) ≡ 〈ui(~x, t)uj(~x + ~r, t)〉 (43)

where 〈 〉 now stands for ensemble average. Hereafter,
the primes will be often omitted (for simplicity) to denote
turbulent fluctuations, and the mass density of the fluid
will be taken equal to unity (ρ = 1).

Turbulence that occurs in nature is usually not homo-
geneous. There is frequently important variation of the
local production and transport of turbulence, related to
the inhomogeneity of the mean flow. Despite the impor-
tance of these effects, it is thought that the small-scale
statistical properties of general turbulent flows should
be locally homogeneous and isotropic, and therefore, the
study of idealized homogeneous and isotropic turbulence
is not entirely without interest. In such a case, the tensor
Rij depends only on the separation, or scale, r ≡ |~r|.

It is profitable to break the correlation tensor into
its longitudinal and transverse components (Batchelor
[1967]):

R‖(r) =
1

3
〈u2

i 〉f(r) and R⊥(r) =
1

3
〈u2

i 〉g(r). (44)

Geometrical considerations lead to

Rij(r) =
1

3
〈u2

i 〉
(

f(r) − g(r)

r2
rirj + g(r)δij

)

(45)

and the incompressibility condition yields

g(r) = f(r) +
r

2

df(r)

dr
. (46)

All the components of the correlation tensor Rij can be
deduced from the longitudinal auto-correlation function
f(r).

Note the possibility of adding a term h(r)εijkrk (εijk

is the permutation tensor) within the parentheses in Eq.
(45). Such a term preserves isotropy but would not be
invariant under reflection (parity inversion). Turbulence
is normally expected to be mirror symmetric, and, there-
fore, this extra term is usually omitted. Turbulence in a
rotating frame, however, may not be mirror symmetric.
Dynamo action in plasma also requires turbulence not
symmetric under reflection.

2. The macroscale and the microscale of turbulence

• for r = 0, the (longitudinal) correlation function
R‖(0) = 1

3 〈u2
i 〉 > 0.

FIG. 7: The longitudinal and transverse components of
the velocity along the direction ~r. By definition, R‖(r) =
〈u‖(~x, t)u‖(~x + ~r, t)〉 and R⊥(r) = 〈u⊥(~x, t)u⊥(~x + ~r, t)〉.

• for large enough r, u‖(~x, t) and u‖(~x + ~r, t) are un-
correlated so that R‖(r) = 0.

The behavior of R‖(r) therefore exhibits a correlation
length, which also characterizes the size of the largest ed-
dies. This macroscale is usually called the integral scale;
it is estimated by

L ≡
∫ ∞

0

f(r)dr : integral scale of turbulence. (47)

Experimental studies indicate that the integral scale
is of the order of the size of the (local) mean-flow in-
homogeneity (see Fig. 8). In the context of turbulent
viscosity, the integral scale may be viewed as the mixing
length: L ≈ ℓm.

A microscale can be exhibited by describing the be-
havior of f(r) for r ≈ 0. The condition of homogeneity
implies f ′(0) = 0; the Taylor’s development of f(r) thus
yields

f(r) = 1− 1

2

( r

λ

)2

+O(r4) with
1

λ2
= −f ′′(0) > 0. (48)

The microscale λ is called the Taylor’s microscale.
Taylor hypothesized that λ “may roughly be regarded as
a measure of the diameters of the smallest eddies which
are responsible for the dissipation of energy”.

When considering the longitudinal increment δu‖(r) ≡
u‖(~x + ~r, t) − u‖(~x, t), one obtains

• 〈δu‖(r)
2〉

2〈u2
‖〉

≈ 1

2

( r

λ

)2

for r ≈ 0

and

• 〈δu‖(r)
2〉

2〈u2
‖〉

≈ 1 for r ≥ L (integral scale)

The representation of 〈δu‖(r)
2〉/2〈u2

‖〉 (as a function

of the scale r) thus provides a direct visualization of the
logarithmic separation between the macroscale and the
microscale of turbulent velocity fluctuations, as shown in
Fig. 9.
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FIG. 8: The longitudinal velocity auto-correlation function
f(r), measured downstream from a vertical cylinder (on the
centerline of the wake). The integral scale

∫∞

0
f(r)dr is found

of the order of the diameter of the cylinder (D = 0.10 m). Ve-
locity fluctuations are recorded in time at a fixed position in
the flow by using a hot-wire anemometer (see Fig. 5). The
mean-flow velocity u is used to recast the temporal velocity
signal in the space domain, according to u(x, t+τ ) = u(x+r, t)
with r = −uτ . This transformation is known as the Tay-
lor’s hypothesis; it states that turbulence may be considered
as frozen for small time lags τ , provided that the mean-
flow velocity is large compared to the turbulent velocity:
√

< (u − u)2 > / u ≪ 1 (this ratio is called the turbulent
rate).

10
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−1

10
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10
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−1

10
0

<
δ 

u || (
r)

2 >
 / 

2 
<

u ||2 >

r [m]

λ : Taylor’s microscale

L : macroscale

FIG. 9: The macroscale and microscale of turbulent fluctua-
tions are well separated. From dimensional arguments, it can
be established that L/λ ∼ Rλ (turbulent Reynolds number).
Here, Rλ ≈ 180 (turbulent flow behind a vertical cylinder).

3. The turbulent Reynolds number

Here, the Reynolds’ decomposition is required to dis-
tinguish unambiguously the mean-flow velocity and the
turbulent velocity.

Turbulence is primarily a dissipative process, and, with
this respect, the behavior of the finest scales of motion is
essential. The definition of the Taylor’s microscale (48)
yields

ε̄ = 2ν|S′|2 ∼ ν

(
u′

λ

)2

, (49)

where u′ is the turbulent velocity scale (u′ ∼ k′
1/2

).

On the other hand, ε̄ = −u′
iu

′
j Sij from Eq. (41). Typ-

ically, −u′
iu

′
j Sij ∼ u′2|S| and therefore |S| ∼ ν/λ2. The

local supremacy of the turbulent stress over the mean-
flow viscous stress then reads

Relocal ∼
−u′

iu
′
j Sij

ν|S|2
∼
(

u′λ

ν

)2

. (50)

This naturally motivates the introduction of a local order
parameter for the turbulent agitation:

Rλ ≡ u′λ

ν
: the turbulent Reynolds number. (51)

Rλ is also called the Reynolds number based on the Tay-
lor’s microscale.

The fully developed turbulent regime is obtained for
high turbulent Reynolds numbers. One therefore obtains
as a criterion of (local) developed turbulence:

Rλ ∼

√

|S′|2

|S|
≫ 1, (52)

which indicates that the gradients of the fluctuating ve-
locity are very large compared to the mean-flow gradi-
ents.

It is important to emphasize on the fact that turbu-
lence properties are local in space (and time if the flow
is not stationary). For the Poiseuille’s flow in a pipe, the
turbulence in the vicinity of the wall, where the shear
(mean-flow gradient) is strong, is different in nature from
the turbulence far away from the wall, where the shear
is almost zero. In this flow, Rλ depends on the distance
to the wall.

The local Reynolds number Relocal ∼ R2
λ according

to Eq. (50). It has been previously established that
νturb./ν ∼ Relocal. The integral scale L may be viewed
as the mixing length of turbulence, and consequently,
νturb. ∼ u′L. It follows that

Relocal ∼
u′L

ν
∼ R2

λ. (53)
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By combining the Eqs. (51) and (53), one obtains

(
L

λ

)

∼ Rλ. (54)

The logarithmic separation between the integral scale
and the Taylor’s microscale is proportional to the log-
arithm of the turbulent Reynolds number.

4. From G. I. Taylor (1935) to A. N. Kolmogorov (1941)

In Taylor’s approach, the turbulent-velocity-gradient
scale is (rigorously) given by (Batchelor [1967])

〈
|S|2

〉
=

15

2

u2
rms

λ2
, (55)

where urms ≡ 〈u2
‖〉1/2 denotes the root-mean-square of

any velocity component (by assuming isotropy). Eq.(55)
infers a turbulent-agitation process, which is uncorre-
lated at the microscale λ. This is definitively not the
case in actual turbulence; the velocity field is (strongly)
correlated at the spatial size of the smallest eddies. This
feature rather motivates the introduction of a microscale
η such that

〈
|S|2

〉
∼ 〈δu‖(η)2〉

η2
. (56)

This is the approach followed by Kolmogorov (1941).
In this situation, it is required to determine explicitly the
behavior of 〈δu‖(r)

2〉 as a function of the scale r. The
microscale η is usually called the Kolmogorov’s scale; it
nails down the size of the smallest eddies.

C. The difficulty of an analytical treatment

As demonstrated previously, the (longitudinal) two-
point velocity correlation function contains important in-
formation about the range of excited scales in turbulence;
it also determines the distribution of the turbulent ki-
netic energy in wavenumber. So far, there is no ana-
lytical theory that predicts this correlation function by
starting from the Navier-Stokes equations. In that sense,
turbulence remains an unsolved problem.

The need for a statistical description of turbulence
arises from both the intrinsic complexity of individual
solutions of the Navier-Stokes equations and the instabil-
ity of these solutions to infinitesimal (extrinsic) pertur-
bations in the initial or boundary conditions. This makes
natural to examine ensembles of realizations rather than
each individual realization, and to look for simple robust
statistical features insensitive to the details of perturba-
tions.

The statistical problem is a priori well posed if at ini-
tial time t0, the mean velocity ui(~x, t0) and the corre-
lation function Rij(~x, t0; ~x

′, t′0) are given, and if it is as-
sumed that the distribution of the turbulent velocity field
ui(~x, t0) is gaussian. At times t > t0, the (multivariate)
distribution of ui(~x, t) deviates from the gaussian dis-
tribution, due to the correlations induced by the (non-
linear) dynamics of the Navier-Stokes equations. This
departure from the gaussian distribution is governed by
the entire (unclosed) hierarchy of statistical equations for
the correlation functions (42). The central problem is
to find an appropriate closure condition to convert this
infinite hierarchy into a closed subset, that is the “clo-
sure problem of turbulence”. In this context, the direct-
interaction-approximation proposed by Kraichnan (1959)
is certainly the most realized attempt (see Frisch [1995],
for a modern review).

The statistical features of turbulence are rather investi-
gated from a phenomenological standpoint, that is, start-
ing from hypotheses motivated by experimental and nu-
merical observations. Interestingly, this is the approach
adopted by the mathematician Andrei Kolmogorov. This
line of study has yielded very fruitful results during the
past half century and continues to expand nowadays.

D. The Kolmogorov’s theory of homogeneous and
isotropic turbulence

Kolmogorov’s approach of the (out-of-equilibrium) sta-
tistical problem of turbulence is interesting; it yields a rel-
evant prediction for the spectrum of kinetic energy from
(very) simple arguments.

1. Kolmogorov’s similarity hypotheses

Kolmogorov’s theory focuses on the fluctuations of ve-
locity increments

δui(~x,~r, t) ≡ ui(~x + ~r, t) − ui(~x, t). (57)

These fluctuations are assumed stationary (in time), ho-
mogeneous and isotropic (and mirror symmetric).

Kolmogorov’s theory relies on two similarity hypothe-
ses (Kolmogorov [1941]):

• at scales r small compared to the integral scale L,
the distributions of the velocity increments δui(r)
are universal (independent of the stirring mech-
anism of turbulence) and fixed by the kinematic
viscosity of the fluid ν and the mean energy-
dissipation rate (per unit mass) ε̄.

In particular, for the second-order (longitudinal) mo-
ment B‖(r) ≡ 〈δu‖(r)

2〉:

B‖(r) =
√

νε̄ Φ(
r

η
) for r ≪ L, (58)
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FIG. 10: The energy spectrum in wavenumber measured
experimentally (C. Baudet et al.). The velocity signal is
recorded in time at a fixed position in a turbulent jet. Tur-
bulence is locally homogeneous and isotropic (at small scales)
and the turbulent Reynolds number is 390. One observes a
decreasing spectrum in good agreement with the prediction
of Kolmogorov’s theory: E(k) ∼ k−5/3. The hypothesis of
“frozen turbulence” has been used: ω = uk, where u is the
mean velocity component.

where η denotes the elementary scale of turbulent mo-
tions and Φ is a universal function. A dimensional argu-
ment yields

η =

(
ν3

ε̄

)1/4

. (59)

• at scales r large compared to the elementary scale
η, the distributions of δui(r) do not depend on ν.

Therefore,

〈δu‖(r)
2〉 = B (ε̄r)2/3 for η ≪ r ≪ L, (60)

where B is a universal constant. The range of scales
η ≪ r ≪ L is called the inertial range.

It is interesting to note that the law (60) does not in-
clude any characteristic scale. This feature is related to
the idea that the energy cascade is a self-similar process
in scale. At a given scale r, all detailed statistical in-
formation about the source of energy is lost; the only
parameter which controls the cascade is ε̄, the rate of
cascade. This parameter enters because the cascade con-
serves the energy.

2. The spectrum law

By assuming that the energy spectrum decreases suf-
ficiently rapidly at high wavenumbers, one derives from
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FIG. 11: The kinetic energy spectrum E(k) in wavenumber,
obtained from a direct numerical simulation of the (three-
dimensional) Navier-Stokes equation (E. Lévêque). The en-
ergy is not equally distributed among the Fourier modes;
E(k) ∼ k2 would be expected at thermodynamic equilibrium.
At wavenumbers k between those, where energy is fed into
turbulence, and the higher wavenumbers, where the energy
is dissipated by viscosity, the spectrum is found close to the
Kolmogorov’s similarity law E(k) ∼ k−5/3.

the similarity law (60) the celebrated prediction

E(k) = Cε̄2/3k−5/3, (61)

where C is termed the Kolmogorov’s constant. This law
is corroborated by a large body of experimental (Fig. 10)
and numerical (Fig. 11) measurements (with C ≈ 2).

One can extend the prediction of Kolmogorov’s theory
to all wavenumbers

E(k) = Cε̄2/3k−5/3f(
k

kd
), (62)

where f is a universal function and

kd =
( ε̄

ν3

)1/4

∼ 1

η
(63)

is the Kolmogorov’s dissipative wavenumber.

E. The dynamical mechanism of the energy cascade

Kolmogorov’s theory envisages a cascade of kinetic en-
ergy from large scales to small scales which is local in
scale size. It implies that an eddy of a given scale mainly
interacts with eddies of similar scale. Indeed, it is plau-
sible that motions on much larger scales should act to
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transport this eddy without distorting it. On the op-
posite, the shears associated with excitations at much
smaller scales should cancel out over the extend of the
eddy. This suggests that distortions of the given eddy,
and therefore the mechanism of transfer of energy to ed-
dies of smaller scale, should be principally due to inter-
action with other eddies of similar scale. The mecha-
nism responsible for this transfer is the process of vortex
stretching.

1. A bit of kinematics

The vorticity field ~ω(~x, t) is defined as the curl of the
velocity field

~ω(~x, t) =
−→∇ × ~u(~x, t). (64)

By taking the curl of the Navier-Stokes equation, one
obtains for the vorticity field

D~ω

Dt
≡ ∂~ω

∂t
+ (~u.

−→∇)~ω = (~ω.
−→∇)~u + ν∆ω. (65)

In Eq.(65), the vorticity-stretching term (~ω.
−→∇)~u plays

an important role. Let us consider the previous equation
without the viscous term:

D~ω

Dt
= (~ω.

−→∇)~u. (66)

Eq. (66) is identical to the equation for the evolution
of an infinitesimal line element δ~s of fluid:

D ~δs

Dt
= (~δs.

−→∇)~u. (67)

The chaotic nature of turbulence tends to separate
any two fluid elements initially near each other. Con-
sequently, there is a tendency to stretch initial vorticity
distributions into thin and elongated structure (until vis-

cosity ultimately stops the thinning). Furthermore, if ~δs
is taken along a vorticity line in Eq. (67), one gets

Dδs

Dt
=

from Eq. (66)
︷ ︸︸ ︷

ωiωj

ω2

∂ui

∂xj
δs =

1

ω2

D

Dt

(
ω2

2

)

δs

or
1

2

Dω2

ω2
=

Dδs

δs
, (68)

from which it is deduced that ω/δs is conserved during
the stretching process. This means that the stretching
of the vorticity line is accompanied by an intensification
of the vorticity (the fluid in the vortex spins harder).
An initial distribution of vorticity tends to stretch and
concentrate on thin and elongated structures (see Fig. 12
for a numerical evidence).

Kolmogorov’s theory relies on the picture of a uniform
sea of random disordered whirls, with the cascade process

FIG. 12: Snapshot of high-enstrophy isosurfaces from a nu-
merical simulation of three-dimensional turbulence; the local
enstrophy (squared vorticity) is defined by |~∇×~u(~x, t)|2. The
swirling activity of the flow concentrates into very localized
fluid structures: The vortex filaments.

consisting of the fission of eddies into smaller ones. This
picture appears to be in conflict with what is inferred
from the vortex stretching process.

Finally, note that in two-dimensional flows, the vortex-
stretching term (~ω.

−→∇)~u vanishes. Because of the absence
of vortex stretching, two-dimensional turbulence is differ-
ent from three-dimensional turbulence.

F. The phenomenon of intermittency

The Kolmogorov’s law for the energy spectrum is well
supported. However, higher-order statistics are not uni-
versal in the sense of Kolmogorov’s 1941 hypotheses.

Kolmogorov’s similarity hypotheses lead to the follow-
ing form for the moments of δu‖(r):

〈
|δu‖(r)|p

〉
= Bp (ε̄r)p/3 for η ≪ r ≪ L, (69)

where the Bp are universal constants. These moments
are called the velocity structure functions.

From Eq. (69), the normalized moments

〈|δu‖(r)|p〉
〈|δu‖(r)|2〉p/2

(70)

are universal, independent of the mean dissipation rate ε̄
and the scale r (in the inertial range). Instead, measured
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value for the normalized moments increase dramatically
with both the order p and 1/r.

The power-law scaling of velocity structure functions
is not denied, but the scaling exponents do not increase
linearly with the order p:

〈δu‖(r)|p〉 ∼ rζp but ζp − p

2
ζ2 6= 0. (71)

This deviation from the Kolmogorov’s linear scaling law
(69) is an indication of a strong scale-dependent inter-
mittency at small scales.

1. The build-up of intermittency along the cascade chain

At scales r ≈ L, where L denotes the integral scale
of turbulence, fluid motions are statistically indepen-
dent and the probability density function of δu‖(L) is
found nearly gaussian. At scales r < L, intrinsic non-
linear fluid dynamics operate and turbulent motions be-
come intermittent; fluid activity comes in intense locally-
organized motions embedded in a sea of relatively qui-
escent and disordered eddies (as a result of the vortex-
stretching process).

As a consequence, the pdf of δu‖(r) develops long tails
and becomes strongly non-gaussian. These deviations
from the gaussian shape may be quantified by the flatness
(fourth-order normalized moment), defined by

F (r) ≡ 〈δu‖(r)
4〉

〈δu‖(r)2〉2
. (72)

For a centered gaussian distribution F = 3; as long tails
develop F increases. The quantity F (r)/3 may therefore
be roughly thought of as the ratio of intense to quies-
cent fluid motions at scale r. In that sense, log (F (r)/3)
provides a quantitative measure of intermittency at the
scale size r.

The normalized (to the gaussian value) flatness is plot-
ted as a function of the scale ratio r/L for two turbulent
flows in Fig. 13. We observe at scales r ≥ L, F (r) ≃ 3,
in agreement with the picture of disordered fluid mo-
tions: There is no intermittency, since the flatness F (r)
is independent of the scale r and (almost) equal to the
gaussian value F = 3. At smaller scales, F (r) displays
a power-law dependence on r: Intermittency grows up
linearly with log(1/r). This scaling behavior is inherent
to the non-linear inertial fluid dynamics and means (in
the context of vortex stretching) that the vorticity be-
comes concentrated in an increasingly sparse collection
of intense filaments as the scale size r decreases.

2. The refined theory of Kolmogorov and Oboukhov

In 1962, Kolmogorov and Oboukhov (Kolmogorov &
Oboukhov [1962]) suggested a refinement of the 1941
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FIG. 13: Scale dependence of the flatness of longitudinal ve-
locity increments for two different turbulent flows: (solid line)
a turbulent jet (Rλ = 380) and (dashed line) a direct numeri-
cal simulation (Rλ = 140). The macroscopic parameter Re is
the local Reynolds number. For a centered gaussian distribu-
tion, F = 3. We observe that F (r) is not constant at scales
r ≤ L: Kolmogorov’s similarity hypotheses are violated.

theory, in which the spatial fluctuations of the energy-
dissipation rate (per unit mass) are taken into account.

ε(~x, t) = 2ν|S(~x, t)|2

=
ν

2

∑

i,j

(
∂ui(~x, t)

∂xj
+

∂uj(~x, t)

∂xi

)2

. (73)

Locally, the dissipation rate at scale r is defined as the
space average over a ball of radius r:

εr(~x, t) =
1

4
3πr3

∫

|~y|<r

ε(~x + ~y, t)d~y. (74)

The previous similarity hypotheses are refined by con-
sidering that turbulence is locally conditioned (at scale
r) by the value of εr(~x, t):

B‖(~x, t, r|εr(~x, t)) = B(~x, t)r2/3εr(~x, t)2/3. (75)

By integrating over all possible values of εr(~x, t), one gets

B‖(~x, t, r) = B(~x, t)r2/3
〈

εr(~x, t)2/3
〉

. (76)

If turbulence is stationary, and locally homogeneous
and isotropic:

B‖(r) = B(ε̄r)2/3

(
L

r

)−µ

(77)

by noting

〈εr(~x, t)2/3〉 = ε̄2/3

(
L

r

)−µ

. (78)
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The parameter µ is called the intermittency parameter.
It characterizes the deviation from the 1941 theory for
the second-order moment.

More generally, the velocity structure functions write

〈|δu‖(r)|p〉 = Bp(ε̄r)
p/3
( r

L

)τp/3

, (79)

where the corrections to the linear law ζp = p/3 are con-
tained in

〈εr(~x, t)p/3〉 = ε̄p/3
( r

L

)τp/3

: ζp =
p

3
+ τp/3. (80)

Heuristically, Kolmogorov and Oboukhov related the
phenomenon of intermittency to the fluctuations of the
local energy-dissipation rate. They also opened a Pan-
dora box containing all a priori admissible distributions
for εr (Kraichnan [1974]).

In the refined theory of Kolmogorov and Oboukhov
(1962) the distributions of δu‖(r) are fixed by the kine-
matic viscosity ν, the mean dissipation rate ε̄ and the
integral scale L. The introduction of the integral scale L
is not anodyne. It is related to the idea that the energy
cascade results from the iteration of the same elemen-
tary process of fission of eddies into smaller eddies. The
number of cascade steps required for an excitation to
propagate from the integral scale L to the small scale r
is measured by log(r/L). It is assumed that each step of
the cascade is stochastic in nature and statistically inde-
pendent of the previous steps. The result is a build-up of
intermittency at each cascade step, which may be viewed
as a multiplicative process (Castaing [1990]).

3. The log-normal model

Kolmogorov and Oboukhov proposed a plausible can-
didat for the distribution of εr. It is the log-normal
model, for which the pdf of log εr is supposed gaussian:

P(log εr) =
1

√

2πσ2
r

exp

(−(log εr − mr)
2

2σ2
r

)

. (81)

The parameters mr and σ2
r denote respectively the mean

and the variance of the random variable log εr. The log-
normal model yields a quadratic law for the scaling ex-
ponents ζp:

ζp =
p

3
+

1

2
µp(p − 3) with µ > 0. (82)

In Kolmogorov’s 1941 theory, the scaling exponents are
fixed by dimensional arguments. Here, all the possible
values for µ are a priori permitted. This is the detailed
nature of the non-linear dynamics of turbulence which
should fix the value of µ. This relation has not been
established so far (as mentioned in the introduction).

FIG. 14: Slice of a snapshot of the energy-dissipation rate
ε(~x, t), obtained from a numerical simulation of the (three-
dimensional) Navier-Stokes equation (E. Lévêque). The mag-
nitude of ε(~x, t) is represented by a colorbar ranging from 0
to 1. Energy dissipation is concentrated on fine structures; it
is not uniformly distributed.

4. The log-normality and the vortex-stretching process

In the context of vortex stretching, the build-up of
intermittency along the cascade chain is related to a
swirling activity of the flow which concentrates on a more
and more little fraction of the volume.

A simple model assumes that the vorticity is statisti-
cally independent of the local velocity shear, and obeys
the stochastic equation

Dω(t)

Dt
= b(t)ω(t), (83)

where b(t) denotes the effective velocity shear; b(t) is ran-
dom and independent of ω(t). The previous equation
leads to

log

(
ω(t)

ω(0)

)

=

∫ t

0

b(s)ds. (84)

For times t very large compared to the correlation time
of b(s), the statistics of ω(t) become log-normal (accord-
ing to the central-limit theorem). Furthermore, if one
assumes that ε ∼ νω2, this simple model gives a support
to the log-normal hypothesis. However, a more realistic
model should take into account the (strong) correlation
between b(t) and ω(t). In that case, an other (statis-
tical) distribution for ω(t) would be obtained. What is
the stochastic process selected by the vorticity-stretching
mechanism of turbulence? It is an alternative approach
to the problem of turbulence (see Saffman [1998], for a
review).
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Finally, let us mention that the importance of the
fluid dynamics in the cascade process, naturally calls
for a Lagrangian representation of turbulence. The La-
grangian coordinate system moves with the fluid and
therefore gets ride of advection effects by the large-scale
fluid structures (sweeping effects), but focuses on dis-
tortion effects responsible for the local energy-transfer
mechanism. But there are severe problems in using a
Lagrangian representation. First, the pressure and the
viscous terms of the Navier-Stokes equation display in-
tractable non-linearity in Lagrangian coordinates (in the
three-dimensional case). Second, after a substantial time
of evolution, the labelling of fluid particles has such a
mixed-up relation to current positions that it becomes
inappropriate.

V. THE LARGE-EDDY SIMULATION OF
TURBULENCE

A. General introduction

Turbulence exhibits a wide range of spatial and tem-
poral scales of motion, which needs to be resolved in a
direct (without modelling) numerical simulation (Dns).
The Kolmogorov’s elementary scale η fixes the mesh reso-
lution. On the other hand, the integration domain must
encompass the largest scales of motion, comparable to
the integral scale L. Therefore, the number of grid points
required to suitably resolve all spatial scales, is given by

(
L

η

)3

∼ Re9/4 with Re ≡ urmsL

ν
. (85)

When the cfl time-step condition is factored in, i.e.,

σ =
urmsδt

η
≤ 1, (86)

one ends up with a computational cost which grows as
the cube of the Reynolds number. This imposes dramatic
constraints on the numerical simulation of turbulent flows
(see Table I). Excessive computing costs motivate the
development of “reduced models of turbulence”, which
usually requires much less computational ressources but
remains relevant (in some degree) to describe the kinetics
of the flow.

Roughly speaking, large-scale eddies carry most of the
kinetic energy; their size and strength make them the
most effective transporters of the conserved quantities
(momentum, heat, mass, etc.), and small-scale eddies are
mainly responsible for the dissipation; they are weaker
and provide little transport. From a mechanical view-
point, large-scale dynamics are therefore of primary im-
portance, and the (costly) computation of small-scale
motions should be avoided in a numerical simulation.

In this context, the Rans methods are the most popu-
lar. This is the approach followed by Osborne Reynolds,

year grid size Dns Rλ

1972 323 (Orszag & Patterson) 35

1985 1283

1991 2563 (Vincent & Menneguzzi) 140

1995 5123

2002 10243 (Gotoh) 400

2005 20483 (Earth Simulator, Japan) 700

TABLE I: Resolution of the direct (without modelling) nu-
merical simulation of the Navier-Stokes equation in a cu-
bic domain with periodic boundary conditions (a prototype
for homogeneous and isotropic turbulence). The grid size is
roughly multiplied by a factor two (in each direction) every
five years. This evolution is closely related to the increase in
size and performance of computers (see Fig. 15).

which consists in breaking the velocity field into a mean-
flow component and a turbulent component, and mod-
eling the effects of turbulent fluctuations on the mean
flow. The Rans methods lead to the estimation of mean
quantities but do not resolve the turbulent fluctuations;
they are based on questionable closure conditions and of-
ten appeal to numerous empirical parameters (see section
III). But their computational cost is unbeatable.

The large-eddy simulation (Les) offers a compromise
between the Dns and the Rans methods. In a Les,
the large-scale dynamics of turbulence are explicitly in-
tegrated in time, and the interaction with the unsolved
small-scale motions is modelled. In order to separate the
small-scale component and the large-scale component of
the turbulent velocity field, an explicit filtering procedure
is used (Lesieur & Métais [1996], for a review on Les).

FIG. 15: The number of transistors in a chipset follows an
exponential law; the Moore’s law (Moore [1965]).
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B. The equation for the large-scale (filtered)
velocity field

The instantaneous velocity field ui(~x, t) is decomposed
into a large-scale component

u<
i (~x, t) =

∫

H∆(~x′)ui(~x − ~x′, t)d~x′, (87)

obtained by spatially filtering the velocity field, and a
small-scale component u>

i (~x, t) such that

ui(~x, t) = u<
i (~x, t) + u>

i (~x, t). (88)

The convolution kernel H∆(~x) eliminates the fluctuations
of the velocity field at scales smaller than ∆.

The equation for the large-scale (filtered) velocity field
is obtained by filtering the Navier-Stokes equation and
reads

∂u<
i

∂t
+ u<

j

∂u<
i

∂xj
= − ∂

∂xj

(
p<δij + τ<

ij

)
+ ν

∂2u<
i

∂xj∂xj
, (89)

where

τ<
ij ≡ (uiuj)

< − u<
i u<

j (90)

denotes the subgrid-scale stress tensor. τ<
ij arises from

the nonlinearity of the Navier-Stokes equation and en-
compasses all interactions between the resolved and the
unresolved scales of motion.

Eq.(89) is amenable to numerical discretization at the
mesh resolution ∆ (Ferziger & Perić [2002], a book on
Computational Methods for Fluid Dynamics), which is
typically much more affordable than the Dns if ∆ ≫
η. However, in order to close Eq.(89), it is necessary to
express the subgrid-scale stress tensor τ<

ij in terms of the

large-scale (filtered) velocity field.

C. The Smagorinsky’s model

The first, and still very widely used, proposal for the
subgrid-scale stress tensor, is the Smagorinsky’s model
(Smagorinsky [1963]).

1. The hypothesis of turbulent viscosity

The idea is to consider the deviatoric part of τ<
ij by

analogy with the viscous stress in a Newtonian fluid:

τ<
ij − 1

3
τ<
kk

︸ ︷︷ ︸

included in the pressure

≈ −2νT S<
ij , (91)

where νT is the (scalar) eddy viscosity (at scale ∆) and
S<

ij denotes the resolved (filtered) strain-rate tensor.
Following the mixing-length model introduced by

Prandtl ([1925]), Smagorinsky proposed

νT = (Cs∆)2|S<| with |S<| ≡
√

2S<
ijS

<
ij . (92)

Cs is an empirical constant (the Smagorinsky’s constant
Cs ≈ 0.2 for homogeneous and isotropic turbulence). The
Smagorinsky’s length scale ℓs = Cs∆ is analogous to the
mixing length, and proportional to the filter width ∆.

The dynamical equation for the filtered velocity field
then reads
(

∂

∂t
+ u<

j

∂

∂xj

)

u<
i = −∂p<

∂xi
+ (ν + νT )

∂2u<
i

∂xj∂xj
(93)

with the eddy viscosity νT = (Cs∆)2
√

2S<
ijS

<
ij .

Eq.(93) is identical to the usual Navier-Stokes equation
except for the effective viscosity ν+νT . In the framework
of Kolmogorov’s 1941 theory, the elementary scale of the
(turbulent) solution of Eq.(93) expresses as

η< =

(
(ν + νT )3

ε

)1/4

. (94)

The energy-dissipation rate is given by ε = (ν+νT )|S<|2,
and therefore

η< = Cs∆

(

1 +
ν

νT

)1/2

. (95)

If turbulence is developed, the eddy-viscosity is much
larger than the molecular viscosity, and consequently
η< ≈ Cs∆. In the Smagorinsky’s model, the eddy-
viscosity is thought so that the Smagorinsky’s length
scale ℓs coincides with the elementary scale η< of the
filtered velocity field.

Despite its popularity, the Smagorinsky’s model pos-
sesses a number of shortcomings. For inhomogeneous
flows, it is too dissipative, that is, it transfers to much en-
ergy to the unresolved subgrid motions. The Smagorin-
sky’s model also performs poorly in the vicinity of a wall;
the Smagorinsky’s length scale becomes large compared
to the energy-containing scales. This suggests to adjust
dynamically the coefficient Cs, in order to ensure the con-
stitutive relation ℓs ≈ η< everywhere in the flow. This is-
sue is actually addressed in the dynamic model proposed
by Germano ([1991]). The behavior of the Smagorinsky’s
model is greatly improved but the computational cost is
heavy.
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[2002] Ferziger, J. H. & Perić, M. 2002, Computational Meth-

ods for Fluid Dynamics, ed. Springer-Verlag (3rd edition),
Berlin Heidelberg, Germany
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